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Abstract 
This paper studies a continuous-time market under a stochastic environment where an agent, 
having specified an investment horizon and a target terminal mean return, seeks to minimize the 
variance of the return with multiple stocks and a bond. In the model considered here, the mean 
returns of individual assets are explicitly affected by underlying Gaussian economic factors. Using 
past and present information of the asset prices, a partial-information stochastic optimal control 
problem with random coefficients is formulated. Here, the partial information is due to the fact 
that the economic factors can not be directly observed. Using dynamic programming theory, we 
show that the optimal portfolio strategy can be constructed by solving a deterministic forward 
Riccati-type ordinary differential equation and two linear deterministic backward ordinary diffe-
rential equations. 
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1. Introduction 
Mean-variance is an important investment decision rule in financial portfolio selection, which is first proposed 
and solved in the single-period setting by Markowitz in his Nobel-Prize-winning works [1] [2]. In these seminal 
papers, the variance of the final wealth is used as a measure of the risk associated with the portfolio and the 
agent seeks to minimize the risk of his investment subject to a given mean return. This model becomes the 
foundation of modern finance theory and inspires hundreds of extension and applications. For example, this 
leads to the elegant capital asset pricing model [3]. 

The dynamic extension of the Markowitz model has been established in subsequent years by employing the 
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martingale theory, convex duality and stochastic control. The pioneer work for continuous time portfolio 
management is [4], in which Merton used dynamic programming and partial differential equation (PDE) theory 
to derive and solve the Hamilton-Jacobi-Bellman (HJB) equation, and thus obtains the optimal strategy. For 
cases when the underlying stochastic process is a Martingale, optimal portfolios could be derived [5]. In [6], the 
authors formulated the mean-variance problem with deterministic coefficients as a linear-quadratic (LQ) optimal 
problem. As there is no running cost in the objective function, this formulation is inherently an indefinite 
stochastic LQ control problem. As extensions of [6], for example, [7] dealt with random coefficients, while [8] 
considered regime switching market. For discrete time cases, [9] solved the multiperiod mean-variance portfolio 
selection problem completely. Analytical optimal strategy and an efficient algorithm to find the strategy were 
proposed. Comprehensive review of the mean-variance model can be found in [10] and [11]. 

In [12], in order to tackle the computational tractability and the statistical difficulties associated with the 
estimation of model parameters, Bielecki and Pliska introduced a model such that the underlying economic 
factors such as accounting ratios, dividend yields, and macroeconomic measures are explicitly incorporated in 
the model. The factors are assumed to follow Gaussian processes and the drifts of the stocks are linear functions 
of these factors. This model motivates many further researches (see, for example, [13] and [14]). In practice, 
many investors use only the observed asset prices to decide his current portfolio strategy. The random factors 
cannot normally be observable directly. Therefore, the underlying problem falls into the category of portfolio 
selection under partial information [15] [16]. A significant progress in the realm of mean-variance concerning 
partial information is the work of [17], in which a separation principle is shown under this partial information 
setting. Efficient strategies were derived, which involved the optimal filter of the stock drift processes. In 
addition, the particle system representation of the obtained filter is employed to develop analytical and 
numerical approaches. It is valuable to point out that backward stochastic differential equations (BSDEs) 
methodology is employed to tackle this problem. 

This paper attempts to deal with the mean-variance portfolio selection under partial information based on the 
model of [12]. By exploiting the properties of the filtering process and the wealth process, we tackle this 
problem directly by the dynamic programming approach. We show that optimal strategy can be constructed by 
solving a deterministic forward Riccati-type ordinary differential equation (ODE) and a system of linear 
deterministic backward ODEs. Clearly, by reversing the time, a deterministic backward ODE can be converted 
to a forward one. Therefore, we can easily derive the analytic solutions of the ODEs, and thus the analytic form 
of the optimal strategies. This is the main contribution of the paper. The proposed procedure is different from 
that of [17], where BSDEs are employed. 

The rest of the paper is organized as follows. In Section 2, we formulate the mean-variance portfolio selection 
model under partial information, and an auxiliary problem is introduced. Section 3 gives the optimal strategy of 
the auxiliary problem by the dynamic programming method. Section 4 studies the original problem, while 
Section 5 gives some concluding remarks. 

2. Mean-Variance Model 

Throughout this paper { }( )0
, , , t t

P
≥

Ω    is a fixed filtered complete probability space on which a standard t - 

adapted ( )n m+ -dimensional Brownian motion ( ){ }, 0W t t ≥  is defined, where  

( ) ( ) ( )( )T1 , , n mW t W t W t+≡   and ( )0 0W = . Let 0T >  be the terminal time of an investment, and 

( )2 0, ; dL T   denotes the set of all d
 -valued, t -adapted stochastic processes ( )f t  with  

( ) 2

0
d

T
E f t t < +∞∫ ; similarly ( )2 0, ; lL T   can be defined for any functions with domain in l

  and  

filtration t . 
There is a capital market containing 1m +  basic securities (or assets) and n  economic factors. The 

securities consist of a bond and m  stocks. The set of factors may include short-term interests, the rate of 
inflation, and other economic factors [14]. One of the securities is a risk-free bank account whose value process 

( )0S t  is subject to the following ordinary differential equation  

( ) ( ) ( ) ( )0 0 0 0d d ,     0,    0 0S t r t S t t t S s= ≥ = >                            (2.1) 
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where ( )r t  is the interest rate, a deterministic function of t . The other m  assets are risky stocks whose price 

processes ( ) ( )1 ,  ,  mS t S t  satisfy the following stochastic differential equations (SDEs)  

( ) ( ) ( ) ( ) ( ){ }
( )

1d d d ,     0,

0 0,                                                         1, 2, ,

n m j
i i i ijj

i i

S t S t t t t W t t

S s i m

µ σ+

=
 = + ≥


= > =

∑


                     (2.2) 

where ( )i tµ , 1, ,i m=   are the drifts, and ( )i tσ , 1, ,i m=   are the deterministic volatility or dispersion 
rate of the stocks. In this paper, we assume that the drifts are affine functions of the mentioned economic factors,  

and the factors are Gaussian processes. To be precise, denoting ( ) ( ) ( )( )T
1 2, , , mt t tµ µ µ  by ( )tµ , we have  

( ) ( ) ( )
( ) ( )( ) ( ) ( ) 0

,         ,        ,

d d d ,       0

y m m n

n

t a Ay t t a A

y t d Dy t t W t y y

µ µ × = + ∈ ∈


= + + Λ = ∈

  



 

where the constant matrices ,  ,  d D Λ  are of 1n× , n n× , ( )n m n× + , respectively. 

Consider an agent with an initial endowment 0 0x >  and an investment horizon [ ]0,T , whose total wealth 

at time [ ]0,t T∈  is denoted by ( )X t . Assuming that the trading of shares is self-financed and taken place 

continuously, and that transaction cost and consumptions are not considered, then ( )X t  satisfies (see, e.g., 
[18])  

( ) ( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( )
( )

1 1 1

0

d d d ,

0 ,

m m n my j
i i i iji i jX t r t X t t r t t t t t W t

X x

µ π π σ+

= = =
  = + − +  

=

∑ ∑ ∑           (2.3) 

where ( )i tπ , 1, ,i m=   denote the total market value of the agent’s wealth in the i -th stock. We call the 

process ( ) ( ) ( )( )T
1 , , mt t tπ π π=  , 0 t T≤ ≤ , a portfolio of the agent. 

Let  

( ) ( ) ( )( )
( ) ( )( )

T
1

0

, , ,

, : , 0.
m

t

S t S t S t

S u S u u t tσ

=

= ≤ ≥




 

As pointed out by [17], practically, the investor can only observe the prices of assets. So, at time t , the 
information that available to the investor is the past and present assets’ prices, equivalently, the filtration t . 
Thus, the investor’s strategy should be based on his/her available information. Therefore, tπ  should be t - 
measurable. To be exact, we define the following admissible portfolio. 

Definition 2.1. A portfolio ( )π ⋅  is said to be admissible if ( ) ( )2 0, ,RemL Tπ ⋅ ∈   and the SDE (2.3) has a 

unique solution ( )x ⋅  corresponding to ( )π ⋅ . The totality of all admissible portfolios is denoted by Π . 

The agent’s objective is to find an admissible portfolio ( )π ⋅ , among all such admissible portfolios that 

his/her expected terminal wealth ( )EX T x= , where ( )0 d
0e

Tr t tx x ∫≥  is given a priori, so that the risk measured 
by the variance of the terminal wealth  

( ) ( ) ( ) ( )2 2
Var :X T E X T EX T E X T x= − ≡ −                                    (2.4) 

is minimized. The problem of finding such a portfolio ( )π ⋅  is referred to as the mean-variance portfolio 
selection problem. Mathematically, we have the following formulation. 

Definition 2.2. The mean-variance portfolio selection problem, with respect to the initial wealth 0x , is for-  

mulated as a constrained stochastic optimization problem parameterized by ( )0 d
0e

Tr t tx x ∫≥ :  
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( ) ( ) ( )

( ) ( )
( ) ( )( )

2 2 2

0

minimize Var ,

0 ,     ,
subject to

,     admissible.

X T E X T x E X T x

X x EX T x
X π

  = − = −    
 = =  ⋅ ⋅ 

                  (2.5) 

The problem is called feasible (with respect to x ) if there is at least one admissible portfolio satisfying 
( )EX T x= . An optimal portfolio, if it exists, is called an efficient portfolio strategy with respect to x , and  
( )Var X T  is called an efficient point. The set of all efficient points is obtained when the parameter x  varies 

between ( ) )0 d
0e ,

Tr t tx ∫ +∞
. 

We impose the basic assumption: 
Assumption (PD). For any 0t ≥ , ( ) ( )T 0t tσ σ > , which is popular in the literatures about portfolio selection 

(see, for example, [12]-[14] [17] [19]). 
Let  

( )( ) ( ) ( ) ( )( ) ( )

T
( ) ,   ,y

ij m n m
B t t r t t tµ σ σ

× +
− =1  

with 1  being a m -dimensional row vector with all its entries being 1. Then, (2.3) can be rewritten as  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) 0

d d d ,

0 .

X t r t X t B t t t t t W t

X x

π π σ ′= + +   
=

                        (2.6) 

By the definition of π , our problem falls into the category of stochastic control based on partial information. 
Here, the partial information means that we cannot know the process ( )y t , and thus ( )B t . In order to design 
admissible strategy, we firstly need to derive the optimal estimation of ty . Let  

( ) ( )

( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )

T

1
T T2

11

T
1

,

, , ,     ,

log , , log log .

m m

nn

m

t t

t t t t t

Y t S t S t S t

σ σ ×Γ = ∈

Γ = Γ Γ Σ = Γ = Σ

=





 

 

By Itô’s formula we have  

( ) ( ) ( ) ( ) ( )0
1d d d ,     log 0 .
2 tY t a Ay t t t t W Y Sσ = + − Γ + = 

 
 

Define  

( ) ( ) ( ) ( )1 1ˆd d d
2

v t Y t a Ay t t t−   = Σ − + − Γ    
                           (2.7) 

then ( ){ }, 0v t t ≥  is a Brownian motion under the original probability measure (Liptser and Shiryaev (2001)). 
The estimation of ( )y t  is given by (Theorem 10.3 of [20])  

( ) ( )( ) ( )( )( ) ( )

( ) ( ) ( ) ( )( )( ) ( )( )
( ) ( )

1T T T

1 TT T T T T T T

0

ˆ ˆd d d ,

,

ˆ 0 ,     0 0.

y t d Dy t t t A v t

t D t t D t A t A

y y

σ β

β β β σ β σ β

β

−

−

 = + + Λ + Σ


= + + ΛΛ − Λ + ΣΣ Λ +


= =


          (2.8) 

By (2.7), a simple calculation shows that  

( ) ( ) ( ) ( ) ( ) ( )ˆd d .t W t t v t A y t y tσ = Σ + −                              (2.9) 

Substituting (2.9), we have an equivalent representation of the wealth process  
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) 0

d d d ,

0 ,

X t r t X t B t t t t t v t

X x

π π ′ = + + Σ  
=

                           (2.10) 

where  

( ) ( )( ) ( )Tˆ .B t a Ay t r t= + − 1                                         (2.11) 

This is the separation principle developed by [17], which enables us to solve problem (2.5) as if the drifts 
( )yµ ⋅  were known, and then replace ( )yµ ⋅  by its optimal estimation. So, (2.5) can be equivalently for- 

mulated as  

( )( )
( )

( ) ( )( ) ( )( )( )

2
minimize ,

,
subject to ,

,   satisfy 2.8 2.10 2.11 .

E X T x

EX T x

X
π

π

  −   
  =  ∈Π
  ⋅ ⋅ 

                      (2.12) 

By general convex optimization theory, the constrained optimal problem (12) with ( )( )EX T x=  can be 
converted into an unconstrained one by introducing a Lagrange multiplier γ . To be concrete, for any fixed γ , 
we consider the following problem  

( ) ( ) ( )

( ) ( )( ) ( )( )( )

2 2 2minimize 2 ,

,
subject to

,   satisfy 2.8 2.10 2.11

E X T x E X T x E X T x

X

γ γ γ

π
π

 − − − = − − −          
 ∈Π
  ⋅ ⋅ 

                (2.13) 

which is equivalent to the following (denoting x γ+  by α  for any fixed γ )  

( )( )

( ) ( )( ) ( )( )( )

21minimize ,
2

,
subject to

,   satisfy 2.8 2.10 2.11

E X T

X

α

π
π

  −   
 ∈Π  ⋅ ⋅ 

                       (2.14) 

in the sense that two problems have exactly the same optimal strategy. In the following, we will call problem 
(2.14) the auxiliary problem of the original problem (2.12). 

3. Optimal Policy for the Auxiliary Problem 
The problem (2.14) can be viewed as an unconstrained special stochastic optimal control problem with random 
coefficients in system equation and zero integral term in the performance index. Different from existing results 
using BSDEs methodology, in this section, we derive the optimal portfolio strategy from dynamic programming 
directly. This enables us to derive the optimal policy by solving just two linear deterministic backward ODEs 
and a Riccati-type forward deterministic ODE. 

3.1. Analysis of Hamilton-Jacobi-Bellman Equation 

Let ( )ˆ, ,J t X y  denote the performance of problem (2.14) at time t , with boundary condition  

( ) ( )( )21ˆ, ,
2

J T X y E X T α = −  
. Then, it is evident that the following HJB equation is satisfied  

( )( ) ( ) ( )21ˆ ˆmin , , 0,     , ,
2

J t X y J T X y X
π

α
∈Π

= = −                          (3.1) 

where   is the infinitesimal generator operator of the closed system (2.8) (2.10) (2.11), and the independence 
of X  on policy π  is suppressed. 

To evaluate  , first of all, by (2.8) (2.10) we have  
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( ) ( ) ( ) ( )( )( ) ( )

( )( )( ) ( ) ( )
( )( )

1T T T T

1 TT T T T

T T

ˆd d d d

                   d d

                   d .

X t y t v t t A v t

t A v t v t

t A t

π σ β

σ β π

σ β π

−

−

= Σ ⋅ Λ + Σ

= Λ + Σ Σ

= Λ +

 

By Itô’s formula, it follows that  

( ) ( ) ( )

( )( ) ( )

T T T T T T
ˆ ˆ

1 TT T T T T
ˆˆ

1ˆ
2

1          ,
2

t X y XX Xy

yy

J J J rX B J d Dy J J A

Tr A A J

π π π σ β π

σ β σ β
−

= + + + + + ΣΣ + Λ +

 + Λ + ΣΣ Λ +  


 

where tJ  is the partial derivative of J  with respect to t , XXJ  is the second order partial derivative of J  
with respect to X , and ˆ ˆˆ,  ,  X Xy yyJ J J  are defined similarly. On the assumption that 0XXJ > , we get the 
following optimal strategy  

( ) ( )1 T ˆT T T T XyX

XX XX

JJB A
J J

π σ β
−  

= − ΣΣ + Λ + 
 

                          (3.2) 

which makes J  minimal. Substituting (3.2) into (3.15) leads to  

( ) ( )( ) ( )

( ) ( ) ( )

( ) ( )

1 TT T T T T T
ˆ ˆˆ

T
T 1 Tˆ ˆT T T T T T

2

1ˆ
2

1      0,
2

1ˆ, , .
2

t X y yy

Xy XyTX X
XX

XX XX XX XX

J rXJ J d Dy Tr A A J

J JJ JB A B A J
J J J J

J T X y X

σ β σ β

σ β σ β

β

−

−

  + + + + Λ + ΣΣ Λ +   

     − + Λ + ΣΣ + Λ + =    

   

 = −


    (3.3) 

In this and the following PDEs and ODEs, the arguments ˆ,  ,  t X y  are always suppressed to simplify the 
notations. 

Noticing that the terminal condition of J  is a nonhomogeneous function of X , in order to make (3.3) 
homogeneous, we set  

( ) ( ) ( )de .
T
t r s sz t X t α −∫= −                                       (3.4) 

Simple calculation shows  

( ) ( )( ) ( )

( ) ( )

d

d

ˆ ˆ

ˆ ˆ ˆ, , , e , , , ,

e ,
,     ,     .

T
t

T
t

r s s

r s s
t t X

X z X z XX zz Xy zy

J t X y J t z y H t z y

H J J r t
H H z H H H H H

α

α

−

−

∫

∫

= +

= −

= = = =



 

Substituting z  and the above equalities into (3.3), we obtain that  

( ) ( )( ) ( )

( ) ( ) ( )

( )

1 TT T T T T T
ˆ ˆˆ

T
T 1 Tˆ ˆT T T T T T T

2

1ˆ
2

1      0,
2

1ˆ, , .
2

t z y yy

zy zyz z
zz

zz zz zz zz

H rzH H d Dy Tr A A H

H HH HB A B A H
H H H H

H T z y z

σ β σ β

σ β σ β

−

−

  + + + + Λ + ΣΣ Λ +   

     − + Λ + ΣΣ + Λ + =    

   

 =


   (3.5) 

By the special structure of (3.5), the following separation form of ( )ˆ, ,H t z y  is taken  

( ) ( ) ( )21ˆ ˆ ˆ ˆ, , , ,   with   , 1   for all   
2

H t z y f t y z f T y y= =                       (3.6) 



W.-K. Pang et al. 
 

 
359 

which will be proved in Theorem 3.1. Therefore, the optimal control (3.2) has the following structure  

( ) ( )1 TTT T T ln
ˆ
fB A z

y
π σ β

−  ∂
= − ΣΣ + Λ + ∂ 

 

which is linear in z , and (3.5) is equivalent to  

( ) ( )( ) ( )

( ) ( ) ( )

( )

T 21 T2 2 2 T T T T T 2
2

T
T 1 TT T T T T T T

2 2

1 1 1ˆ
ˆ ˆ2 2 2

1 ln ln     0,
ˆ ˆ2

1 1ˆ, .
2 2

f f fz rfz d Dy z Tr A A z
t y y

f fB z A z B z A z f
y y

f T y z z

σ β σ β

σ β σ β

−

−

  ∂ ∂ ∂
+ + + + Λ + ΣΣ Λ +  ∂ ∂ ∂ 


   ∂ ∂ − + Λ + ΣΣ + Λ + =    ∂ ∂   


=



      (3.7) 

Clearly, if ( )ˆ,f t y  solves the following PDE  

( ) ( )( ) ( )

( ) ( ) ( )
( )
( ) ( )( ) ( )

T 21 TT T T T T
2

T
T 1 TT T T T T T T

T

ˆ2
ˆ ˆ

ln ln     0,
ˆ ˆ

ˆ, 1,

ˆ ,

f f frf d Dy Tr A A
t y y

f fB A B A f
y y

f T y

B t a Ay t r t

σ β σ β

σ β σ β

−

−

  ∂ ∂ ∂
+ + + + Λ + ΣΣ Λ +  ∂ ∂ ∂ 


   ∂ ∂ − + Λ + ΣΣ + Λ + =    ∂ ∂   

 =

 = + − 1

           (3.8) 

then ( )ˆ, ,H t z y  has the explicit form of (3.6). 

3.2. Optimal Policy 

Notice that the left hand side of the first equation in (3.8) is linear in f , f
t

∂
∂

, ŷ , 
2

2ˆ
f

y
∂
∂

, and quadratic in 

ln
ˆ
f

y
∂
∂

. Therefore, we assume that f  has the following expression  

( ) ( ) ( ) ( ){ }T Tˆ ˆ ˆ ˆ, expf t y p t q t y y G t y= + +                              (3.9) 

with ( )p t ∈ , ( ) nq t ∈ , ( ) n nG t S ×∈  to be specified later. Here, n nS ×  denotes the set of all symmetric 
n n×  real matrices. The form (3.9) of f  enables us to get an equivalent equation that is independent of f  
and is only a quadratic function of ŷ . Fixing the coefficients of the obtained equation to be zero, we can 
determine p , q , G  by solving several equations. Thus, we may prove that H  given in (3.6) satisfied the 
HJB Equation (3.1), indeed. Therefore, we have the following theorem.  

Theorem 3.1. For problem (2.14), the optimal strategy is given by  

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( )( ) ( ) ( ) ( )( )

1 TT T T

T dT T

 

ˆ               e ,
T
t

T

r s s

t t t a r t t t A q t

A t t A G t y t X t

π σ β

σ β α

−

−∫

= − Σ Σ − + Λ +
+ + Λ + −

1
              (3.10) 

where ( )tβ , ( )q t , ( )G t  are the unique solutions to the second equation of (2.8) and following ODEs, res- 
pectively,  

( )( ) ( )( ) ( )
( )( )

( )

T 1 1 TT T T T T T T T

1T T T T

d 2 2
d

       2 0,
0,

q q D d G a r A a r A G
t

q A A
q T

σ β

σ β

− −

−


 + + − − ΣΣ − − ΣΣ Λ +  

 − Λ + ΣΣ =
 =


1 1

         (3.11) 



W.-K. Pang et al. 
 

 
360 

( ) ( ) ( ) ( )( )
( )

1 1 T 1T T T T T T T T T Td  0,
d

0.

G A A A A D G G A A D
t

G T

σ β σ β
− − −    − ΣΣ − ΣΣ Λ + + − Λ + ΣΣ + =       

 =

  (3.12) 

Proof. Bearing the form (3.9) of f  in mind, simple calculation shows that  

( )

( )

( ) ( ) ( )

2
T T T T

2

T

ˆ ,
ˆ

ˆ ˆ ˆ ˆ ,
ˆ
ln ˆ,
ˆ

d d d
ˆ ˆ ˆ .

d d d

f f q Gy
y

f f qq qy G Gyq Gyy G G
y

f q Gy
y

p t q t G tf f y y y
t t t t

∂
= +

∂

∂
= + + + +

∂
∂

= +
∂

 ∂
= + + 

∂  

 

Therefore, (3.8) is equivalent to  

( ) ( )

( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

T
TT

1 TT T T T T T T T T

TT 1 TT T T T T T T

T T

d d dˆ ˆ ˆ ˆ ˆ2
d d d

ˆ ˆ ˆ ˆ     

ˆ ˆ     0,

ˆ ˆ ˆ 0,

p q Gy y y r q Gy d Dy
t t t

Tr A A qq qy G Gyq Gyy G G

B A q Gy B A q Gy

p T q T y T y T G T y T

σ β σ β

σ β σ β

−

−


+ + + + + +


  + Λ + ΣΣ Λ + + + + +   
    − + Λ + + ΣΣ × + Λ + + =       
 + + =

          (3.13) 

which is equivalent to  

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

T 1 TTT T T T T T

T1 1 TT T TT T T T

T T

d d dˆ ˆ ˆ ˆ ˆ2
d d d

ˆ ˆ ˆ ˆ     2 0,

ˆ ˆ ˆ 0.

p q Gy y y r q Gy d Dy Tr A A G
t t t

a Ay r a Ay r a Ay r A q Gy

p T q T y T y T G T y T

σ β σ β

σ β

−

− −

  + + + + + + + Λ + ΣΣ Λ +   
      − + − ΣΣ + − − + − ΣΣ Λ + + =      

+ + =



1 1 1  

(3.14) 
The left hand of above PDE can be decomposed into three terms: 
1) the term that is irrespective of ŷ   

( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

1 T 1 TT T T T T T T T T T T

1 T 1 TT T T T T T T T

d 2
d

    2 ;

p q A A q a r A d q
t

r a r a r Tr A A G

σ β σ β σ β

σ β σ β

− −

− −

 + Λ + ΣΣ Λ + − − ΣΣ Λ + −  
 + − − ΣΣ − + Λ + ΣΣ Λ +  

1

1 1
 

2) the term that is linear in ŷ   

( )( ) ( )( ) ( )
( )( )( )

T 1 1 TT T T T T 2 T T

1T T T T

d ˆ ˆ ˆ ˆ2 2
d

ˆ    2 ;

q y q D d G y a r Ay a r A Gy
t

q t A Ay

σ β

σ β

− −

−

 + + − − ΣΣ − − Σ Λ + 

− Λ + ΣΣ

1 1
 

3) the term that is quadratic in ŷ   

( ) ( ) ( )1 1 TT T T T T T Tdˆ ˆ2 .
d
Gy GD A A A A G y
t

σ β
− − + − ΣΣ − ΣΣ Λ + 

 
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So, if the ,  ,  p q G  satisfy the following three equations, respectively,  

( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )
( )

1 T 1 TT T T T T T T 2 T T T

1 T 1 TT T T T T T T T

d 2 2
d

     0,

0,

p q A A q r a r A d q
t

a r a r Tr A A G

p T

σ β σ β σ β

σ β σ β

− −

− −

  + Λ + ΣΣ Λ + + − − Σ Λ + −   

  − − ΣΣ − + Λ + ΣΣ Λ + =   

=


1

1 1   (3.15) 

( )( ) ( )( ) ( )

( )( )
( )

T 1 1 TT T T T T T T T

1T T T T

d 2 2
d

     2 0,

0,

q q D d G a r A a r A G
t

q A A

q T

σ β

σ β

− −

−


 + + − − ΣΣ − − ΣΣ Λ +  


 − Λ + ΣΣ =


=


1 1

         (3.16) 

( ) ( ) ( ) ( )( )
( )

1 1 T 1T T T T T T T T T Td 1 1 0,
d 2 2

0,

G A A A A D G G A A D
t

G T

σ β σ β
− − −    − ΣΣ − ΣΣ Λ + − − Λ + ΣΣ − =       

 =

 (3.17) 

we can determine the function f . Firstly, we need to claim that the second equation of (2.8), (3.15), (3.16) and 
(33.17) have unique solution. In fact, it is known that the second equation of (2.8) has a unique nonnegative 
definite solution; see, for example, Theorem 10.3 of [20]. While for (3.17), (3.16) and (3.15), they are linear in 

,  ,  G q p , respectively; thus, the solutions exist uniquely. This means that f  given in (3.9) exactly solves (3.8). 
Furthermore, by the analysis in the above subsection, we can conclude that H  defined in (3.6) solves (3.3). 
Notice that  

( ) ( ) ( ) ( ) ( ) ( ){ }T Tˆ ˆ ˆ ˆ, exp 0.XX zzJ t H t f t y p t q t y y G t y= = = + + >  

Thus, H  defined in (3.6) satisfies HJB Equation (3.1). Clearly, (3.2) is equal to (3.10). In the end, we need 
only to confirm that (3.10) is admissible. By classic filtering theory, t  is equal to the σ -algebra generated  
by innovation process { },sv s t≤  (see for example [21]). Clearly, we have (3.10) is ( ),sv s tσ ≤ -adapted, and 

thus it is admissible. Therefore, (3.10) is the optimal strategy, which make the ( ) 21
2

E X T α−    minimal. This  

completes the proof.   
We will give a brief discussion about the solvability in theory of (2.8) (3.11) (3.12). Clearly, ( )tβ  satisfies  

( ) ( )( )T 1 T T 1 T T 1 T T 1 TD A t D A A Aβ σ β β σ β β σ σ− − − −= −Λ Γ + − Γ Λ − Γ + ΛΛ −Λ Γ Λ  

with ( )0 0β = . Let ( ) ( )s tβ β= , s T t= − , then it follows  

( ) ( )T 1 T T 1 T T 1 T T 1 Td
d

D A D A A A
s
β σ β β σ β β σ σ− − − −− = −Λ Γ + − Γ Λ − Γ + ΛΛ −Λ Γ Λ  

with ( ) 0Tβ = . By known result (see for example Anderson and Moore (1971)), ( )sβ  can be represented as  

( ) ( ) ( )1s K s L sβ −=  

where ( )K s , ( )L s  are defined as  

( )
( )

T T 1 T T 1

T T 1 T T 1 ,     .
0

K TK IK D A A A
L TLL D A

σ
σ σ σ

− −

− −

    − Γ Λ − Γ    
= =       −ΛΛ + Λ Γ Λ − + Λ Γ         





 

Therefore,  

( ) ( ) ( ) ( )1 .t s K T t L T tβ β −= = − −  
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Clearly, (3.12) is a Lyapunov differential equation, which is solved by introducing the following operator  

( )( ) ( )( ) ( )( ) ( )( )( ) ( ) 21 T 2 T TVec , , ,
Tn nG t G t G t G t t= ∈    

where ( )( )TiG t  is the transpose of i -th column of of G . Clearly,  

( ) ( ) ( ) ( ) ( )1 2 ,     0G Gt t t t T= + =      

where  

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( )
1

2

T
1 1T T T T T T

1T 2

1 1 ,
2 2

Vec .

G

G

t I t A t t A D t t A t t A D I

t A A

σ β σ β
− −

−

   = ⊗ Λ + Σ Σ − + Λ + Σ Σ − ⊗      

= Σ




 

Let ( ) T ss −=  . Then  

( ) ( ) ( )1 2
0

d ,     0.
d

G GT s s T s
s
= − − − − =

                            (3.18) 

Therefore,  

( ) ( )2
0

( ) ( ) , d
s Gt s s Tτ τ τ= = − Φ −∫    

where ( ),Φ ⋅ ⋅  is the fundamental matrix of (3.18). Thus ( ) ( )( )1VecG t t−=  . At last, (3.11) and (3.15) can be 
easily solved by the linearity of the equations. 

4. Efficient Frontier 
In this section, we proceed to derive the efficient frontier for the original portfolio selection problem under 
partial information. To begin with, we prove a lemma which shows the feasibility of the original problem. 

Lemma 4.1. Problem (5) is feasible, and the minimal mean-variance of the terminal wealth process is finite.  
Proof. The proof follows directly from results of Section 5 in [17]. In the language of [17], (2.10) can be 

rewritten as  

( ) ( ) ( ) ( ) ( ) ( )
( )

d d d ,T
tX t r t X t B t Z t t Z t v

X T v

  = + Σ +  
=

                       (4.1) 

where v  is defined by Theorem 5.4 in [17] satisfying Ev x= , and  

( ) ( )( ) ( )
1T .Z t t tπ
−

= Σ  

Clearly, t  is equivalent to the σ -algebra generated by innovation process { },uv u t≤ . By general BSDEs 
theory, (4.1) has a unique t -adapted, square integrate solution ( ) ( )( ),X Z⋅ ⋅ . Therefore, problem (2.5) is 
feasible because ( ) ( )T x Z tΣ  is a feasible strategy. On the other hand, by Theorem 5.6 of [17], we know that 
the minimal mean-variance at the terminal time point is finite.   

Now, we state our main theorem. 
Theorem 4.1. The efficient strategy of Problem (2.5) with the terminal expected wealth constraint ( )EX T x=  

is given by  

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( )( ) ( ) ( ) ( ) ( )( )

1 TT T T T

T dT T

 

ˆ             e .

 

T
t r s s

t t t a r t t t A q t

A t t A G t y t X t x

π σ β

σ β γ

−

−∗ ∫

= − Σ Σ − + Λ +
+ + Λ + − +

1
           (4.2) 

Here, ( )tβ , ( )q t , ( )G t  solve Equations (2.8) (3.11) (3.12), respectively, and γ ∗  is given by  
( )

( )

d
20

2 d 2

e
e

e e 1

T
t

T
T
t T

r s s

r s s

x x
E

E
ξ

ξ
γ ∗

∫

∫

−  =  
  − 

 



W.-K. Pang et al. 
 

 
363 

where Tξ  is given by  

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 TT 1
0 0

2T 1
0

ˆ ˆd d

1 ˆ           d ,
2

T T
T

T

r s B s V s U s y s s V s U s y s v s

V s U s y s s

ξ
− −

−

 = − ΣΣ + + + Σ    

− + Σ  

∫ ∫

∫
       (4.3) 

and ( ) ( ) ( ) ( )( ) ( )
TT T TV t a r t t t A q tσ β= − + Λ +1 , ( ) ( ) ( )( ) ( )

TT TU t A t t A G tσ β= + Λ + . Moreover, the 
efficient frontier is given by  

( ) ( )
2

d 2 2
0

1 1e e .
2 2

T
t Tr s sx x E ξγ γ−∗ ∗∫   − + −   

                         (4.4) 

Proof. By Lemma 4.1, we know that the constraint Problem (2.5) is feasible, and its minimal terminal mean- 
variance J ∗  is finite. This means that  

( ) ( )21max min
2R

J E X T x EX T x
πγ

γ∗

∈Π∈

 = − − − < ∞        
                   (4.5) 

where the equality is true by general convex constraint optimization theory (see, for example, [22]). By Theorem 
3.1, the wealth Equation (2.10) evolves as  

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ){ }
( ) ( )( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )

1 dT

1Td T

ˆd e d

ˆ              e d .

T
t

T
t

r s s

r s s

X t r t X t B t t t V t U t y t X t t

X t V t U t y t t t t v t

α

α

− −

−−

∫

∫

= − Σ Σ + −  

− − + Σ Σ Σ  

 

In terms of z , this equation is  

( ) ( ) ( )( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1 TT 1

d
0 0

ˆ ˆd d d ,

0 e .
T
t r s s

z t r t B t V t U t y t z t t z t V t U t y t v t

z x zα

− −

−∫

 = − ΣΣ + − + Σ      

 = − 

 

Clearly,  

( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1T
0 0

2T T1 1
0 0

ˆexp d

1ˆ ˆ            d d .
2

t

t t

z t z r s B s V s U s y s t

V s U s y s v s V s U s y s s

−

− −

  = − ΣΣ +   
+ + Σ − + Σ        

∫

∫ ∫
 

Thus  

( ) 2 22
0 e TE z T z E ξ =      

where Tξ  is defined in (4.3). Notice that  

( ) ( ) ( )2 2 21 1 1 .
2 2 2

E z T E X T x EX T xγ γ= − − − +            

For any fixed γ ,  

( ) ( ) ( ) ( ) ( )
2

2 d 2 2
0

1 1 1min e e .
2 2 2

T
t Tr s sE X T x EX T x x x E ξ

π
γ γ γ γ−

∈Π

∫     − − − = − + −            
        (4.6) 

To obtain the optimal mean-variance value and the optimal portfolio strategy of Problem (2.5), we should 
maximize (4.6) over γ  within R , and the finiteness is ensured by (4.5). We easily show that (4.6) attains its 
maximum value ( )γ ∗  at  

( )

( )

d
20

2 d 2

e
e .

e e 1

T
t

T
T
t T

r s s

r s s

x x
E

E
ξ

ξ
γ ∗

∫

∫

−  =  
  − 

                                 (4.7) 
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And we can assert that  
( )2 d 2e e 1 0.

T
t Tr s s E ξ∫   − ≠   

If this is not true, the optimal cost will be infinite, which contradicts (4.5).   

5. Conclusion 
In this paper, we have studied the continuous-time mean-variance portfolio selection problem with stochastic 
drifts. In particular, drifts are assumed to be linear functions of economic factor processes. Because the factor 
processes cannot be observed directly, partial information is assumed together with a filter process. Conse- 
quently, by dynamic programming technique and the method of separation of variables, we have derived the 
explicit optimal strategy via the solution of a system of ODEs. As a future extension, it would be of interest to 
study the solutions with real financial data and carry out appropriate economic analysis. Also, regime-switching 
model [23] and the scenario for no-bankruptcy can also be considered. 
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