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Abstract 
Clustering Lasso, a new regularization method for linear regressions is proposed in the paper. The 
Clustering Lasso can select variable while keeping the correlation structures among variables. In 
addition, Clustering Lasso encourages selection of clusters of variables, so that variables having 
the same mechanism of predicting the response variable will be selected together in the regres-
sion model. A real microarray data example and simulation studies show that Clustering Lasso 
outperforms Lasso in terms of prediction performance, particularly when there is collinearity 
among variables and/or when the number of predictors is larger than the number of observations. 
The Clustering Lasso paths can be obtained using any established algorithm for Lasso solution. An 
algorithm is proposed to construct variable correlation structures and to compute Clustering Las-
so paths efficiently. 
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1. Introduction 
We are often interested in finding important variables that are significantly related to the response variable and 
can be used to predict quantities of interest in regressions and classification problems. Important variables are 
often shown in clusters where variables in the same cluster are highly correlated and have similar pattern 
relating to the response variable. For example, a major application of microarray technology is to discover 
important genes and pathways that are related to clinical outcomes such as the diagnosis of a certain cancer. 
Typically, only a small proportion of genes from a huge bank have significant influence on the clinical outcome 
of interest. In addition, expression data frequently have cluster structures: the genes within a cluster often share 
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the same pathway and are therefore similarly related to the outcome. When regression is adapted in this setting, 
we often face the challenge from multi-collinearity of covariates. An ideal variable selection procedure should 
be able to find all genes of important clusters rather than just some representative genes from the clusters. 
Typically, two characteristics, pointed out by [1], evaluate the quality of a fitted model: accuracy of prediction 
on new data and interpretation of the model. For the latter, the sparse model with fewer selected covariates is 
preferred for interpretation due to its simplicity. However, when multiple variables share the same mechanism 
for explaining the response, all the involved variables should have an equal chance of being selected, and should 
exhibit the same relationship to the outcome in the fitted model, for scientific reasoning. 

It is well known that the ordinary least square estimate (OLS) in linear regression often performs poorly when 
some of the predictors are highly correlated. OLS would generate unstable results where the estimates have 
inflated variances. Regularizations have been proposed to improve OLS. For example, ridge regression [2] 
penalizes the model complexity by the 2l  penalty of the coefficients. This method was proposed to solve the 
collinearity problem by adding a constant to the diagonal terms of X X′ , where X  is the observation or design 
matrix. Ridge regression stabilizes the estimates through the bias-variance trade-off. It can often improve the 
predictions but cannot select variables. [3] proposed the Lasso method by imposing an 1l -penalty on the regre- 
ssion coefficients. Lasso is a promising method, as it can improve prediction and produce sparse models 
simultaneously. However, when high correlations among predictors are present, the predictive performance of 
Lasso is dominated by ridge regression [3]. Moreover, when there is a cluster of variables, in which each 
variable associates with the response variable similarly, Lasso tends to arbitrarily select one variable from the 
cluster instead of identifying the cluster [1]; see also Section 2 for more discussion. Elastic Net, proposed by [1], 
combines both 1l  and 2l  penalties of the coefficients as the regularization criterion. The method is promising 
in that it encourages cluster effects and shows improved predictive performance over Lasso. Elastic Net can 
automatically choose cluster variables and estimate parameters at the same time. Many other methods can be 
used to choose clustered variables, such as principal component analysis (PCA). [4] defined “eigen-arrays” and 
“eigen-genes” in this way. But PCA can not choose sparse models. [5] proposed sparse principal component 
analysis (SPCR), which formulated PCA as a regression-type optimization problem, and then obtained sparse 
loadings by imposing the Elastic Net constraint. SPCR can successfully yield exact zero loadings in principal 
components. However, for each principal component, a regularization parameter has to be selected, which 
results in an overwhelming computational burden when the number of parameters is large. Other penalized 
regression methods have been proposed for group effect [6]-[13]. However, these methods either pre-suppose a 
grouping structure or assume that each predictor in a group shares an identical regression coefficient. 

In practice, we often have some prior knowledge about the structure of variables and would like to make use 
of a priori information in analysis. For example, in gene analysis, we know the pathways and genes involved in 
these pathways. Therefore, we would like to group the involved variables in the same pathway together. Another 
example is in spatial analysis, we would like to keep a certain correlation structure among the spatial error terms. 
For example, sometimes we would like to fit a different coefficient for a certain variable at different regions (e.g., 
if the variable has different effect at different regions) but keep a correlation structure among the coefficients at 
neighborhood regions. The conditional autoregressive model (CAR, [14]) is one of the methods that can be used 
to keep such correlation structure. 

In this paper, we propose a method that encourages cluster variables to be selected together and can 
incorporate available prior information on coefficient structures in variable selection. When there is no prior 
information on coefficient structure, we propose a data augmentation algorithm to find the structure. Moreover, 
the method uses the Lasso regularization to choose sparse models. The proposed method can be solved by any 
efficient Lasso algorithm such as least angle regression (LARS, [15]) and the coordinate-wise descent algorithm 
(CDA, [16]). We call our method the Clustering Lasso (CL). 

The rest of the paper is organized as follows. In Section 2, we review the Lasso method and discuss its 
limitation in identifying clustered variables. Then we propose the Clustering Lasso in a Bayesian setting. Its 
counterparts in the Frequentist setting and computational strategies are discussed in Section 3. Sections 4 and 5 
demonstrate the predictive and explanatory performance of CL through real examples and simulations. Finally, 
conclusions and future work are discussed in Section 6. 

2. Clustering Lasso in Bayesian Setting  
Consider linear regression settings with the response vector ( )1, , ny y ′= y  and n p×  dimensional input 
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matrix X . The y  and columns of X  are centered and standardized to have the same 2l  norm. The Lasso 
estimates lasso

β  are calculated by minimizing  

( ) ( )
=1

1
2

p

j
j

λ β′− − + ∑y Xβ y Xβ                                (1) 

The solution of Lasso can be obtained through LARS or CDA. Compared with ordinary linear regressions, 
Lasso shows superior predictive performance and more stable estimates. Moreover, Lasso can often select 
variables and estimate coefficients simultaneously. 

Group effect has been defined by [1] in the linear regression setting. Let ix  be the i th predictor. The 
estimates of coefficients have the group effect if i jx x=  would result in the estimated coefficients ˆ ˆ

i jβ β= . [1] 
further proved that if the solution for estimation is to minimize the objective function of the form:  

( )( ) ( )1
2

Jλ− − +y Xβ y Xβ β                                (2) 

and the penalty term, ( )J ⋅ , is strictly convex, then the estimates from Equation (2) enjoy the group effect 
property. In Lasso, ( )J ⋅  is 1l  norm of β , which is not strictly convex. Zou and Hastie proved that in this 
case Lasso estimates do not have the group effect. This is also understandable through the Lasso solution path 
from LARS. In LARS, suppose a variable ix  is selected in the model. Its coefficient solution path will move in 
a direction to reduce the correlation between ix  and the current residual, β− y X , until another variable, say 

kx , has the same correlation to the current residual as does ix . At this point, variable kx  is added into the 
model. If jx  is highly correlated with ix , when the correlation between ix  and the residual decreases, so 
does that between jx  and the residual. Therefore, if ix  has been included in the model, Lasso is less likely to 
select the highly correlated variable jx  in the model. Consequently, Lasso cannot select clustered variables. 

In a Bayesian setting, if ix  is the ith row of X , [3] showed that the Lasso solution is identical to the 
posterior mode of the coefficients when the prior distributions of the coefficients are set as independent double 
exponential distributions, where  
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In Lasso, the penalty term of model complexity is 1
p

jj β
=∑ . Because each coefficient is penalized equally, 

each one can be shrunk to zero independently. When the variables are clustered, an ideal solution path should be 
that the clustered variables are selected together. Therefore, we would like to penalize the coefficients with a 
restriction that keeps the correlation structure among the variables. With the penalization, if the coefficient of 
one variable is nonzero, those variables in the same cluster are less likely to be zero. For this purpose, we 
assume a correlation structure, specified as the structural correlation matrix R , of the coefficients β . 

For simplicity, assume that the variance of the random error, 2σ  ( )0σ > , and the structural correlation 
matrix R  are known. Then the likelihood and prior distributions can be set as: 
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Therefore, the posterior distribution of β  has the form  
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with a vector ( )1, , pV V V′ =  , 
11

p
iiV V

=
= ∑ . The posterior mode of β  in the distribution (3) is the solution 

to  

( ) ( )
1
2

1

1argmin
2β λ

−′− − +y Xβ y Xβ R β                               (4) 

Relating Equation (4) to the Bayesian Lasso solution to (1), we naturally infer the Clustering Lasso in 
Frequentist setting.  

3. Clustering Lasso 
3.1. Clustering Lasso and Its Grouping Effect 
In Frequentist setting, we modify the penalization function in Lasso to retain a presumed correlation structure 
among coefficients. Let 

1
2

−∗ =β R β  and jβ
∗  be the jth element of ∗β . The Clustering Lasso estimate is 

defined as the solution to  

( ) ( )
=1

1
2

p

j
j

λ β ∗′− − + ∑y Xβ y Xβ                                  (5) 

where 0λ ≥  is the regularization parameter. Note that instead of restricting iβ∑ , we restrict iβ
∗∑ . 

Therefore, β ’s are not penalized independently and clustered variables could be chosen. Let 
1
2

j

−
r , with 

dimension 1 p× , be the jth row of 
1
2

−
R  and let 

1 1
1 2 2

j j j

− −−
′ 

=   
 

R r r , a p p×  matrix. The penalty term used in 

expression (5) can also be written as ( )1 21
1

p
jjλ −

=
′∑ β R β , which is intermediate between the 1l  penalty and the  

2l  penalty. When R  is an identity matrix, the Clustering Lasso is identical to the ordinary Lasso method. 
Otherwise, the penalty function is strictly convex. Using Lemma 2 developed by [1], the solution to Expression 
(5) has the group effect. Therefore, Clustering Lasso can select variables by clusters. 

Figure 1 illustrates the Clustering Lasso penalty contours with two predictors. The right figure shows the 
penalty contour when the two predictors are correlated and the left one shows the contour when the two 
predictors are independent, which is identical to the Lasso method. The sums of the squared errors have 
elliptical contours, centered and minimized at the full least squares estimate. The constraint region of Lasso is 
the diamond region 1 2 cβ β+ ≤ , while that for the Clustering Lasso is the parallelogram region defined by  

1 1
2 2

1 2 c
− −

+ ≤r β r β . The optimal estimates are realized at the place where the elliptical contours first hit the  

constraint regions. The sides of the parallelogram are decided by the structural correlation matrix R . 
 

 
Figure 1. Estimation picture for the Clustering Lasso when two predictors are 
independent (left, as lasso) and when two predictors are clustered (right).      
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3.2. Computation 

The Clustering Lasso is an extension of the Lasso method. Let 
1
2∗ =X XR . So the solution to Expression (5) is 

1
2 ∗= β R β , where ∗

β  is  

( ) ( )
1

1argmin
2

p

j
j

β
λ β∗

∗ ∗ ∗ ∗ ∗

=

′− − + ∑y X β y X β                        (6) 

Therefore, all the established algorithms for Lasso solution, such as the least angle regression (LARS, [15]), 
could be used for Clustering Lasso.  

3.3. The Clustering Lasso Algorithm 
We can incorporate prior knowledge of clustering into a structural correlation matrix. For example, Kyoto 
Encyclopedia and Genes and Genomes (KEGG) and many other biological databases can be referred to in gene 
analysis to construct the structural correlation matrix. It is required that the structural correlation matrix be 
symmetric. When no prior information is readily adaptable, a natural method is to use the modified correlation 
matrix of the observed data, meaning that the coefficients should have a correlation structure that is similar to 
how the covariates are correlated. There are several well-established potential choices such as partial correlation 
matrix [17]. In this paper, we propose to use a modified correlation matrix so that if two variables ix  and jx  
are not significantly correlated, ijR , the ith row and jth column element of R , is set to be zero. As the solution  

for β  is 
1
2 ∗= β R β , zero elements in 

1
2R  are desired so that when iβ

∗ s are shrunk to zero, which is possible  
by the Lasso property, some jβ s could also be shrunk to exact zero. 

In detail, we develop Algorithm 1—the Clustering Lasso algorithm. Let valp , 2p , and m , in [ ]0,1  be 
three prespecified numbers, and ORRC  be a p p×  matrix. 

Algorithm 1 Clustering Lasso 
1. For 1, , 1i p= −  
for 2, ,j p=    
do correlation test between ix  and jx , let  

[ ] ( ) ( )valcor , if   value  and cor ,
,

0 . .
i j i jx x p p x x m

ORR i j
o w

 < ≥= 


C  

2. Do eigen decomposition on ORRC  so that ORR ′=C UQU  and let 0iiQ =  if 2

1

ii
p

jjj

Q
p

Q
=

<
∑

 for  

1, ,i p=  . 

3. Let 
1
2 ′=T UQ U  and ∗ =X XT .  

4. Do Lasso on ( ), X ∗y  and get the coefficient solution ∗
β .  

5. T ∗= β β  is the solution to Clustering Lasso.  
Note that only when some elements of T  are set to be zero, could β s be shrunk to exact zero when β ∗ ’s 

are shrunk to zero by Lasso. A special case is when R  is a block diagonal matrix. To choose sparse models, 
we need to identify clusters of covariates, where variables in the same cluster are assumed to be correlated while 
those from different clusters are independent. For this purpose, there are two shrinkage steps in Algorithm 1. 
Step (1) shrinks the correlation coefficients to zero if there is no significant correlation between the pair of 
covariates at the significance level valp  or if the magnitude of correlation is smaller than a pre-set value m . 
When two covariates are not correlated, there is little chance that the two variables relate to the response 
variable with the same underlying pathway. Therefore, the coefficients of the two variables can be estimated 
independently. Step (2) shrinks some eigen-values of ORRC  to zero if the corresponding eigenvector explains 
less than 2p  times the total variance of ORRC . The two shrinkage steps cannot guarantee that some elements 
of T  be zero. Subjective intervention can help for this purpose. One resolution is to cluster the covariates first 
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and then calculate the correlation matrices for each cluster, which in turn used to build the diagonal blocks of 
R . In addition to building a diagonal block matrix, another resolution is to adapt shrinkage methods in the eigen 

decomposition process of R , so that some loadings of the eigenvectors might degenerate to 0. ScotLASS [18] 
and sparse principal component analysis (Zou et al., 2006) can serve this purpose. However, these methods 
require extra computations for each principal component, which brings in high computational costs. The 
nonzero elements of the jth row of T  imply that the corresponding covariates belong to the jth cluster. Ideally, 
their values should be proportional to the contributions of each covariate to the cluster in explaining the outcome. 
As pointed out by a referee of the paper, clusters in the proposed method are identified by rows of 1 2R , where 

1 2R  is defined as 1 2 ′UQ U  with Q  being the diagonal matrix of eigenvalues and U  columns of eigen- 
vectors of R . As in principal component analysis, the nonzero elements of 1 2R  are difficult to interpret in 
practice. The referee recommends setting the elements of 1 2R  to be 0 or 1 based on the absence or presence of 
non-zero elements, respectively. In the paper, we set the estimate of β  to be zero, if its estimated value is very 
close to zero, i.e. if 0.005iβ < . 

3.4. Choice of Tuning Parameters 
Four parameters, ( )val 2, , ,p m pλ , are to be chosen for Algorithm 1. valp  is the significance level used to 
decide whether the correlations between a pair of covariates should be considered to restrict the estimation of 
their coefficients. We usually select the significance level at 0.05, the traditional significance level. When the 
data set is large, we can reduce the significance level. Since the correlation would be always significant when 
little correlation exists and the number of observations is large, we set another restriction on the magnitude of 
correlation- m , above which we would like to use the correlation as a restriction to the coefficient parameters. 
m  is chosen subjectively by researchers. Algorithm 1 Step (2) is similar to the principal component analysis 
except that the eigen decomposition is based on the correlation matrix modified by Step (1). 2p  specifies the 
minimum proportion of variance explained by the eigen vector, below that, the eigen vector will not be used for 
further analysis. 2p  is set at a small value, typically 0.01 p , where p  is the total number of covariates. 

The last parameter to be tuned is λ . In Lasso, the conventional tuning parameter is the fraction ( )s  of the 
1l -norm. There are well-established methods for choosing s . Tenfold cross-validation (CV) on training data is 

the method we used in this paper. The training dataset is divided into ten folds randomly. One fold of the data is 
used as validation data, on which the prediction error is calculated based on the model fitted from the other nine 
folds of data. s  is tested on a fine grid on [ ]0,1 . It takes the value that minimizes the averaged prediction error 
from CV. We can also use ten-fold CV to tune m  and 2p . We found that only a few representative values for  

2m p×  need to be cross validated to obtain good results, which are { } 0.010,0.5 0,0.05,
p

 
× 
 

. 

4. Microarray Data Example 
We used the proposed method on an Affymetrix gene expression dataset. The data were collected by Singh et al. 
[19] and consists of 12,600 genes, from 52 prostate cancer tumor samples and 50 normal prostate tissue samples. 
The goal is to construct a diagnostic rule based on the 12,600 gene expressions to predict the occurrence of 
prostate cancer. Support vector machine (SVM, [20]), Ridge, Lasso, Elastic Net, Weighted Fusion (w.fusion) 
and Clustering Lasso were all applied to this dataset. We tried four types of Clustering Lasso methods:   

1. CL1: val 0.05p = , 0m = , and 2 0p = ; 
2. CL2: val 0.05p = , 0m = , and 2 0.05p = ; 

3. CL3: val 0.05p = , 0m = , and 2
0.01

# of covariates
p = ; 

4. CL4: val 0.05p = , 0.5m = , and 2 0.05p = . 
To apply these methods, we first coded the presence of prostate cancer as a 0-1 (no and yes) response y . The 

classification function is I  (fitted value 0.5> ), where ( )I ⋅  is the indicator function. For comparison, we 
randomly select 52 samples as training data, based on which the diagnostic rules are constructed, and the rules 
are in turn tested on the remaining 50 samples. 

The dataset was split 20 times. For each repetition, a 1000-gene set was preselected based on the training data 
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to make the computation manageable. The genes are those “most significantly” related to the response, tested by 
individual t-statistics. Figure 2 shows the boxplots of the misclassification rates on the test data sets from 
different classifiers. The misclassification rates are summarized in Table 1. Overall, the misclassification rate 
from Clustering Lasso is competitive with Elastic Net and Ridge, and is better than Lasso, Weighted Fusion, and 
SVM. For the computational time, Clustering Lasso is comparable to the Lasso method and is much more 
efficient than Elastic Net and Weighted Fusion. Within the four Clustering Lasso methods, the ones with more 
restrictions on eigenvalues and the magnitudes of correlations perform a little bit worse. 

Table 2 shows the average number of genes selected from the 20 repetitions based on different methods. The 
analyses were based on 1000 genes and 52 observations. We see that Lasso selected fewer than 52 genes. Elastic 
Net eliminated few genes—the average number of selected genes was close to 1000. Cluster Lasso identified 
about 25% genes as important. However, we do not know whether the chosen genes are, in fact, important or not. 
The efficiency of variable selection is further assessed by simulation studies. 

 

 
Figure 2. Misclassification rates on singh data. ELAS stands for Elastic Net.                            

 
Table 1. Summary of Misclassification Rates on Singh data.                                                     

Methods SVM Ridge Elastic Net Lasso CL1 CL2 CL3 CL4 W. fusion 

Mean 5.75 4.25 4.3 6.05 4.45 4.2 4.2 4.55 8.2 

Median 6 4 4 6 4 4 3.5 4 7.5 

SD 1.48 1.33 0.98 1.79 1.64 1.74 1.64 2.86 4.03 

 
Table 2. Average number of genes selected by each method.                                                     

Methods Elastic Net Lasso CL1 CL2 CL3 CL4 W. fusion 

# of genes 999.25 42.25 278.35 221.50 287.05 160.40 856.65 
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5. Simulation Studies   
We applied Clustering Lasso on some simulations to test its prediction accuracy in regressions when compared 
with Ridge, Lasso, Elastic Net, and Weighted Fusion. The first three simulations are adapted from the Elastic 
Net paper [1]. To begin, datasets are simulated from the true model:  

( ),            0,1y X Nβ σ= +    

For each scenario, we simulated 100 data sets, each consisting of a training data set and an independent test 
data set. Here are the details of the four scenarios. 

1. In example one, we simulated 40  observations as training data and 200 observations as test data. We let 
( )0.85,0.85,0.85,0.85,0.85,0.85,0.85,0.85β =  and 3σ = . The pairwise correlation between ix  and jx   

was set to be ( )corr , 0.5 i ji j −= .  
2. In Example two, we simulated 200 training data and 400 testing data. There are 40 predictors such that  

( )
10 10 10 10

0, ,0, 2, , 2,0, ,0, 2, , 2 ,   15, and  corr , 0.5i jβ σ
 

= = = 
 
   

     

3. Example 3 has the group setting that 
15 25

3, ,3,0, ,0β
 

=  
 
 

   and 15σ = , where the predictors are gene- 
rated as  

( )
( )
( )

( )

( )

1 1

2 2

3 3

iid

iid

,   0,1 ,     1, ,5;

,   0,1 ,     6, ,10;

,   0,1 ,     11, ,15;

0,1 ,     16, , 40;

0,0.01 ,     1, ,15.

x
i i

x
i i

x
i i

i

x
i

x z z N i

x z z N i

x z z N i

x N i

N i

= + =

= + =

= + =

=

=

 

 

 

 

 









 

As explained by [1], three groups are equally important groups, and each group contains five covariates. We 
created 100  observations as training data and 400 as testing data.  

The fourth simulation is a modification of the third example to emphasize the group effects. The true model 
has the form 1 20.5y z z= + +   where ( )0,1i N . The predictors we observed are  

( )
( )

( )

( )

1 1

2 2

2

3 3

iid

,   0,1 ,     1, ,5;

,   0,1 ,     6, ,10;

0.6 ,     11, ,15;

,   0,1 ,     16, , 20;

0,0.5 ,     1, , 20.

x
i i

x
i i

x
i i

x
i i

x
i

x z z N i

x z z N i

x z i

x z z N i

N i

= + =

= + =

= + =

= + =

=

 

 



 

 











 

The latent variables, 1z  and 2z , directly relate to the response variable, where 1z  is more important than 
2z . A nuisance variable 3z , does not related to y . ix s  relate to zs  at different levels. In terms of gene 

analysis, we can think of 1z , 2z  and 3z  as underlying pathways, some of which are related to the disease 
measured by y . We observed the gene expression levels, ix , and would like to identify the related pathways. 

We used all four Clustering Lasso methods. In all examples, the results from the four Clustering Lasso 
methods are close to each other. The prediction results from Lasso, CL2, CL4, Elastic Net, Ridge, and Weighted 
Fusion are summarized in Table 3 and Figure 3. In Figure 3, relative MSE was defined as the MSE of the 
corresponding method divided by the minimum MSEs from all the methods. We see that Clustering Lasso 
always performs better than the Lasso method, and it is close to or better than Ridge, Weighted Fusion and 
Elastic Nets, even under collinearity and group effect situations. 

Table 4 shows the results of variable selection. The two numbers in each cell are the proportion of times an 
important factor is chosen and the proportion of times a false factor is chosen, respectively. We see that 
compared with Elastic Net, Weighted Fusion and Lasso, Clustering Lasso is superior at selecting important 
factors. However, like Weighted Fusion, it is more likely to over select variables than Elastic Net. In Example 2,  
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(a)                                        (b) 

 
(c)                                        (d) 

Figure 3. Comparing the simulation results from the four examples. (a)-(d): Example 1-4.            
 

Table 3. Mean (standard deviation) of MSE for the simulated examples based on the 100 iterations.                     

Methods Example 1 Example 2 Example 3 Example 4 

Lasso 11.50 (1.81) 256.40 (19.05) 279.75 (30.08) 1.151 (0.09) 

Elastic Net 11.23 (1.60) 251.01 (18.85) 248.42 (24.45) 1.138 (0.10) 

Ridge regression 10.55 (1.46) 243.47 (15.91) 278.09 (25.81) 1.125 (0.10) 

Clustering Lasso 2 10.68 (1.46) 253.75 (19.11) 265.33 (28.82) 1.097 (0.08) 

Clustering Lasso 4 10.70 (1.35) 250.82 (17.78) 257.33 (23.46) 1.094 (0.08) 

Weighted Fusion 10.68 (1.69) 257.07 (24.22) 287.85 (61.14) 1.141 (0.09) 

 
Table 4. Variable selection results for the simulated examples based on the 100 iterations. In each cell, the first number is the 
proportion of times a true factor is chosen and the second number is the proportion of times a false factor is chosen.         

Methods Example 1 Example 2 Example 3 Example 4 

Lasso 0.840, - 0.811, 0.389 0.235, 0.736 0.544, 0.186 

Elastic Net 0.870, - 0.838, 0.488 0.958, 0.134 0.585, 0.124 

Clustering Lasso 2 0.995, - 1.00, 0.998 1.00, 0.873 0.991, 0.630 

Clustering Lasso 4 0.985, - 1.00, 0.997 1.00, 0.493 0.995, 0.460 

Weighted Fusion 0.990, - 0.992, 0.975 1.00, 0.997 0.792, 0.574 
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since all variables are highly correlated, Clustering Lasso cannot identify the most important variables. In 
comparison, Clustering Lasso performs very well in Examples 3 and 4, when clusters of variables play an 
important role in real model. 

Finally, to show how Clustering Lasso chooses covariates in groups and the behavior of the coefficients for 
the selected variables, we illustrate the differences between Lasso and Clustering Lasso by a modified example 
from [1]. Let 1z , 2z  and 3z  be three independent variables with the uniform ( )0,20  distribution. The 

response variable is generated as ( )1 20.2 ,1y N z z+ . With the random error terms ( )
ind

0,1 16i N , the nine 
observed predictors are  

1 1 1 2 1 2 3 1 3

4 2 4 5 2 5 6 2 6

7 3 7 8 3 8 9 3 9

,     ,     ,
,     ,     ,
,     ,     .

x z x z x z
x z x z x z
x z x z x z

= + = − + = +

= + = − + = +

= + = − + = +

  
  
  

 

The variables 1x , 2x  and 3x  are from group 1, with the direct effect 1z . 4x , 5x  and 6x  are from 
group 2, with the direct effect 2z . The effect from 2z  on y  is much smaller than from 1z —the coefficient 
for 1z  is 1 compared with 0.2 for 2z . Variables 7x , 8x  and 9x  are from 3z , which does not relate to the 
response variable. The within-group correlations are almost 1, while the between group correlations are almost 0. 
Figure 4 shows the solution paths for Lasso, Elastic Net and CL2. 

We also use this simulation to compare the sensitivity and specificity of the listed methods in finding 
significant covariates. The simulation is repeated 100 times. Table 5 summarizes the number of times that the 
coefficients of ix  are not zero. We find that the proposed Clustering Lasso of all versions can uniformly 
identify the important covariates while is less likely to select non-significant covariates than Lasso, Elastic Net 
and Weighted Fusion. 

 

 
Figure 4. Comparing the solution paths from Lasso, Elastic Net and Clustering Lasso.        
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Table 5. Number of times the coefficients are not zero based on the 100 repetitions.                                  

 1x  2x  3x  4x  5x  6x  7x  8x  9x  

Lasso 86 84 89 69 75 64 73 61 66 

Elastic Net 93 93 94 88 91 85 40 42 37 

Clustering Lasso 1 100 100 100 100 100 100 58 59 61 

Clustering Lasso 2 100 100 100 100 100 100 32 31 30 

Clustering Lasso 3 100 100 100 100 100 100 33 35 32 

Clustering Lasso 4 100 100 100 100 100 100 33 33 33 

Weighted Fusion 100 99 100 100 95 100 85 83 85 

6. Conclusions and Future Works 
We find that the Clustering Lasso, is a novel predictive model that produces sparse model with good predictive 
performance, while encouraging group effects. The empirical results from a two-class microarray data classifica- 
tion problem and several simulation studies on regression problems show that Clustering Lasso has very good 
predictive performance and is superior to the Lasso method. 

The method was proposed to encourage group effects so that clustered variables are selected together in a 
model. Clustering Lasso can automatically select groups of variables. If the structural correlation matrix used for 
regularization is block diagonal matrix, Clustering Lasso is equivalent to the group Lasso proposed by [7]. 
However, if the relationships among the variables are complicated, we have to simplify the structural correlation 
matrix to obtain sparse models. We proposed some shrinkage steps to build the desired structural correlation 
matrix. Rotating the eigen vectors or adapting techniques such as sparse component analysis can also help for 
this purpose. As a next step, we will use the Clustering Lasso method in the spatial analysis, so that we can 
maintain the important spatial correlations while selecting sparse models.  
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