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Abstract 
The experimental data on supercritical CO2 extraction of microalgae are presented. It is confirmed 
that microalgae contains omega-3 fatty acid components. Phase equilibria data are presented for 
the triolein-methanol (T = 413 K, P = 5.8 - 11.9 MPa) and ethyl eicosapentaenoate-carbon dioxide 
(T = 313 - 333 K, P = 10 - 21 MPa) binary systems. The scheme of the batch-type experimental se-
tup for supercritical transesterification of oils is presented. Temperature and molar ratio depen-
dences of non-refined palm oil yield to fatty acid methyl esters (FAME) are presented for T = 563 - 
693 K, methanol to palm oil molar ratio 39:1. Experiments on ultrasonic emulsification of rape-
seed oil-ethanol mixture (molar ratios 150:1 - 7:1) were conducted. Research data on ultrasonic 
emulsion stability are presented for the time range of 0 - 40 minutes after ultrasonication comple-
tion. Correlation is defined between FAME yield of emulsified reaction mixtures and the emulsion 
grain size. FAME yields are compared for emulsified and non-emulsified reaction mixtures. 
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1. Introduction 
Biodiesel fuel on the markets of developed countries is produced mainly by conventional catalytic transesterifi-
cation. However this method is sensitive to water and free fatty acids content in feedstock [1] requiring further 
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removal of catalyst and saponification product remains from biodiesel and waste water utilization [2]. 
Supercritical fluid transesterification lacks the abovementioned drawbacks, however its commercialization is 

hindered with high energy consumption to bring process temperature and pressure to reaction conditions above 
the critical point (Tc = 513 K, Pc = 8.1 MPa for methanol). To reach higher reaction yield, significant excess of 
alcohol is needed [3], (Figure 1), the theoretical methanol-to-oil molar ratio being 3:1. 

Other factors undermining biodiesel production cost include high feedstock cost (crops need to be grown, oil, 
extracted) and competition in arable land use with food and forage crops [4]. 

As the abovesaid, it stipulates the need to find ways to lower presently severe transesterification reaction con-
ditions and select efficient feedstock for transesterification process. 

Possible ways to decrease process temperature and pressure include selecting optimal molar ratio of reagents 
and ultrasonic emulsification of reaction mixture. 

In terms of sustainable development of global economy, virtually the only feedstock enabling biodiesel pro-
duction to the tune of completely substituting fossil diesel is microalgae [5]. It contains up to 80% oil (dry mass) 
[6] [7], the average value being 20% - 50% [5]. Microalgae crop yield exceeds that of conventional oil crops by 
an order of magnitude, the crops being harvestable repeatedly and even continuously during year. 

Apart from being an energy source, microalgae are also the source of valuable chemicals, namely, omega-3 
and omega-6 fatty acids that are widespread as dietary supplements improving health [8] [9] and fighting dis-
eases [10]. 

Valuable components of microalgae can be extracted with supercritical CO2 [17]-[19] which, unlike hexane, 
can provide high purity of the extracted product and extraction selectivity [20] [21]. 

In this work, research was done in several aspects. Supercritical CO2 extraction of microalgae was done with 
consecutive mass-spectometry analysis of the components. Transesterification yield of palm oil-methanol was 
studied at various reaction parameters which were supplemented by data on stability of ultrasonic emulsions of 
oils and alcohols. 

2. Experimental 
2.1. Microalgae Drying and Extraction 
In [22] we conducted supercritical CO2 extraction of microalgae (nannochloropsis salina) and analyzed the ex-
tracts. Atmospheric and vacuum drying was conducted on the setup described in [23] during 14 - 16 hours which 
resulted in humidity decrease from 68.63% to 3.88%. The microalgae sheets obtained were ground to 0.5 - 1 mm 
and loaded to the extraction cell of the experimental setup (Figure 2). Extraction was conducted at 313 K, 35 MPa. 
Extract samples weighing 0.14 - 0.62 g. underwent chromatography-mass-spectrometry analysis at DFS mass- 
spectrometer [17]. Analysis parameters were as follows: injector temperature 553 K (exposure time 60 min), 
thermostat initial temperature 393 K, heating rate 6 K/min; carrier gas-helium, flow rate 1 ml/min, flow splitting 
1:10; capillary column with immobilized nonpolar phase type DB-5.30 m/0.25 mm/0.25 μ. Electron ionization 
mass-spectra were registered in the 100 - 1000 amu mass range. Spectrometer mass adjustment was carried out 
using Autotune OEM software. Component identification was done using NIST-05 specialized mass-spectra li-
brary. 

2.2. Experimental Setup for Studying Phase Equilibria of Triolein-Methanol and  
Ethyl Eicosapentaenoate (Ethyl-EPA)-CO2 Binary Systems 

Vegetable oils mainly consist of triglycerides of saturated and unsaturated fatty acids. In terms of process mod-
elling, certain stages of proposed biodiesel production flow require reliable phase equilibrium data of oil in the 
media for supercritical extraction (CO2) and supercritical transesterification (methanol). 

To study phase equilibria of the triolein-methanol and ethyl-EPA-CO2 binary systems, following the descrip-
tion provided in [24] we built the experimental setup described in Figure 3 equipping it with the P-50 metering 
pumps supplied by Thar SFC. 

The phase equilibrium cell was evacuated, then filled with the solute (triolein or ethyl-EPA). After that the 
solvent (methanol or CO2) was fed with themetering pump to the experimental pressure and the equilibrium cell 
was heated to the experimental temperature. After 60 min stirring the equilibrium cell was put to rest vertically 
for 90 min. 
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Figure 1. Literature data on temperature dependence of reation yield of non-refined palm oil to FAME at methanol-to-oil 
molar ratio of 11 - 60 and reaction time of 20 - 50 min, 20 min, 28:1 [11] [12]; 20 min, 50:1 [13]; 30 min, 25:1 [11]; 40 min, 
11:1 [13]-[15], 40 min, 22:1 [11] [13] [15]; 40 min, 60:1 [15]; 50 min, 24.5:1 [11] [16]; 50 min, 45:1 [16].                         
 

 
Figure 2. Extraction unit scheme. 1: CO2 cylinder; 2, 8, 10: valves; 3: filter drain 4: cooler; 5: thermostat; 6: CO2 pump; 7: 
solvent pump; 9: extraction cell; 11: sample tank; 12: solvent tank.                                                       
 

 
Figure 3. Experimental phase equilibrium setup. 1: methanol tank/CO2 cylinder; 2: high pressure metering pump; 3: phase 
equilibrium cell with swing; 4: vacuum pump; 5: separating settler (volumetric tube); 6: triolein/ethyl-EPA tank; 7: heating 
circuit voltage transformer; 8: manometer; 9: temperature regulator; 10, 11, 12, 13: high pressure valves.                       
 

The upper phase of triolein-methanol system was collected using syringe. The sample volume Vsam. and the 
volume of the triolein Vtr. separated to the bottom phase of the sample were measured with a 5-ml volumetric 
tube. 

Triolein volume concentration: 

v. tr. sam.C V V=                                   (1) 

Triolein mass concentration: 

( )mas. v. tr. v. tr. v. met.C C C 1 Cρ ρ ρ = ∗ ∗ + − ∗                      (2) 

where ρtr. and ρmet. are the triolein and methanol densities. 
Triolein molar concentration: 

( ) ( ){ }mol. mas. tr. mas. tr. mas. met.C C C 1 Cµ µ µ = + −                    (3) 

where μtr. and μmet. are the triolein and methanol molar masses. 
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Triolein, essentially thealmond oil supplied by Aspera Ltd. (Moscow) had the purity of 90%, the rest falling to 
trilinolenin and negligible amount of vitamins and proteins. 99% pure methanol was supplied by Kazanorgsintez 
JSC. 

In the ethyl-EPA-CO2 system the upper phase was collected to a preliminarily weighed balloon submersed in 
water. Sample volume was defined as the volume of displaced water. After phase separation was complete in-
side the balloon, it was wiped dry and weighed. The mass of ethyl-EPA dissolved in CO2 was defined as the 
mass difference of empty balloon and balloon with ethyl-EPA. 

CO2 mass concentration in the upper phase is defined as: 

( )2 2mas atm CO atm CO eEPAC V V mρ ρ= ∗ ∗ +                           (4) 

where 
2COρ  is the carbon dioxide density inside the balloon, Vatm is the volume of carbon dioxide under pressure 

inside the balloon [25]. 
Molar concentration of CO2 in the upper phase is defined as: 

( ) ( ){ }2 2 2CO mas. CO mas. CO mas. eEPAy C C 1 C  µ µ µ   = + −                     (5) 

where eEPAµ  and 
2COµ  are the molar masses of ethyl EPA and CO2. 

Ethyl EPA supplied by takeomega3.com was 90% pure, the remaining 10% falling to ethyl docosahexaenoate 
and tocopherols. 99.5% pure carbon dioxide was supplied by OOO TehGaz. 

2.3. Batch-Type Experimental Non-Catalytic Transesterification Setup 
32-ml batch-type experimental setup was created [26] designed for 60 MPa pressure and 800 K temperature 
(Figure 4). 

The transesterification reaction is conducted in autoclave 1 that is isochorically heated by a muffle furnace 2 to 
the experimental temperature and pressure. Mounted on a hinge, the furnace can be rotated about horizontal axis to 
provide stirring inside the high-pressure autoclave. Temperature is measured with chromel-alumel thermocouple 
whose thermojunction is located centrally inside the autoclave. The thermocouple is preliminarily calibrated with 
the PTS-10 platinum resistance thermometer. Measurement accuracy is ±5 K. Pressure is measured with Stan-
ley-Korund DI-001 pressure sensor 3 powered by the direct current power supply 5. Pressure and temperature 
measurements are displayed on TRM-101 indicating gauges 6. Process pressure can be adjusted with the VK-97 
high pressure needle valve 4. 

The reaction autoclave is 500 mm long, cylinder-shaped, with the external diameter of 26 mm, internal diameter 
of 12 mm (Figure 5). 
 

 
Figure 4. Experimental transesterification setup scheme. 
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Figure 5. Reaction autoclave for supercritical transesterification: 1: thermo- 
couple; 2: to pressure sensor; 3: olive; 4: body; 5: flanges; 7: bolt joint.                  

 
The setup embodies the transesterification process designed by Saka and Kusdiana [27]. Transesterification 

experiments were done with the non-refined palm oil. 
Reaction products separation and composition analysis are described in [26]. 

2.4. Reaction Mixture Emulsification and Technique for Studying Emulsion Properties 
In this work the emulsion of initial reagents was obtained using 24 kHz, 200 W Hielscher Ultrasonic UIP200 hd 
ultrasonic emulsifier [28]. 

Emulsion stability by time was assessed visually, by the amount of oil separating from the emulsion inside 
measuring tank. We called the share of oil that separated from the emulsion as emulsion layering coefficient. 

3. Results and Discussion 
3.1. Microalgae Extraction in Supercritical Carbon Dioxide 

Each of the samples was found out to be a multicomponent mixture consisting primarily of triglycerides and es-
ters of saturated and unsaturated fatty acids. Composition of one of the samples is show in the chromatogram 
(Figure 6) and in Table 1. 

3.2. Phase Equilibria of Triolein-Methanol and Ethyl-EPA-CO2 Systems 
Experimental phase equilibrium data for the triolein-methanol system at 413 K and various pressures are pre-
sented in Figure 7. 

The phase equilibrium diagram is in satisfactory agreement with the literature data [29]. There seems to be 
discrepancy at 10 MPa, however this and neighboring isotherms of the same literature work altogether fail to 
represent a data array without unexplained anomalies which can mean significant measurement error in this 
measurement scale. Anyway the research has proved very low solubility in sub-critical area of triolein, one of the 
main components of vegetable oils, in methanol, the other component of the transesterification reaction, which is 
a significant limiting factor for the reaction. 

Phase equilibrium was also studied for the ethyl eicosapentaenoate (ethyl-EPA)-CO2 system at 313, 323 and 
333 K in the 10 - 21 MPa pressure range. Experimental data are presented in Figures 8-10. 

Experimental data agree satisfactorily with the literature data, while discrepancies may be explained by dif-
ferences in the composition of substances studied. In all figures, the experimental curve tends to horizontal, as 
pressure grows, which can mean full solubility of the components. 

Maximum error in measuring phase equilibrium characteristics was calculated as 9.7%. 

3.3. Dependence of Supercritical Transesterification Reaction Yield on Reaction Mixture  
Composition and Thermodynamic Parameters 

Experiments on obtaining biodiesel fuel in batch-type setup were conducted in the 563 - 793 K temperature range,  
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Table 1. Chromatography-mass-spectrometry analysis results of the sample No. 3.                                    

# Name Ret. time, min Formula Content, % 
1 5,6,7,7α-tetrhydro-4,4,7α-trimethyl-2(4H)-benzofuran 8.00 C11H16O2 0.31 
2 n-dodecanic acid 8.48 C12H24O2 0.21 
3 8-heptadecene 10.31 C17H34 0.69 
4 Heptadecane 10.68 C17H36 0.41 
5 Myristic acid 12.01 C14H28O2 0.88 
6 Ethyl myristate 12.28 C16H32O2 0.31 
7 6,10,14-Trimethyl 2-pentadecanone 13.11 C18H36O 0.41 
8 Diisobutyl phthalate 13.49 C14H22O4 7.78 
9 Methyl palmitoleate 14.13 C17H34O2 0.43 
10 N/A 14.23 - 0.25 
11 Methyl palmitate 14.48 C17H34O2 0.27 
12 Methyl-4,7,10,13-hexadecatetraenoate 14.84 C22H32O2 0.61 
13 Dibutyl phthalate 15.06 C16H22O4 8.35 
14 Ethyl palmitoleate 15.17 C18H34O2 0.58 
15 Ethyl palmitoleate 15.31 C18H36O2 5.69 
16 Ethyl palmitate 15.65 C18H36O2 11.55 
17 N/A 16.41 - 0.29 
18 Methyl cis-5,8,11,14,17-eicosapentaenoate 16.50 C21H12O2 0.41 
19 Methyl oleate 17.27 C19H36O2 0.49 
20 N/A 17.89 - 0.48 
21 N/A 18.01 - 1.18 
22 Ethyl linoleate 18.18 C20H36O2 2.88 
23 Ethyl oleate 18.30 C20H38O2 4.75 
24 Ethyl oleate 18.39 C20H38O2 6.1 
25 1,1-dichloro-2,2-bis (p-chlorophenyl) ethylene 18.51 C14H8Cl4 0.37 
26 N/A 19.90 - 1.9 
27 N/A 20.21 - 2.82 
28 Ethyl arachidate 20.46 C22H36O2 0.44 
29 Ethyl 5,8,11,14,17-eicosapentaenoate 20.57 C22H34O2 0.94 
30 N/A 20.88 - 0.57 
31 Methyl 11-eicosenoate 20.57 C22H34O2 0.94 
32 N/A 21.83 - 0.33 
33 N/A 21.88 - 0.09 
34 N/A 22.31 - 0.08 
35 N/A 22.39 - 0.27 
36 N/A 22.60 - 1.37 
37 Diisooctyl phthalate 22.31 C24H38O2 1.45 
38 N/A 24.80 - 0.18 
39 N/A 25.39 - 0.49 
40 N/A 25.84 - 0.15 
41 N/A 26.32 - 0.41 
42 All-trans-squalene 26.76 C30H50 1.62 
43 N/A 27.53 - 2.32 
44 N/A 27.75 - 0.23 
45 Cholestane derivative 27.92 - 0.29 
46 N/A 29.77 - 0.33 
47 N/A 30.16 - 0.31 
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Continued 
48 N/A 30.23 - 0.22 
49 N/A 31.12 - 0.39 
50 Vitamin E 31.45 C29H50O2 0.25 
51 Vitamin E 31.66 C29H50O2 1.64 
52 Cholesterol 31.81 C27H46O 2.91 
53 Cholesta-3,5-diene-7-one 32.39 C27H42O 1.06 
54 N/A 33.01 - 0.26 
55 N/A 33.84 - 0.27 
56 N/A 34.03 - 0.41 
57 N/A 34.24 - 0.62 
58 Dipentadecyl ketone 34.59 C31H62O 0.36 
59 Steroid 34.78 - 0.36 
60 Steroid 36.23 - 1.28 
61 N/A 36.33 - 1.35 
62 N/A 36.60 - 1.07 
63 Steroid 37.08 - 0.44 
64 N/A 37.12 - 0.22 
65 N/A 39.55 - 0.3 
66 N/A 40.13 - 0.37 
67 N/A 43.08 - 1.42 
68 N/A 43.91 - 1.71 
69 N/A 44.21 - 8.67 
70 N/A 53.68 - 1.11 
71 N/A 54.20 - 0.25 
72 N/A 54.80 - 0.18 

Ethyl 5, 8, 11, 14, 17-eicosapentaenoate, an omega-3 component was found among extracted substances in quantity of 1.75%. 
 

 
Figure 6. Full chromatogram of the sample No. 3 and the closeup with the ethyl eicosapentaenoate (peak 28).                         
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Figure 7. Triolein-methanol phase equilibrium at 413 K. 1: 
experimental. 2: [29].                                                

 

 
Figure 8. Ethyl-EPA-CO2 phase equilibrium at 313 K. Hori- 
zontal axis: CO2 molar concentration; vertical axis: pressure, 
MPa. 93% ethyl-EPA-experimental. 90% ethyl-EPA [30].                

 

 
Figure 9. Ethyl-EPA-CO2 phase equilibrium at 323 K. Hori- 
zontal axis: CO2 molar concentration; vertical axis: pressure, 
MPa. 93% ethyl-EPA-experimental. 90% ethyl-EPA [30].                  

 

 
Figure 10. Ethyl-EPA-CO2 phase equilibrium at 333 K. Hori- 
zontal axis: CO2 molar concentration; vertical axis: pressure, 
MPa. 93% ethyl-EPA-experimental. 90% ethyl-EPA [30].                

 
19.7 - 44 MPa pressure range, with methanol-to-oil molar ratios of 304:1 to 6:1. 

Non-refined palm oil produced by Seloga Petroleum (Malaysia) from elaeis guineensis crop in 2007 had the 
following characteristics: humidity and impurities content < 0.1%, free fatty acids < 0.1%, iodine number 50, 
cloud point 283 K, peroxide number < 1. Refined palm oil branded Zlata Palma had the following characteristics: 
free fatty acids content < 0.1%, humidity < 0.1%, iodine number 64, cloud point 277 K, saturated fatty acid 
components 39.7%, monounsaturated fatty acid components 46%, polyunsaturated fatty acids 14.2%. 99% me-
thanol was supplied by Kazanorgsintez JSC. 

Reaction yield was defined as: 

rme metK V V ,=                                       (6) 

where Vrme and Vmet are the volumes of the raw methyl esters phase and the methanol phase in the sample after 
reaction. 

Figure 11 and Figure 12 compare the experimental data for FAME yield at 10 min reaction time at various 
temperatures and methanol-to-oil molar ratios to our previously published results [26] and literature data [11] [12] 
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Figure 11. Temperature dependence of FAME yield for non- 
refined palm oil, 10 min reaction time, molar ratios of 37:1 
compared to literature data. 231:1, 168:1, 104:1 [26] (our pre- 
vious work); 41:1 [31] [32]; 39:1 experimental (present work); 
27:1 [11] [12]; 18:1, 12:1 [33].                                       

 

 
Figure 12. Methanol-to-oil molar ratio dependence of FAME 
yield for non-refined palm oil, temperatures of 567 - 690 K 
compared with literature data. 568 K, 610 K, 638 K [26] (our 
previous work); 567 K [13] [31]; 673 K [13] [33]; 690 K 
experimental (present work).                                           

 
[31]-[33]. 

Figure 13 compares experimental data on the FAME yield of refined palm oil at 10 min reaction time at various 
temperatures and methanol-to-oil molar ratios with our previously published results [26] and literature data [34]. 

Figure 14 features the pressure dependence of reaction yield at constant temperature and molar ratio. 
Dependences presented are in qualitative agreement with those in [3] [16] [35] and [36]. At pressures above 20 

MPa the influence of temperature on the reaction yield was shown to be more significant than that of pressure 
which is congruent with the literature results [36]-[38]. 

Calculated maximum error in measuring FAME yield is 2.27%. 

3.4. Initial Reaction Mixture Emulsion Stability and Grain Size Dependence of  
Reaction Rate 

Experimental data are presented on phase separation dynamics of ultrasonicated emulsions of ethanol and rape-
seed oil. Rapeseed oil provided by OAO Nefis-Cosmetics was produced from brassica napus (Tatarstan, harvested 
in 2008) by GOST 1129-93, acid number < 3, humidity and volatile components content < 0.1%, negligible 
amount of FAME present. 99% pure ethanol was supplied by Kazanorgsintez JSC. 

Emulsion examined had the ethanol-to-oil molar ratio of 150:1 to 7:1 (oil volume concentrations of 0.1 - 0.7). 
Ultrasonic treatment time was conducted for 30 - 120 s, the treatment power being 100 - 200 W. Emulsions with 
the ratio 7:1 (volume concentration 0.7) proved to essentially separate very fast, within 1 - 5 minutes with further 
slowing of separation while emulsions with the ratio of 17:1 (volume concentration 0.5) and higher remained 
relatively stable for longer time range and separated slower (Figure 15). 

Emulsions obtained were examined under microscope to learn the emulsion grain size. Samples with 2.26 - 
8.6 μm grain size (Figure 16) were used in transesterification experiments which proved that fatty acid alkyl ester 
yield is highest when the grain size is smallest (Figure 17). 

Experimental data are presented on temperature dependence of reaction yield for non-refined rapeseed oil and 
methanol mixtures. Molar ratio was 153:1, reaction time, 10 min. Transesterification reactions were carried out in  
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Figure 13. Methanol-to-oil molar ratio dependence of FAME 
yield for refined palm oil, at temperatures of 595 - 685 K com- 
pared with literature data. 595 K, 685 K experimental; 623 K 
[15].                                                         

 

 
Figure 14. Pressure dependence of FAME yield of non-refined 
palm oil at reaction time of 10 min, methanol-to-oil molar ratio 
of 125:1 and reaction temperature 605 K.                                  

 

 
Figure 15. Time dependence of non-refined rapeseed oil-etha- 
nol emulsion layering coefficient at ultrasonication treatment 
power of 200 W, treatment time 2 min, molar ratios of 7:1 and 
17:1.                                                           

 

 
Figure 16. Emulsion sample, 3 minutes after ultrasonication 
completion.                                                       
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the same experimental setup (Figure 4). FAME yields for reaction mixtures with and without preliminary ultra-
sonication are compared in Figure 18. 

Ultrasonication proved to significantly increase FAME yield at relatively low reaction temperatures (563 K) 
compared to reaction mixture without preliminary ultrasonication. This difference tends to vanish at higher 
temperatures (633 K). 

No clear correlation impact was found of ultrasonication time (30 - 120 s) and power (100 - 200 W) to emulsion 
properties. 

Maximum error in measuring emulsion layering coefficient was calculated as 1.86%. 

4. Conclusions 
1) New data have been found on phase equilibrium of initial reagents and their mixtures. Available data on 

triolein’s poor solubility in methanol were confirmed which complied with the empirical rule that polar solvents 
hardly dissolved nonpolar solutes. New data were found for phase equilibrium of ethyl-EPA-carbon dioxide 
system. 

2) Experimental data were obtained on phase separation dynamics for ultrasonicated rapeseed oil-ethanol 
mixtures. Practically stable emulsions can be obtained for ethanol-to-oil molar ratios of 17:1 and higher (0.5 vo-
lume concentration of oil). Reaction yield of emulsified mixtures is in direct correlation with grain size, more 
disperse mixtures reacting more willingly. Emulsification proved to significantly increase reaction yield at rela-
tively low temperatures (563 K) compared to non-treated reagents. 

3) 32-ml batch-type experimental setup was built designed for alcohol transesterification reactions at temper-
atures up to 800 K, pressures up to 60 MPa. The setup design lacks internal stirring equipment; instead, stirring 
and evening heat distribution are done by swinging the whole furnace about horizontal hinge. 

Experimental data were obtained on thermodynamic conditions dependence of FAME yield for the methanol 
transesterification of palm oil conducted at batch-type setup. It was found that high yields were achievable in a 
tradeoff between methanol excess and heating to high temperatures. It should be noted that transesterification 
experiments were done without any preliminary treatment like ultrasonication. Reaction yield data are in  
 

 
Figure 17. Dependence of non-refined rapeseed oil FAME 
yield on emulsion grain size and alcohol-to-oil molar ratio for 
ultrasonicated emulsions.                                          

 

 
Figure 18. Temperature dependence of FAME yield for non- 
refined rapeseed oil, 153:1 methanol-to-oil molar ratio, 10 min 
reaction time.                                                    
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a satisfactory agreement with the literature. 
4) Possibility to produce biodiesel from microalgae oil was confirmed. Microalgae were dried and supercriti-

cal CO2 extraction was carried out. Valuable omega-3 fatty acid components (EPA and DHA) were found in the 
extract which meant the possibility to improve the overall profitability of the biodiesel production process. 
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