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Abstract 
Guastello’s polynomial regression method for solving cusp catastrophe model has been widely ap-
plied to analyze nonlinear behavior outcomes. However, no statistical power analysis for this 
modeling approach has been reported probably due to the complex nature of the cusp catastrophe 
model. Since statistical power analysis is essential for research design, we propose a novel method 
in this paper to fill in the gap. The method is simulation-based and can be used to calculate statis-
tical power and sample size when Guastello’s polynomial regression method is used to do cusp 
catastrophe modeling analysis. With this novel approach, a power curve is produced first to depict 
the relationship between statistical power and samples size under different model specifications. 
This power curve is then used to determine sample size required for specified statistical power. 
We verify the method first through four scenarios generated through Monte Carlo simulations, 
and followed by an application of the method with real published data in modeling early sexual 
initiation among young adolescents. Findings of our study suggest that this simulation-based 
power analysis method can be used to estimate sample size and statistical power for Guastello’s 
polynomial regression method in cusp catastrophe modeling. 

 
Keywords 
Cusp Catastrophe Model, Polynomial Regression Method, Statistical Power Analysis, Sample Size 

http://www.scirp.org/journal/ojs
http://dx.doi.org/10.4236/ojs.2014.410076
http://dx.doi.org/10.4236/ojs.2014.410076
http://www.scirp.org/
mailto:din_chen@urmc.rochester.edu
http://creativecommons.org/licenses/by/4.0/


D.-G. Chen et al. 
 

 
804 
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1. Introduction 
Popularized in the 1970’s by Thom [1], Thom and Fowler [2], Cobb and Ragade [3], Cobb and Watson [4], and 
Cobb and Zack [5], catastrophe theory was proposed to understand a complicated set of behaviors including 
both gradual and continuous changes and sudden and discrete or catastrophical changes. Computationally, there 
are two directions to implement this theoretical catastrophe theory. One direction is operationalized by Guastello 
[6] [7] with the implementation into a polynomial regression approach and another direction by a stochastic cusp 
catastrophe model from Cobb and his colleagues [5] with implementation in an R package in [8]. And this paper 
is to discuss the first direction on polynomial cusp catastrophe regression model due to its relative simplicity and 
ease for implementation as simple regression approach. This model has been used extensively in research. Typ-
ical examples include modeling of accident process [7], adolescent alcohol use [9], changes in adolescent sub-
stance use [10], binge drinking among college students [11], sexual initiation among young adolescents [12], 
nursing turnover [13], and effect of HIV prevention among adolescents [12] [14]. 

Even though this polynomial regression method has been widely applied in behavioral studies to investigate 
the existence of cusp catastrophe, to the best of our knowledge, no reported research has addressed the determi-
nation of sample size and statistical power for this analytical approach. Statistical power analysis is an essential 
part for researchers to efficiently plan and design a research project as pointed out in [15]-[17]. To assist and 
enhance application of the polynomial regression method in behavioral research, this paper is aimed to fill this 
method gap by reporting the Monte-Carlo simulation-based method we develope to conduct power analysis and 
to determine sample size. 

The structure of the paper is as follows. We start with a brief review of the cusp catastrophe model (Section 2), 
followed by reporting our development of the novel simulation-based approach to calculate the statistical power 
(Section 3). This approach is then verified through Monte Carlo simulations and is further illustrated with data 
derived from published study (Section 4). Conclusions and discussions are given at the end of the paper (Section 
5). 

2. Cusp Catastrophe Model 
2.1. Overview 
The cusp catastrophe model is proposed to model system outcomes which can incorporate the linear model with 
extension to nonlinear model along with discontinuous transitions in equilibrium states as control variables vary. 
According to the catastrophe systems theory [1] [18]-[20], the dynamics for a cusp system outcome is expressed 
by the time derivative of its state variable (often called behavioral variable within the context of catastrophe 
theory) to the potential function: ( ) 4 2; , 1 4 1 2V z x y z z y zx= − −  The first derivative of V  will consist of the 
equilibrium plane of the cusp catastrophe: 

( ) 3, , 0V z x y z z yz x∂ ∂ = − − =                                (1) 

where x  is called asymmetry or normal control variable and y  is called bifurcation or splitting control vari-
able. In the model, the two control variables x  and y  co-vary to determine the behavior outcome variable z . 
Figure 1 depicts the equilibrium plane which reflects the response surface of the outcome measure ( )z  at var-
ious combinations of x  and y . It can be seen from the figure that the dynamic changes in a behavior measure 
( )z  has two stable regions (attractors), the lower area in the front left and the upper areas in the front right. 
Beyond these two regions, behavior z  becomes unstable. This characteristic can be further revealed by pro-
jecting the unstable region to the x  and y  control plane as a cusp region. The cusp region is characterized by 
two lines, line O-Q (the ascending threshold) and line O-R (the descending threshold) of the equilibrium surface. 
In this region, the outcome measure becomes highly unstable, and sudden change or jumping in behavior status 
will occur, because a very small change in x  or y  or both will lead z  to cross either the threshold line O-Q 
or O-R. 

Furthermore, the paths A, B, and C in Figure 1 depict three typical but different pathways of change in the  
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Figure 1. Cusp catastrophe model for outcome measures ( )Z  in the equili-

brium plane with asymmetry control variable ( )X  and bifurcation control 

variable ( )Y . (Annotated by the authors with the original graph produced by 
Grasman’s R package “cusp”).                                         

 
outcome measure ( )z . Path A shows that in any situations where Oy < , there is a smooth relation between 
outcome measure ( )z  and the asymmetry variable ( )x ; path B shows that in any situations where Oy > , if 
the asymmetry variable x  increases to reach and pass the ascending threshold link O-Q, outcome measure 
( )z  will increase suddenly from the low stable region to the upper stable region of the equilibrium plane; and 
Path C shows a sudden drop in outcome measure ( )z  as x  declines to reach and pass the descending thre-
shold line O-R .  

From the affirmative description, it is clearly that a cusp model differs from a linear model in that: 1) A cusp 
model allows the forward and backward progression follows different paths in the outcome measure and both 
processes can be modeled simultaneously (see Paths B and C in Figure 1) while a linear model only permits one 
type of relationship; 2) A cusp model covers both a discrete component and a continuous component of a beha-
vior change while a linear model covers on continuous process (Path A). In this case a linear model can be con-
sidered as a special case of the cusp model; 3) A cusp model consists of two stable regions and two thresholds 
for sudden and discrete changes. Therefore, the application of the cusp modeling will advance the linear ap-
proach and better assist researchers to describe the behavior data while evidence obtained from such analysis, in 
turn, can be used to advance theories and models to better explain a behavior. 

2.2. Guastello’s Cusp Catastrophe Polynomial Regression Model  
To operationalize the cusp catastrophe model for behavior research, Guastello [6] [7] developed the polynomial 
regression approach to implement the concept of cusp model. Since the first publication of this method, it has 
been widely used in analyzing real data as we described in the Introduction. In this study, we referred the me-
thod as Gastello’s polynomial cusp regression. According to Gustello, this approach is derived by inserting re-
gression β  coefficients into the Equation (1), with change scores 2 1z z z∆ = −  (the differences in the mea-
surement scores of a behavior assessed at time 1 and time 2) as a numerical approximation of dz : 

3 2
0 1 1 2 1 3 1 4 5  z z z y z x yβ β β β β β ε∆ = + × + × + × × + × + × +                      (2) 
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where 0β  is the intercept and ε  is the normally distributed error term. Two additional term 2
2 1zβ ×  and 

5 yβ ×  are added to capture potential deviations of the data from the equilibrium plane. When conducting mod-
eling analysis, a cusp is indicated ONLY if the estimated 1β  for the cubic term, plus 3β  (for the interaction 
term) or 4β  (for control variable x) in Equation (2) are statistically significant.  

To demonstrate the efficiency of the polynomial regression approach in describing behavioral changes that 
are cusp, Guastelly [7] recommended a comparative approach. In this approach, two types, four alternative li-
near models can be constructed and used in modeling the same variables: 
1) Change scores linear models 

0 1 1 4 5 z z x yβ β β β∆ = + + +                                    (3) 

0 1 1 3 1 4 5z z yz x yβ β β β β∆ = + + + +                                (4) 

2) Pre-and post-linear models 

2 0 1 1 4 5z z x yβ β β β= + + +                                 (5) 

2 0 1 1 3 1 4 5z z yz x yβ β β β β= + + + +                               (6) 

These alternative linear models add another analytical strategy to strength the polynomial regression method.  
A better data-model fitting (or a larger 2R ) of the cusp model (2) than the alternative linear models (3) through 
(6) is often used as additional evidence supporting the hypothesis that the dynamics of a study behavior follows 
the cusp catastrophe. Fitting Guastello’s cusp regression model and the four alternative models can all be con-
ducted with commonly available statistical software, including SAS, SPSS, STATA and R . More recent dis-
cussions and applications of the cusp catastrophe modeling methods can be found in [21]. 

3. Simulation-Based Power Analysis Approach for Guastello’s Cusp Regression 
3.1. A Brief Introduction to Statistical Power  
In statistics, power is defined as the probability of correctly rejecting the null hypothesis. Stated in common 
language, power is the fraction of the times that the specified null-hypothesis value will be rejected from statis-
tical tests. Operationally based on this definition, if we specify an alternative hypothesis 1H , a desired type-I 
error rate α , and a desired power ( )1 β− , then we can calculate the required sample size n . Alternatively, 
we can calculate the statistical power ( )1 β−  as a function of sample size n  under a specified alternative 
hypothesis 1H  and a desired type-I error rate α . There are extensive literatures on sample size calculation as 
well as statistical power analysis, see the seminal books from [15]-[17] for power analysis for behavioral 
sciences. 

As detailed in Chapter 7 in [17], five factors related to research design interplay with each other to determine 
the statistical power and sample size for a simple t-test: 1) the rate of type-I error α ; 2) the desired statistical 
power 1 β− , 3) the expected treatment effect size of δ , 4) the standard error 2s  for the expected effect size, 
and 5) the sample size n . The mathematical formula can then be derived as ( ) 22 2

1 12n s z zα βδ − − ≥ +  . 
Therefore, to determine the required sample size n , we would need to provide data for four of the five design 
characteristics. Typically, the type-I error α  is set at 0.05 and the desired power ( )1 β−  is chosen to be 0.85 
(or 0.80). The other two will be treatment effect size δ  and its standard error 2s . Depending on actual re-
search questions, different values are often selected for these two characteristics.  

Extending the same concept described above for Guastello’s polynomial cusp regression, we would need to 
specify the corresponding parameter effect size for all sβ  in Equation (2), the standard deviation of the error 
term ε . In addition, we need to specify the distribution of the two control variables, the asymmetry x  and the 
bifurcation y ; and the distribution of the outcome variable z  at time 1 (i.e. 1z ). With these parameters and 
variables being specified, the required sample size for a significant Cuastello’s cusp regression model can be 
determined and statistical power can be analyzed. 

3.2. Simulation-Based Approach for Power Analysis and Sample Size Determination 
Power analysis and sample size determination can be developed for specific purpose. Typically, it is developed 
to detect treatment effect as in clinical trials or to detect the effect of specific risk factor as in regression. Similar 
development can be done to Guastello’s cusp regression model for specific repressor in asymmetry variable 
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( )x  or the bifurcation variable ( )y  if they are linked to multiple regressors or even to the overall goodness- 
of-fit index of 2R . However, we aim to tackle a more complicated problem to determine whether we can detect 
a significant overall cusp model. The complexity of cusp catastrophe model makes it rather challenging, if not 
impossible to derive an analytical formula to determine the statistical power for Guastello’s cusp regression. To 
deal with this difficult, we propose a Monte-Carlo simulation-based approach. In this method the statistical 
power is calculated as the fraction of the times that the specified null-hypothesis of “no cusp” is rejected at the 
given level of type I error. Stated in another way, if there is a cusp, the statistical power will be, among 100 si-
mulations, how many times can we detect the cusp given the sample size and type I error? The detailed steps of 
the simulation-based approach are outlined as follows: 
1) Simulate data with sample size ( )n  (i.e. the number of observations for Guastello’s cusp regression mod-

eling) for the asymmetry variable x , bifurcation variable y  and outcome variable at time 1 (i.e. 1z ). Data 
are generated under required specifications for desired study, such as normal distribution with specific 
means and standard deviations. Guastello’s cusp regression requires that all variables be standardized before 
data analysis and modeling. In this case, the standard normal distribution can be used to generate data for x , 
y  and 1z ; 

2) Specify model parameter effect size ( )0 1 2 3 4 5, , , , ,β β β β β β β=  and the standard deviation σ  of the error 
term of ε  (Equation (2)) obtained from prior knowledge;   

3) Calculate 3 2
2 1 0 1 1 2 1 3 1 4 5z z z z yz x yβ β β β β β ε= + + + + + + +  using the data obtained in the previous two 

Steps. Also generate 2 1 z z z∆ = − ; 
4) Fit the Guastello’s cusp regression model (Equation (2)) with least squares method using the data generated 

for z∆ , x , y , and 1z . After model fitting, a significant test is conducted to determine whether the data fit 
Guastello’s cusp regression model satisfactorily according to the decision rules proposed by Guastello 
(1982): 1) the estimated 1β  for the cubic term and 2) 3β  (for the y  and 1z  interaction term) or 4β  
(for control variable x ) must be are statistically significant; 

5) Repeat Steps 1 to 4 a large number of times (typically 1000) and calculate the proportion of simulations 
which satisfy the Guastello’s decision rules. This proportion then provides an estimate of the statistical pow-
er for the pre-specified sample size and the study specifications given in Steps 1 and 2; 

6) With the above established five steps for power assessment, sample size is then determined to reach a 
pre-specified level of statistical power. This is carried out by running Steps 1 to 5 with a range of sample 
sizes ( )n  first to obtain the corresponding values of statistical power. Then a statistical power curve is con-
structed for these ranges of sample sizes. With this power curve, the sample size is determined through 
back-calculation for a pre-specified power, such as power = 0.85. 

The simulation-based approach described above is implemented in free R  package and the computer pro-
gram is available up request from the authors. 

4. Simulation Study and Real Example 
4.1. Monte-Carlo Simulation Analysis 
4.1.1. Rationale 
To verify the novel approach proposed in Section 3, we simulated four scenarios with 100n =  observations for 
each using Guastello’s cusp polynomial regression model (2). The four scenarios represent four cases of σ  
with different measurement errors (i.e. 1σ = , 2, 3, and 4). We hypothesized that data with smaller measure-
ment errors will fit the cusp model better than the data with larger errors if the Guastello’s cusp polynomial re-
gression method is used to detect cusp catastrophic changes. Consequently, a larger sample size would be 
needed to detect a cusp for data with greater measurement errors.  

4.1.2. Data Generation 
Data are generated with the asymmetry variable x , bifurcation variable y  and outcome variable at time 1 (i.e. 

1z ) being set as standard normal distribution. The parameter effect size vector is set as  
( ) ( )0 1 2 3 4 5, , , , , 0.5,0.5,0.5,0.5,0.5,0.5β β β β β β β= = . To illustrate the impact of measurement errors on sample 

sizes, we generate the error term ε  following the normal distribution as ( )2~ 0,Nε σ  with increasing mea-
surement error standard deviation of 1σ = , 2, 3, and 4 for each of the four scenarios. 
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With the generated x , y  and 1z  along with the input values of β  and σ , z∆  is generated using the 
Guastello’s polynomial regression model. This is achieved by plugging in all values of x , y , 1z , β , σ  
and ε  into the following equation: 

3 2
0 1 1 2 1 3 1 4 5 z z z yz x yβ β β β β β ε∆ = + + + + + +  

Figure 2 illustrates one realization of the data generation with 1σ =  in a pair plot. It can be seen from the 
figure that the distributions for x , y  and 1z  are random (the upper left 3 by 3 plots). Furthermore, z∆  is 
linearly related to x  as seen from the upper right plot. The second plot on the right-side illustrates the linear 
relationship between z∆  and y  under fixed 1z  and the third plot on the right-side illustrates the cubic rela-
tionship between z∆  and 1z . For 2σ = , 3, and 4 (data not shown in figure), the corresponding pair plots 
would have larger variations. 

4.1.3. Simulation Analysis 
Four data sets for the four scenarios (e.g., 1σ = , 2, 3, and 4) are simulated first. The simulated data are then 
fitted with Guastello’s cusp regression model using least squares method. The summary statistics of the analyses 
are given in Table 1. It can be seen from the table that for the Scenario where 1σ = , all the parameters of the 
polynomial regression model are statistically highly significant ( )0.001p <  with 2 0.763R = , indicating ade-
quate data-cusp model fitting and F-statistic = 60.71 indicating highly significance of the polynomial regression 
model. The estimated ˆ 1.053σ = , slightly greater than the true 1σ = . Since 1β , 3β  and 4β  are all highly 
significant, we conclude that the Guastello’s polynomial regression method is sufficient to detect the specified 
cusp. 

Results of other three scenarios in Table 1 indicate that as σ  increases, the goodness of data-model fitting 
declines. In the scenario where 2σ = , the 2R  drops to 0.454, F-statistic drops to 15.61 (still significant), and 
the estimated 2.107σ = , close to the true 2σ = . In this case, both 1β  and 3β  remain significant, indicating  

 

 
Figure 2. Example of simulated data when 1σ =  where the distributions of x  y , 1z  are 
standard normal (the upper left 3 by 3 plots) and the relationships between z∆  to x  (as li-
near), to y  (as linear) and to 1z  (as cubic).                                          
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the existence of a cusp. With regard to Scenario 3 where 3σ = , the 2R  further drops to 0.278 and F-statistic 
to 7.227. The estimated 3.160σ = , again close to its true 3σ = . In this case, only 1β  is highly significant 
and 3β  marginally significant, indicating that a cusp is likely. In Scenario 4 where 4σ = , none of the esti-
mated parameters required to support the cusp is statistically significant. Therefore, we could not be able to de-
termine if the data contain a cusp. A power analysis is needed to assess if the sample size ( )100n =  is ade-
quate. 

4.1.4. Sample Size Estimation 
To demonstrate the proposed novel simulation method, we estimate sample sizes needed for each of the four 
scenarios to achieve 85% statistical power employing this method and the estimated parameter  

( )0 1 2 3 4 5, , , , ,β β β β β β β=  and the estimated σ  from Table 1 in the previous step. Figure 3 summarizes the 
results. Data in Figure 3 indicate that with 85% statistical power to detect the underlying cusp, the required 
sample sizes for Scenarios 1 through 4 are 36, 101, 195 and 293, respectively. The required sample size varies 
proportionately with measurement errors. This result adds more evidence supporting the validity of the simula-
tion-based approach we proposed for power analysis. 

4.1.5. Reverse-Verification 
If the novel simulation-based approach is valid, the sample size estimates for each of the four scenarios de-
scribed in previous section will allow approximately 85% chance to detect the underlying cusp. Therefore, we 
took a reverse approach to compute statistical power by applying the calculated sample size as input for each of 
the four scenarios. Results in Figure 3 indicated that for Scenario 1, a sample size of 36 observations will be 
adequate to detect the cusp with 85% statistical power. 

 

 
Figure 3. Statistical power curves corresponding to 1σ =  in plot a), 2σ =  in plot b), 

3σ =  in plot c) and 4σ =  in plot d). The arrows illustrate the sample size determination 
from power of 0.85 to calculate the sample size required.                                             
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Table 1. Parameter estimates, 2R , Estimated 2σ  and F-Statistic from four simulations with 1σ = , 2, 3 
and 4. The rows bolded are corresponding to the cusp determination.                                    

 1σ =  2σ =  3σ =  4σ =  

0β  (Intercept) 0.487*** 0.473. 0.459 0.446 

( )3
1 1zβ  0.540*** 0.581*** 0.621*** 0.661*** 

( )2
2 1zβ  0.456*** 0.411* 0.367 0.323 

( )3 1y zβ ∗  0.360** 0.221 0.081 −0.058 

( )4 xβ  0.563*** 0.626** 0.689* 0.753 

( )5 yβ  0.468*** 0.435. 0.403 0.371 

2R  0.763 0.454 0.278 0.1856 

Estimated 2σ  1.053 2.107 3.160 4.214 

F-Statistic with df = (5, 94) 60.71*** 15.61*** 7.227*** 4.286* 

Significant codes: *** p-value < 0.00001, **p-value < 0.001, *p-value < 0.01, “.”(p-value < 0.05). 
 

To demonstrate this result, we make use Monte-Carlo procedure and randomly sample 36 observations from 
the simulate data ( )100n =  used for Scenario 1 ( )1σ = . We then fit the data to the Guastello’s cusp regres-
sion model. We use the same criteria (significant 1β , plus either 3β  or 4β ) to assess the detection of a cusp. 
Among 1000 repeats of the Monte-Carlo simulations with sample size 36n = , we found 833 times (83.3%) 
significant. This result indicates that the power analysis of the simulation method we proposed is close to 85%. 
In another word, the method we proposed is slightly conservative, which is good for research design. The tem-
plate is designed so that author affiliations are not repeated each time for multiple authors of the same affiliation. 
Please keep your affiliations as succinct as possible (for example, do NOT post your job titles, positions, aca-
demic degrees, zip codes, names of building/street/district/province/state, etc.). This template was designed for 
two affiliations. 

4.2. Verification with Published Data  
The best approach to demonstrate the validity of the simulation approach would be to test it with observed data. 
To use our approach, we need two sets of data from any reported study: parameter estimates as effect size 

( )0 1 2 3 4 5, , , , ,β β β β β β β=  and estimated mean error of model fitting σ̂ . However, we experienced difficulties 
in finding such data from all the studies we accessed in the published literature database. For example, all β  
coefficients were reported by all studies but 0β  was not; furthermore, data-model fitting error fitting σ̂  was 
never reported in any of the published studies using Guastelle’s cusp polynomial regression method. Fortunately, 
one author of this paper [12] published a study that modeled early sexual initiation among young adolescents 
using this polynomial regression approach.  

Briefly, in Chen’s study participants were 469 virgins in the control group for a randomized controlled trial to 
assess the effect of an HIV behavioral prevention intervention program [22] [23]. The participants in grade 6 in 
the Bahamian public schools were randomly assigned to receive either intervention or control conditions. They 
were followed every 6 months up to 24 months at the time when the analysis was conducted. A participant was 
categorized as having initiated sex if he or she had the first penile-vagina sexual intercourse during the fol-
low-up period. In addition to sexual initiation, the likelihood to initiate sex was also assessed using a 5-point 
rating scale with 1 = very unlikely to have sex in the next 6 months and 5 = very likely to have sex. A sexual 
progression index (SPI) was thus created as the dependent variable for modeling analysis was defined as the first 
time. SPI = 1 for participants who never had sex and reported very unlikely to have sex; SPI = 2 for participants 
who never had sex but unsure if they are going to have sex in the next 6 months; SPI = 3 for participants who 
never had sex but reported very like to have sex in the next 6 months; and SPI = 4 for participants who initiated 
sex. In addition to SPI, age was used as the asymmetry variable x , and self-efficacy not to have sex (scale 
score based on 5 items) was used as the bifurcation y .  
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To verify the simulation-based method, the parameter effect size estimates were obtained from the paper with 
( ) ( )0 1 2 3 4 5, , , , , 0.0309,0.0726, 0.4819, 0.1236,0.0613, 0.2693cβ β β β β β β= = − − − − , and the data-model fitting 

error 0. 33ˆ 50σ =  was obtained by accessing to the original computing records. With these estimates, the simu-
lation-based approach in Section 3.2 is applied. Figure 4 presents the sample size-power curve. From the figure 
it can be seen that the estimated sample size is 153 to achieve 85% power. This sample size is much smaller than 
the sample ( )469n =  in the original study. 

5. Discussions 
In the case where analytical solution to power analysis and sample size determination is difficult, simulation 
represents an ideal alternative as recommended in [16] [17] [24]. In this paper, we reported a novel simulation- 
based approach we developed to estimate the statistical power and to compute sample size for Gustello’s poly-
nomial cusp catastrophe model. The method was developed based on statistical power theory and our under-
standing of Guastello’s cusp polynomial regression modeling approach. The computing method is programmed 
using the R  software. Results from 1000 repeats of Monte Carlo simulation and empirical data analysis sug-
gest that the method we proposed is valid and can be used in practice to conduct power analysis and to estimate 
sample size for Guastello polynomial cusp modeling method. 

With this approach, researchers can compute statistical power and estimate sample size if they plan to conduct 
cusp modeling analysis using Gustallo’s polynomial regression method. A detailed introduction to the method 
can be found in [6] [7] [21]. Data needed for our methods included parameter effect size estimates for the inter-
cept and five model parameters ( )0 1 2 3 4 5, , , , ,β β β β β β  and a data-model fitting error σ  or its estimate. With 
the specification of these data, power can be computed for any given sample sizes. In addition to computer 
power, the commonly used sample size-power curve can be generated to provide a visual presentation between 
sample size and statistical power. With such power curve, sample size can be estimated for specified power in 
design and analysis data from cusp catastrophe model.  

To make the presentation easier, we confined this novel simulation approach to the situation of one regressor 
for each control variable in the cusp model. This approach can be easily adopted and extended to multiple re-
gressors for each of the asymmetric ( )x  and bifurcation ( )y  variables where the Guastello’s cusp polynomial 
regression model would need to be extended. 

 

 
Figure 4. Power curve for Chen et al. (2010). The estimated sample size for power of 0.85 is 153. 
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More and more data suggest the utility of cusp modeling approach in characterizing a number of human be-
haviors, particularly health risk behaviors, such as tobacco smoking, alcohol consumption, hardcore drug use, 
dating violence, and unprotected sex [10] [11] [14] [21] [25] [26]. The methods we reported in this paper pro-
vide a useful tool for researchers to more effectively design their research to investigate these risk behaviors and 
to assess intervention programs for risk reduction.   

By conducting this study, we also note that previous studies published in the literature do not report adequate 
information for power analysis. We highly recommend that journal editors ask authors to report all parameter 
estimates, including 0β , and data-model fitting error (mean square of error). In addition to power analysis and 
sample size estimation, such data are also useful for readers to statistically assess appropriateness of the reported 
results. 

There are a number of strengths with the method we present in this study. The principle and the computing 
process are not difficult to follow; the data used for the computing can be obtained; the computing software is 
written with R , available from the authors by request for collaboration; and the computing does not require 
much time (several seconds to half minutes). We are encouraged on the results from this research and work on 
extending the results into stochastic catastrophe model in [4] [19]. Despite many advantages, further application 
of the method in practice is needed. 
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