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Abstract 
Modalclust is an R package which performs Hierarchical Mode Association Clustering (HMAC) 
along with its parallel implementation over several processors. Modal clustering techniques are 
especially designed to efficiently extract clusters in high dimensions with arbitrary density shapes. 
Further, clustering is performed over several resolutions and the results are summarized as a 
hierarchical tree, thus providing a model based multi resolution cluster analysis. Finally we im-
plement a novel parallel implementation of HMAC which performs the clustering job over several 
processors thereby dramatically increasing the speed of clustering procedure especially for large 
data sets. This package also provides a number of functions for visualizing clusters in high dimen-
sions, which can also be used with other clustering softwares. 

 
Keywords 
Modality, Kernel Density Estimate, Mode, Clustering 

 
 

1. Introduction 
Cluster analysis is a ubiquitous technique in statistical analysis that has been widely used in multiple disciplines 
for many years. Historically cluster analysis techniques have been approached from either a fully parametric 
view, e.g. mixture model based clustering, or a distribution free approach, e.g. linkage based hierarchical 
clustering. While the parametric paradigm provides the inferential framework and accounts for the sampling 
variability, it often lacks the flexibility to accommodate complex clusters and are often not scalable to high 
dimensional data. On the other hand, the distribution free approaches are usually fast and capable of uncovering 
complex clusters by making use of different distance measures. However, the inferential framework is distinctly 
missing in the distribution free clustering techniques. Accordingly most clustering packages in R also fall under 
the two above mentioned groups of clustering techniques. 
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This paper describes a software program for cluster analysis that can knead the strengths of these two 
seemingly different approaches and develop a framework of parallel implementation for clustering techniques. 
For most model based approaches to clustering, the following limitations are well recognized in the literature: 1) 
the number of clusters has to be specified; 2) the mixing densities have to be specified, and as estimating the 
parameters of the mixture models is often computationally very expensive, we are often forced to limit our 
choices to simple distributions such as Gaussian; 3) computational speed is inadequate especially in high 
dimensions and this coupled with the complexity of the proposed model often limits the use of model-based 
techniques either theoretically or computationally; 4) it is not straightforward to extend model-based clustering 
to uncover heterogeneity at multiple resolutions, similar to the one offered by to the model free linkage based 
hierarchical clustering. 

Influential work towards resolving the first three issues has been carried out in [1]-[7]. Many previous 
approaches have focused on model selection of mixtures by choosing the number of components, merging 
existing components or by determining the covariance structure of the mixture density under consideration, see 
[8]-[10]. They work efficiently if the underlying distribution is chosen correctly, but none of these model based 
approaches is designed to handle a completely arbitrary underlying distribution (see Figure 5 for one such 
example). That is, we think that limitations due to issues (3) and (4), above often necessitate the use of model- 
free techniques. 

This paper describes a software program for cluster analysis that can knead the strengths of these two 
seemingly different approaches and develop a framework of parallel implementation for clustering techniques. 
The hierarchical mode association clustering—HMAC [11], which is constructed by first determining modes of 
the high-dimensional density and then associating sample points to those modes, is the first multivariate model 
based clustering approach resolving many of the drawbacks of standard model-based clustering. Specifically, it 
can accommodate flexible subpopulation structures at multiple resolutions while retaining the desired natural 
inferential framework of parametric mixtures. [12] developed the inference procedure to the number of clusters 
of this approach. Modalclust is the package implemented in R (R Development Core Team, 2010) for carrying 
out HMAC along with its parallel implementation (PHMAC) over several processors. Though mode-counting or 
mode hunting has been extensively used as a clustering technique, most implementation are limited to univariate 
data. Generalization to higher dimensions was limited both due to the computational complexity of finding 
modes in higher dimension and the lack of any natural framework to study the inferential properties of modes in 
higher dimensions. The HMAC provides a computationally fast iterative algorithm for calculating the modes 
and thereby providing a clustering approach which is scalable to high dimensions. This article provides the 
description of the R package that implements HMAC and additionally provides an wide array visualization tools 
for representing clusters in high dimensions. Further, we propose a novel parallel implementation of the 
approach which dramatically reduces the computational time especially for large data sets, both in data dimen- 
sions and the number of observations. 

This paper is organized as follows: Section 2 briefly introduces the algorithm of Modal Expectation Maximi- 
zation (MEM) and builds the notion of mode association clustering technique. Section 3 describes a parallel 
computing framework of HMAC along with computing time comparisons. Section 4 illustrates the implemen- 
tation of clustering functions in the R package Modalclust along with examples of the plotting functions 
especially designed for objects of class hmac. Section 5 provides the conclusion and discussion. Comparison of 
Modal clustering with other popular model based and model free techniques are provided in the supplementary 
document. 

2. Modal EM and HMAC 
The main challenge for using mode-based clustering in high dimensions is the cost of computing modes, which 
are mathematically evaluated as local maximas of the density function with support on D

 , D  being the data 
dimension. Traditional techniques of finding local maxima, such as “hill climbing” works well for univariate 
data. But multivariate hill climbing is computationally expensive thereby limiting its use in high dimensions. [9] 
proposed an algorithm that solves a local maximum of a kernel density by ascending iterations starting from the 
data points. Since the algorithm is very similar to Expectation Maximization (EM) algorithm, it is named as  
Modal Expectation Maximization (MEM). Define the mixture density as ( ) ( )1π

K
i iif x f x

=
= ∑ . Now, given any  

initial value ( )0x , the MEM solves a local maximum of the mixture density by alternating the following two 
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steps until it meets some user defined stopping criterion. 

1. Let 
( )( )

( )( )
π

,     1, ,
r

i i
i r

f x
p i n

f x
= =    

2. Update ( ) ( )1

1
argmax log

n
r

x i i
i

x p f x+

=

= ∑  

Details of convergence of the MEM approach can be found in [11]. The above iterative steps provide a 
computationally simpler approach than grid search method for “hillclimbing” from any starting point Dx∈  
by exploiting the properties of density functions.Given a multivariate kernel K , let the density of the data be 
given by  

( ) ( )1

1n
iif x K x x

n=
Σ = − Σ∑  

where Σ  is the matrix of smoothing parameters. Further, in the special case of Gaussian kernels, i.e.,  

( ) ( ),i iK x x x xφ− Σ = Σ  

where ( )φ ⋅  is the pdf of a Gaussian distribution, the update of ( )1rx +  is simply  

( )1

1

n
r

i i
i

x p x+

=

= ∑  

allowing us to avoid the numerical optimization of Step 2. 
Now we present the HMAC algorithm. First we scale the data and use a kernel density estimator, with a 

normal kernel to estimate the density of the data. The variance of the kernel, Σ  is a diagonal matrix with all 
entries 2σ  denoted by ( )2D σ , thus 2σ  is the single smoothing parameter for all the dimensions. The choice 
of the smoothing parameter is an area of research in itself. In the present version of the program we incorporate 
the strategy of using pseudo degrees of freedom, proposed in [13]. Their strategy provides us with a range of 
smoothing parameters and exploring them from finest to coarsest resolution provides the user with the desired 
hierarchical clustering. First we describe the steps of Mode Association Clustering (MAC) for a single band- 
width 2σ . 

1. Given a set of data { }1 2, , , nS x x x=  , d
ix ∈  form kernel density  

( ) ( )( )2 2

1

1, ,
n

i
i

f x S x x D
n

σ φ σ
=

= ∑                             (1.1) 

2. Use ( )2,f x S σ  as the density function. Use each ix , 1, 2, ,i n=  , as the initial value in the MEM 
algorithm and find one mode of ( )2,f x S σ  for each ix . Let the mode identified by starting from ix  be 

( )ixσ . 
3. Extract distinctive values from the set ( ){ }, 1, 2, ,ix i nσ =   to form a set G . Label the elements in G  

from 1 to G . In practice, due to finite precision, two modes are regarded equal if their distance is below a 
threshold κ . In our package, we use 410κ −= . 

4. If ( )ixσ  equals the thk  element in G , ix  is put in the thk  cluster.  
We note that when the bandwidth σ  increases, the kernel density estimator ( )2,f x S σ  in (1.1) becomes 

smoother, and thus more points tend to climb to the same mode. This suggests a natural approach for hierar- 
chical organization (or “nesting”) of our MAC clusters. Thus, given a range of bandwidths 1 2 Lσ σ σ< < < , 
The clustering can be performed in the following bottom-up manner. Define the lG  as the collection of all the 
distinct modes obtained by MAC using the lσ . First we perform MAC at the smallest bandwidth 1σ . At any 
bandwidth lσ , the elements in 1lG −  obtained from the preceding bandwidth are fed into MAC using the 
density ( )2, lf x S σ . The modes identified at this level form a new set of cluster is lG . This procedure is 
repeated across all lσ ’s. This preserves the hierarchy of clusters and thus the name Hierarchical Mode 
Association Clustering (HMAC). To summarize we present the HMAC procedure in the following box. 

1. Start with the data { }0 1, , nG x x=   and set level 0l =  and initialize the mode association of the thi  
data point as ( )0 ix i= .  

2. 1l l← + .  
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3. Form kernel density as in (1.1) using 2
lσ . 

4. Cluster the elements in 1lG −  by using density ( )2, lf x S σ . Let the set of distinct modes obtained be lG .  
5. If ( )1l ix k− =  and the thk  element in 1lG −  is clustered to the thk ′  mode in lG , then ( )l ix k ′= . In 

another word, the cluster of ix  at level l  is determined by its cluster representative in 1lG − . 
6. Stop if l L= , otherwise go to Step 2.  

3. Parallel HMAC 
In this section we develop the method of parallel computing of HMAC (PHMAC) and its application together 
with some comparisons of performance of the parallel and non-parallel approach. The MAC approach is 
computationally expensive when the number of objects n  becomes large. It requires that we use the MEM for 
each data point to find its local mamximum of the density. Note that for the HMAC, the steps for the level 2l =  
onwards only need to start the MEM from the modes of the previous level 1lG − , and hence the computational 
cost does not increase at the rate of n . Fortunately the MAC approach provides a natural framework for a 
“divide and conquer” clustering algorithm. One can simply divide the data into m  partitions, perform modal 
clustering on each of those partitions, and pool the modes obtained from each of these partitions to form a 
collection G  and apply the HMAC onward. If the user has access to several computing cores of the same 
machine or several processors of a shared memory computing cluster, the “divide and conquer” algorithm can be 
seamlessly parallelized. The PHMAC procedure is summarized as follows:  

Step 1. Sphering transform the data X  to form a new data set Y .  
Step 2. Let { }0 1, , nG y y=  . Divide the data ( n  objects) into m  partitions j

oG  randomly, 1, 2, ,j m=  .  
Step 3. Perform HMAC on each of these subsets at the lowest resolution, i.e., using 1h  and get the modes 

1
jG , 1, 2, ,j m=  .  

Step 4. Pool the modes from each subset of data to form 1 1
1

m
j

j
G G

=

=


.  

Step 5. Perform HMAC starting from Step 2 and obtain the final hierarchical clustering. 
Step 6. Transform Y  back to X . 
Figure 1 shows one PHMAC example on the graph. In this figure, (a) shows the simulated data with four 

clusters along with the contour plot, where the color indicates the final clustering using PHMAC; (b) shows the 
four random partitions of the unlabeled data along with the modes (red asterisks) at each partition; (c) shows the 
mode obtained from the four partitions; (d) shows the final modes (green triangles) starting from the modes of 
the partitioned data. A demonstration of different steps of parallel clustering with four random partitions is given 
in Figure 1. The original data set is partitioned into 4 random subsets, and initial modal clustering is performed 
within the partitions. In the next step, the modes of each of these partitions are merged to form the overall modal 
clusters in Figure 1(c). 

Modes have a natural hierarchy and it is computationally easy to merge modes from different partitions. In 
practice, we need to decide the best choice of the partition and how many partitions to use. In this section, we 
provide some guidelines regarding the choices, without exploring their quality in details. In the absence of any 
other knowledge, one should randomly partition the data. Other choices include partitioning data based on 
certain coordinates which form a natural clustering, and then taking products of a few of those coordinates to 
build the overall partition. This strategy might increase the computational speed by restricting the modes within 
a relatively homogeneous set of observations. Another choice might be to sample the data and build partitions 
based on the modes of the sampled data. 

The PHMAC we proposed uses parallel computing at the first level of HMAC and then use non-parallel 
computing from the second level onwards. Therefore, the number of partitions to minimize the computational 
time is a complex function of the number of available processors, the number of observations and the bandwidth 
parameter of the KDE. If one uses too many partitions, one might speed up the first step, but would have the risk 
of ending up with too many modes for the next level, where the hill climbing is done from the collection of 
modes from each partition with respect to the overall density. In contrast, for a large n , if one chooses too few 
partitions or no partitions, this would lead to a huge computational cost at the first step. Moverover, the choice 
of the smoothing parameter will also determine how many modes one needs to start from at the merged level. 

We compare the computing speed of parallel versus serial clustering using 1, 2, 4, 8 and 12 multi-core 
processors. Tests were performed on a 64 bits 4 Quad Core AMD 8384 (2.7 Ghz each core), with 16 GB RAM  
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Figure 1. Steps in parallel HMAC procedure for a simulated data set.                                              

 
running Linux Centos 5 and R version 2.11.0 From Table 1, it is clear to observe that parallel computing 
significantly increases the computing speed. Because the KDE is a sum of kernels centered at every data point, 
the amount of computation needed to identify the mode associated with a single point grows linearly with n . 
The computational complexity of clustering all the data by MAC is thus quadratic in n . Suppose we have p  
processors, then the computing complexity for the MAC is 2n  and for parallel computing of MAC is thus 
( )2n p . However, as discussed before, we can see that the computational speed is not a monotone decreasing 
function of the number of processors. Theoretically, it is true that more processors can reduce the computing 
complexity at the initial step. However, in practice, if the data set is not sufficiently large, using more processors 
may not save time, as it may produce a large number of modes for the next level of HMAC. When the 

10,000n =  or 50,000n = , including more processors provides a dramatic decrease in computing time, 
whereas for 2,000n = , there is no clear decrease in time elapsed when using 4 or 8 processors instead of the  
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Table 1. Comparison of computing time (elapsed time in seconds) using different number of processors.                  

  Number of processors 

Data dimensions 1 2 4 8 12 

n = 2000 d = 2 56.58 17.01 7.84 6.91 8.02 

n = 2000 d = 20 323.16 128.13 112.42 190.11 250.22 

n = 2000 d = 40 730.18 560.16 687.79 764.29 753.36 

n = 10,000 d = 2 3849.83 871.33 276.88 145.61 131.22 

n = 10,000 d = 20 8410.96 1694.82 585.33 536.32 459.88 

n = 50,000 d = 2 210295.29 71152.82 23383.61 11959.24 4875.64 

 
maximum 12 processors. For 50,000n = , the decrease in computing time from 1 processor to using 12 
processors is more than 40 fold (see Figure 2), but even if the user is able to use just two processors, the 
computing time is reduced to 1/3 of how long a single processor would take. Even for 20,000n = , the 
advantage of using 12 processors is almost 30 fold, whereas for 2,000n = , the advantage is only 8 folds. In 
fact, the lowest time is actually clocked by 8 processors for 20,000n = , but using all 12 processors does not 
increase the time significantly. These comparisons show the potential for parallelizing the modal clustering 
algorithm and its inherent use for clustering high throughput data. 

The R package Modalclust was created to implement the HMAC and PHMAC. There are also some plotting 
tools that give the user a comprehensive visual and understanding of the clustering result. Sources, binaries and 
documentation of Modalclust are available for download from the Comprehensive R Archive Network  
http://cran.r-project.org/ under the GNU Public License. 

4. Example of Using R Package Modalclust 
In this section, we demonstrate the usage of the functions and plotting tools that are available in the Modalclust 
package.  

4.1. Modal Clustering 
First, we provide an example of performing modal clustering to extract the subpopulations in the logcta20 data. 
The description of the dataset is given in the package. The scatter plot, along with its smooth density, is 
provided in Figure 3. First, we use the following command to download and install the package: 

R > install.packages (“Modalclust”) 
R > library (“Modalclust”) 
Using the following command, we can get the standard (serial) HMAC and parallel HMAC using two pro- 

cessors for logctA20 data. 
R > logcta20.hmac < −phmac(logcta20,npart=1,parallel=FALSE) 
R > logcta20p2.hmac < −phmac(logcta20,npart=2,parallel=TRUE) 
Both implementation results are given in Figure 4, which clearly identifies the three distinct subpopulations. 

Other model-based clustering methods, such as EM-clustering or K-means, could not capture the subpopulation 
structure, as the individual subpopulation is not a normal density. Distance based clustering method e.g., 
hierarchical clustering, with a range of linkage functions performed even worse. 

By default, the function selects an interesting range of smoothing parameters with ten 2σ  values, and the 
final clustering only shows the results from the levels which produced merging from the previous level. For 
example, for the logcta20, the smoothing parameters chosen automatically are 

R > logcta20.hmac$sigma 
[1] 0.26 0.29 0.31 0.34 0.38 0.43 0.49 0.58 0.72 0.94, 

which are chosen using the spectral degrees of freedom criterion introduced in [10]. Though we started with 10 
different smoothing levels, the final clustering shows only 6 different levels along with a decreasing number of 
hierarchical cluster. 

http://cran.r-project.org/


Y. S. Cheng, S. Ray 
 

 
832 

 
Figure 2. Comparison of fold increase in time for clustering two dimensional 
data of different sample sizes with respect to using 12 processors.            

 

 
Figure 3. Smoothing scatter plot of logctA20 data.          

 

 
Figure 4. HMAC output of logctA20 data.                
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R > logcta20.hmac$level 
[1] 1 2 3 3 3 4 4 4 5 6 
R > logcta20.hmac$n.cluster 
[1] 11 7 5 5 5 3 3 3 2 1 
The user can also provide smoothing levels using the option sigmaselect in phmac. There is also the option of 

starting the algorithm from user defined modes instead of the original data points. This option becomes handy if 
the user wishes to merge clusters obtained from other clustering methods, e.g., EM-clustering or K-means. 

4.2. Some Examples of Plotting 
There are several plotting functions in Modalclust, which can be used to visualize the output from the function 
phmac. The plotting functions are defined on object class hmac, which is the default class of a phmac output. 
These plot functions will be illustrated through a data set named disc2d, which has 400 observations displaying 
the shape of two half discs. The scatter plot of disc2d along with its contour plot are given in Figure 5. 

First, we introduce the standard plot function for an object of class “hmac”. This unique and informative plot 
shows the hierarchical tree obtained from modal clustering. It can be obtained by 

R > data (“disc2d.hmac”) 
R > plot (disc2d.hmac) 
The dendrogram obtained from the disc2d data is given in Figure 6. The y -axis gives the different levels, 

and the tree displays the merging at different levels. There are several options available for drawing the tree,  
 

 
Figure 5. The scatter plot of disc2d data along with its 
probability contours.                                

 

 
Figure 6. Hierarchical tree (Dendrogram) of disc2d data showing the clustering at four levels of smoothing. 
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including starting the tree from a specific level, drawing the tree only up to a desired number of clusters, and 
comparing the clustering results with user defined clusters. 

There are some other plotting functions that are designed mainly for visualizing clustering results for two 
dimensional data, although one can provide multivariate extensions of the functions by considering all possible 
pairwise dimensions. One can obtain the hard clustering of the data for each level using the command 

R > hard.hmac(disc2d.hmac) 
Alternatively, the user can specify the hierarchical level or the number of desired clusters, and obtain the 

corresponding cluster membership (hard clustering) of the data. For example, the plot in Figure 7 can be 
obtained by either of the following two commands: 

R > hard.hmac (disc2d.hmac, n.cluster=2) 
R > hard.hmac (disc2d.hmac, level=3) 
Another function, which allows the user to visualize the soft clustering of the data, is based on the posterior 

probabilities of each observation belonging to the clusters at a specified level. For example, the plot in Figure 8 
can be obtained using 

R > soft.hmac (disc2d.hmac, n.cluster=3) 
 

 
Figure 7. Hard clustering for disc2d data at level 3.     

 

 
Figure 8. Soft clustering for disc2d data at level 2.      



Y. S. Cheng, S. Ray 
 

 
835 

The plot enables us to visualize the probabilistic clustering of the three cluster model. A user can specify a 
probability threshold for assigning observations which clearly belong to a cluster or lie in the “boundary” of 
more than one cluster. Points having posterior probability below the user specified boundlevel (default value 0.4) 
are assigned as boundary points and colored in gray. In Figure 8, we have five boundary points among the 400 
original observations. Additionally, at any specified level or cluster size, the plot=FALSE option in hard.hmac 
returns the cluster membership. Similarly, plot=FALSE option in soft.hmac returns a list that contains the 
posterior probability of each observation and boundary points. 

R > disc2d.2clust < −hard.hmac (disc2d.hmac,n.cluster=2, plot=FALSE) 
R > disc2d.2clust.soft < −soft.hmac (disc2d.hmac,n.cluster=2, plot=FALSE) 

5. Discussion 
Modalclust performs a hierarchical model based clustering allowing for arbitrary density shapes. Parallel 
computing can dramatically increase the computing speed by splitting the data and running the HMAC simul- 
taneously on multi-core processors. Plotting functions give the user a comprehensive visualizing and under- 
standing of the clustering result. One future work from this stage would be to increase computing speed, 
especially for large data set. From the discussion in Section 3, it is clear to see, parallel computing increases the 
computing speed a lot. That relies on the computing equipment. If one user has no multicore or a few multicore 
processors available, it will take a lot of the computing resources when clustering large data sets. One potential 
way to solve the computing speed problem is using k-means or other faster clustering techniques initially, and 
using the HMAC from the centers of each cluster of initial clustering results. For example, if we have a data set 
with 20,000 observations, we can use k-means clustering and choose a certain number of centers, like 200 
centers and run k-means clustering first. And then we start from the centers of 200 clusters and clustering by 
HMAC. Theoretically it is a sub-optimal way compared with running HMAC for all points. In practice, it is very 
useful to reduce the computing costs and still obtain the right clustering. 

In addition, we are currently working on an implementation of modal clustering for online or streaming data, 
where the goal would be to update an existing cluster with the new data without storing all the original data 
points and allowing for creation of new clusters and merging of existing clusters. 

Sources, binaries and documentation of Modalclust are available for download from the Comprehensive R 
Archive Network http://cran.r-project.org/ under the GNU Public License.   
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