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Abstract 
 
We propose a simple modification to the differentiable penalty methods for solving nonlinear programming 
problems. This modification decreases the penalty parameter and the ill-conditioning of the penalty method 
and leads to a faster convergence to the optimal solution. We extend the modification to the augmented La-
grangian method and report some numerical results on several nonlinear programming test problems, show-
ing the effectiveness of the proposed approach. 
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1. Introduction 
 
Solving nonlinear programming (NLP) problems via a 
penalty method was first introduced by Courant [1] in 
1943. Fiacco and McCormick [2] developed barrier 
methods for solving NLP problem. Murray [3] show that 
the Hessian matrix of penalty method is ill-con- ditioned. 
Since then, many approaches for reducing the ill-con- 
ditioning of penalty method were proposed. To avoid too 
increasing of the penalty parameter, Zangwill [4] intro- 
duced exact nondifferentiable penalty functions and Flet- 
cher [5] introduced continuously differentiable exact pe- 
nalty functions. Another exact penalty methods have 
been studied in [6-13] and others. In addition, Mongeau 
[14] decreased the penalty parameter in exact penalty 
methods for solving linear programming problems. Here, 
Using general ideas of Mongeau, we propose an approach 
to reduce the penalty parameter in the differentiable 
penalty method for solving NLP problems. 
 
2. The Basic Idea 
 
Consider the following programming problem:  
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        s.t. 0,      = 1, , ,
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where f  and the jg  are twice continuously differen- 
tiable functions. 

Let > 0 , a common penalty function for (NLP) is:  

       11         = ,H H x f x P x   

where,    2

=1
=

m

jj
P x g x  and 

    = max 0,j jg x g x . 

A penalty problem for (NLP) is defined as follows:  
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Gradient and hessian of 1H   can be calculated as 
follows:  
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Let      2
=1

= 2
m

j jj
U x g x g x   and  

     =1
= 2

m T
j jj

V x g x g x   . Thus,  
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       2 2
1 = .H x f x U x V x          (2.1) 

Note that due to the continuity of second derivatives, 
Hessian matrices 2 f , 2 P  and 2

jg  are sym- 
metric. 

The condition number of a square matrix A  is given 
by   1=K A A A . If  K A  is large, then A  is 
said to be ill-conditioned. For a symmetric matrix A , it 
can be shown that  

  max min= ,K  A  

where, max  and min  are the largest and smallest 
eigenvalues of matrix A , respectively. 

If we assume that there are r  active constraints at 
*x , the optimal solution of (NLP), and The gradients of 

these constraints are linearly independent, Then V  has 
rank equal to r  and thus has r  nonzero eigenvalues. 
(2.1) implies that when    at least r  eigenvalues 
of 2

1H   tend to infinity. It has been shown in [15] that 
exactly r  eigenvalues tend to infinity and n r  other 
eigenvalues tend to finite limits, which implies the ill- 
conditioning of the Hessian of penalty method. 

To avoid the ill-conditioning, instead of usual penalty 
function we consider the following function:  

       22         = ,         > 0.H H x f x P x    

Its corresponding penalty problem for (NLP) is:  

       2min =
2          

s.t. .

H x f x P x
PEN

x X

  
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It is easy to see that problems (PEN1) and (PEN2) are 
equivalent. Because    1 2=H x H x  . 

Gradient and Hessian of 2H   is  

     2 = ,H x f x P x     
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If  2 *P x  is of full rank (for example, if P is a strict- 
ly convex function), then all eigenvalues of  2 *P x  
are nonzero. Thus, for a large enough   all eigen- 
values of  2 *

2H x  are also nonzero. Therefore un- 
like 1H  , 2H   is not ill-conditioned. Consider the fol- 
lowing example. 

Example 1. Consider  

  2min = 1

s.t. 1 = 0.

f x x

x




 

The optimal solution is * = 1x . We have:  

   22
1 = 1 1 ,H x x x     

   1 = 2 2 1 ,H x x x     

 2
1 = 2 2 ,H x    

and  

     22
2 = 1 1 ,H x x x     

   2 = 2 2 1 ,H x x x     

 2
2 = 2 2.H x    

Therefore when   , the hessian matrix 2
1H   

tends to infinity, But 2
2H   tends to a fixed number. 

Although under some assumption the hessian of 
2

2H   is not ill-conditioned but there is a problem. For 
every feasible point x  we have   = 0P x , and for 
too large  , the value of  f x   is very close to 
zero. Thus, near the boundary of feasible region, 

    2 =H f x P x     is almost zero and this 
cause the termination of the penalty method. So the 
penalty method with 2H   only gives a feasible point 
and does not converge to optimal solution or converges 
very slowly. 

Thus, to have advantages of both 1H   and 2H  , we 
consider the following combined formula:  

     3 = .H x f x P x    

This penalty function apply penalty two times, once by 
multiplying  P x  by   and again by dividing  f x  
by  . In fact, 3H   is equivalent to the following 
penalty function in which a   has been factorized:  

     2
4 = .H x f x P x   

But order of 2
3H   is  O   while order of 2

4H   
is  2O  . This leads to faster convergence of penalty 
method using 3H   than that using 4H  . 

We use the following general formula instead of 3H  :  

   
   = ,

f x
H x P x 

 
  

where, :   is a positive and increasing function 
in terms of  . 

Lemma 2.1 Consider the following problem:  

     
   min =

        

s.t. .

f x
H x P x

PEN

x X

 
 





 

Suppose that for each > 0  there exists a solution 
x X   for (PEN), and that x  is obtained in a com- 
pact subsets of X . Then, any limit point of x  is a so- 
lution to (NLP).  

Proof. Consider the following problem:  

     min

s.t. ,

f x P x

x X

 

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Since          =f x P x H x    , clearly the 
problem is equivalent to (PEN). Since      
when   , thus considering     as a penalty 
parameter and applying Theorem 9.2.2 of [6] implies the 
result.  

Although 2
1H   and 2H   are both of  O   

order, but 1H   is a penalty function with penalty para- 
meter   and H   is equivalent to a penalty function 
with penalty parameter     (see proof of Lemma 
2.1). Since for larger penalty parameter solution of 
penalty problem is closer to the solution of main problem, 
largeness of     in comparison with   leads to 
faster convergence of the penalty method. 
 
3. Extension to Augmented Lagrangian  

Methods 
 
The augmented Lagrangian for Problem (NLP) is defined 
as follows:  

     2

1
=1 =1

, =
m m

j j j
j j

A x f x G G        

where  = max ,
2

j
j jG g x 


 

 
 

. 

It has been shown that if *  is the Lagrange mul- 
tiplier of (NLP) at the optimal solution *x  Then for 
large enough  , minimization of  *

1 ,A x   gives the 
optimal solution of (NLP). Thus, 1A  is said to be exact 
for solving (NLP). 

Since at first the value of *  is not often available, 
the following formula is usually used for updating the 
values of j :  

1 = 2 ,         = 1, 2, ,k k k
j j k jG j m      

Now consider    1 ,A x   . We can write it as fol- 
lows: 
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Thus, from the discussion of previous section, instead 
of 1A  we consider the following penalty function:  

 
   

 
  2=1

=1

, =

p
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


  

Since the ordinary augmented Lagrangian method for 
solving (NLP) is exact and we also have  

   
 

1

1
, = ,A x A  

 
          (3.1) 

clearly similar to the ordinary augmented Lagrangian 
method we have the following result. 

Lemma 3.1 Suppose that second order sufficient 
conditions for (NLP) are satisfied at *x , * . Then there 
exists a 0  such that for any 0>  , *x  is a local 
minimizer of  *,A x  .  

From (3.1), we can consider A  as an ordinary aug- 
mented lagrangian with penalty parameter    . Thus, 
new updating formula for the j  is as follows:  

   1 = 2 ,          = 1,2, ,k k k k
j j k k jG j m

          

 
4. Computational Results 
 
4.1. Algorithms 
 
Consider the following augmented Lagrangian problem 
for (NLP): 

   
   

 
  2

=1

=1

min , =   

s.t. .

p
j

j j m
j j

j j
j

f x G

A x GPA

x X
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

 
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





  

 
where,   is the average of the j . For solving (NLP) 
via augmented Lagrangian method we apply the fol- 
lowing algorithm where is similar to Algorithm 1 of [11] 
with the first order update rule of Lagrangian multipliers. 

Algorithm 1 

Define          
T

1
1= , , m

mG x G x G x     
  . 

{Given: 0 0,x  } 
0x x  
0   

2,   = 1, ,j j m    

 viol G x


  

while 8> 10iol   
         {line search method for solving (PA)} 
         0counter   

         while 16> 10x A   and  

 < 3 1counter m n   
                 Nd   modified BFGS direction 
                    Goldestein stepsize 
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                 Nx x d   
                 1counter counter   
         end(while) 
          viol G x


  

         if < 1/ 4viol viol  

   
2 ,  = 1, ,j

j j j jG j m
  

        

         end(if) 
         for = 1, ,j m  
                 if 

    > 1/ 4j
jG x viol
     

    1.3

j j       

                end(if) 
         end(for) 
         if < 1/ 4viol viol  
                 viol viol   
         end(if) 
end(while) 
For solving (NLP) via the penalty method, we refine 

Algorithm 1 by considering   as zero and removing 
the step of its updating. Also, we solve the following 
problem in line search method of the algorithm:  

   
   2

=1

min =

s.t. .

m

j j
j

f x
H x g x

x X


 






 

 
4.2. Test Results 
 
Algorithms 1 is programmed in MATLAB 7.6 and run 
on a PC with 1.8 GHz and 1 GB RAM. For solving 
subproblems we use a line search algorithm. The step 
length is determined by the Goldstein test and the 
direction is determined by the BFGS formula with 
Powell’s modifications [16] (the eigenvalues are con- 
sidered as zero). The function   is considered as  

  =     for 
1 1

= 0, , ,1,1.5,2, 4
4 2

 . For each test pro-  

blem we take a fixed initial point. 
All the test problems with one or more constraints are 

selected from Hock and Schittkowski’s set [17] and 
Schittkowski’'s set [18] located in [19]. The charac- 
teristics of test problems are listed in Table 1, where n  
is the number of variables, m  the total number of 
constraints, NLm  the number of nonlinear constraints 
and objective the type of the objective function (linear/ 
nonlinear). 

The computational results for the penalty method and 
the augmented Lagrangian method are summarized in 
Tables 2 and 3, respectively. The following symbols are 
used in these tables: 

val* = optimal value of the test problem. 
val = the obtained optimal value. 

iter= number of iterations. 
eval = number of function evaluations. 
eval0 = eval for the ordinary penalty method ( = 0 ) 
  = the average of , = 1, ,j j m   when the algo- 

rithm terminates. 

0   in case = 0 . 
time: CPU time (seconds) to reach the solution. 

 
Table 1. Problem characteristics for test problems. 

# problem n m mNL objective 

1 hs047 5 3 3 nonlinear 

2 hs050 5 3 0 nonlinear 

3 hs100 7 4 4 nonlinear 

4 hs113 10 8 5 nonlinear 

5 s216 2 1 1 nonlinear 

6 s219 4 2 2 linear 

7 s266 15 10 10 nonlinear 

8 s385 15 10 10 linear 

9 s388 15 25 11 linear 

10 s394 20 1 1 nonlinear 

 

 

Figure 1. Comparison of ordinary penalty method (α = 0) 
and new penalty method (α = 1). 
 

 

Figure 2. Comparison of ordinary augmented Lagrangian 
(α = 0) and new augmented Lagrangian (α = 1/2). 
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Table 2. Numerical results for the ordinary penalty method (α = 0) and the new penalty method (α = 1, 2). 

 α iter val   eval time 0   eval/eval0 

problem 1 0 10 0 1.41E+04 3813 0.44 1.0E+00 1.00 

* = 0val  1 5 0.000 001 1.43E+03 1898 0.22 1.0E−01 0.50 

 2 5 0.000 02 2.84E+07 1914 0.22 2.0E+03 0.50 

problem 2 0 2 0 3.23E+00 781 0.08 1.0E+00 1.00 

* = 0val  1 2 0 5.90E+00 777 0.09 1.8E+00 0.99 

 2 2 0 1.22E+01 775 0.09 3.8E+00 0.99 

problem 3 0 14 680.630 057 3.56E+11 7781 0.86 1.0E+00 1.00 

* = 680.630057val  1 7 680.630 058 2.77E+06 3664 0.41 7.8E−06 0.47 

 2 5 680.630 057 2.43E+05 2210 0.25 6.8E−07 0.28 

problem 4 0 14 24.306 21 4.45E+11 13 125 1.55 1.0E+00 1.00 

* = 24.306209val  1 8 24.306 216 1.53E+07 7871 0.94 3.4E−05 0.60 

 2 5 24.306 212 3.60E+05 6426 0.78 8.1E−07 0.49 

problem 5 0 21 0.999 375 1.31E+09 1944 0.23 1.0E+00 1.00 

* = 0.999375val  1 13 0.999 375 1.12E+05 1286 0.17 8.6E−05 0.66 

 2 10 0.999 375 8.38E+03 1055 0.13 6.4E−06 0.54 

problem 6 0 21 −1 1.31E+09 3862 0.42 1.0E+00 1.00 

* = 1val   1 12 −1 1.12E+05 2351 0.27 8.6E−05 0.61 

 2 9 −1 8.38E+03 1798 0.22 6.4E-06 0.47 

problem 7 0 37 1 6.59E+08 33 986 8.28 1.0E+00 1.00 

* = 1val  1 15 1 1.08E+04 15 048 3.67 1.6E−05 0.44 

 2 10 1 2.51E+04 13 069 3.19 3.8E−05 0.38 

problem 8 0 20 −8314.945 797 7.07E+18 25 786 4.25 1.0E+00 1.00 

* = 8314.945797val   1 9 −8314.945 715 7.07E+18 13 202 2.22 1.0E+00 0.51 

 2 5 −8314.945 753 1.54E+06 11 214 1.89 2.2E−13 0.43 

problem 9 0 30 −5821.084 223 4.72E+08 48 089 12.89 1.0E+00 1.00 

* = 5821.084225val   1 21 −5821.084 224 1.06E+05 30 418 8.20 2.2E−04 0.63 

 2 12 −5821.084 218 8.46E+02 18 615 5.00 1.8E−06 0.39 

problem 10 0 21 1.916 667 1.31E+09 26 446 2.70 1.0E+00 1.00 

* = 1.916667val  1 12 1.916 667 1.12E+05 16437 1.70 8.6E−05 0.62 

 2 9 1.916 667 8.38E+03 17694 1.81 6.4E−06 0.67 
 
 

Note that tables rows corresponding to = 0  show 
numerical results for the ordinary methods and other 
rows show numerical results for the new methods. 

As seen in Tables 2 and 3 the performance of the 
penalty methods with new formulas is significantly better 
than that with the usual formulas. The new penalty me-    
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Table 3. Numerical results for the ordinary penalty method (α = 0) and the new penalty method (α = 1/2, 1). 

 α iter val   eval time 0   eval/eval0 

problem 1 0 10 0 1.41E+04 3813 0.42 1.0E+00 1.00 

* = 0val  1/2 8 0 7.63E+05 3041 0.33 5.4E+01 0.80 

 1 5 0.000 001 1.43E+03 1898 0.22 1.0E−01 0.50 

problem 2 0 2 0 3.23E+00 781 0.08 1.0E+00 1.00 

* = 0val  1/2 2 0 4.29E+00 783 0.08 1.3E+00 1.00 

 1 2 0 5.90E+00 777 0.09 1.8E+00 0.99 

problem 3 0 14 680.630 057 3.56E+11 7781 0.89 1.0E+00 1.00 

* = 680.630057val  1/2 10 680.630 058 1.64E+10 5355 0.61 4.6E−02 0.69 

 1 7 680.630 058 2.77E+06 3664 0.42 7.8E−06 0.47 

problem 4 0 14 24.306 21 4.45E+11 13 125 1.55 1.0E+00 1.00 

* = 24.306209val  1/2 9 24.306 209 7.36E+07 8376 0.98 1.7E−04 0.64 

 1 8 24.306 216 1.53E+07 7871 0.91 3.4E−05 0.60 

problem 5 0 14 0.999 375 7.74E+01 1269 0.16 1.0E+00 1.00 

* = 0.999375val  1/2 17 0.999 379 3.38E+08 1346 0.14 4.4E+06 1.06 

 1 11 0.999 375 1.71E+01 994 0.11 2.2E−01 0.78 

problem 6 0 19 −1 2.85E+02 3928 0.45 1.0E+00 1.00 

* = 1val   1/2 13 −1 2.24E+01 2908 0.33 7.8E−02 0.74 

 1 14 −1 1.14E+02 3125 0.36 4.0E−01 0.80 

problem 7 0 40 1 1.34E+02 32 887 7.66 1.0E+00 1.00 

* = 1val  1/2 21 1 3.88E+01 21 026 4.94 2.9E-01 0.64 

 1 22 1 1.33E+02 17 851 4.19 1.0E+00 0.54 

problem 8 0 18 −8314.945 797 7.07E+16 25 476 4.19 1.0E+00 1.00 

* = 8314.945797val   1/2 9 −8314.945 793 1.06E+08 15 430 2.58 1.5E-09 0.61 

 1 9 −8314.945 715 7.07E+18 13 202 2.22 1.0E+02 0.52 

problem 9 0 36 −5821.084 218 1.10E+04 39 826 10.52 1.0E+00 1.00 

* = 5821.084225val   1/2 15 −5821.084 18 3.21E+00 18 624 5.00 2.9E−04 0.47 

 1 26 −5821.084 224 2.93E+03 30 457 8.03 2.7E−01 0.76 

problem 10 0 17 1.9166 67 2.85E+02 21 168 2.23 1.0E+00 1.00 

* = 1.916667val  1/2 15 1.9166 67 1.14E+04 18 404 1.91 4.0E+01 0.87 

 1 12 1.9168 88 1.12E+05 10 483 1.09 3.9E+02 0.50 

 
thods decrease number of iterations and number of 
function evaluations and as we expect the penalty me- 
thod notably reduce the penalty parameter. 

We observed in computational results that although for 
larger   the convergence is faster, for some test 

problems use of larger   increase the distance of the 
obtained solution and the optimal solution. Note that 
using > 1  sometimes makes the first term of H   
converges to zero faster than the second term and this 
causes termination of the penalty method at the boundary 
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of feasible region. Thus, we suggest use of   such 
that 1  . That is, use of the   with the order greater 
than  O   is not recommended. Here, for having more 
efficiency we suggest   =    for the penalty method  

and   =    for the augmented Lagrangian method. 

In Figure 1 number of function evaluations for the 
ordinary penalty method ( = 0 ) and new penalty me- 
thod ( = 1 ) is compared. The comparison of eva- 
luations of ordinary augmented Lagrangian ( = 0 ) and 
new augmented Lagrangian ( = 1 2 ) is illustrated in 
Figure 2. 
 
5. Conclusions 
 
We proposed a simple modification to the penalty 
methods and showed that the new penalty methods has 
better performance than the usual penalty methods. 
Computational results on several test problems showed 
that number of iterations decreases and calculations 
significantly reduce. 
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