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Abstract 
A seven-mode truncation system of the Navier-Stokes equations for a two-dimensional incompressi-
ble fluid on a torus is considered. Its stationary solutions and stability are presented; the existence 
of the attractor and the global stability of the system are discussed. The whole process, which 
shows a chaos behavior approached through instability of invariant tori, is simulated numerically 
by computers with the changing of Reynolds number. Based on numerical simulation results of 
bifurcation diagram, Lyapunov exponent spectrum, Poincare section, power spectrum and return 
map of the system, some basic dynamical behaviors of the new chaos system are revealed. 
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1. Introduction 
In recent years much attention has been devoted to the study of simple differential or difference equations, which 
although deterministic, exhibit a transition as some parameters go through certain values to a chaos behavior. 
The equations which are studied often arise in a natural way as simplified models in fluid dynamics and in 
ecology. The best known examples are perhaps the models of [1]-[3]. In these models a chaos behavior arises as 
a consequence of the appearance of an attractor of complicated structure which is called “strange attractor”. 
Trajectories in a neighborhood of the attractor appear to move in a completely erratic way. Phenomena of this 
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kind are predicted under certain hypothesis, by the mathematical theory of turbulence of Ruelle and Takens [4]. 
In the following we consider a model obtained by a suitable seven-mode truncation of the Navier-Stokes equa-
tions for a 2-dimensional incompressible fluid on a torus [5]. The paper [5] has been published in Proceedings of 
the IWCFTA 2012, but the published paper is too rough and several deficiencies in the study of the published 
paper can be found. Only local results of dynamic behavior are given, and some simulation results are wrong; 
the transition to chaos is confused. This paper gives more accurate simulation results, discusses the dynamic be-
havior of the system at the high values of the Reynolds number, and analyses the evolution of the dynamic be-
havior of the system. This paper is extension and modification of the published article [5] and the content is 
more abundant. We argue on the basis of numerical simulation results analysis where in a certain range of the 
Reynolds number our system behaves in a way similar to that predicted by Ruelle and Takens. Dynamical beha-
viors of this new chaotic system, including some basic dynamical properties, bifurcations and routes to chaos, 
etc., have been investigated both theoretically and numerically by changing Reynolds number. Our purpose is to 
study how the phenomena of the model change when the number of modes in the truncation is slightly increased. 
The existence of the attractor and the global stability of the equations have been firmly verified and these theo-
ries can be used in other similar systems. Furthermore, some basic dynamical behaviors of the new chaos system, 
such as bifurcation diagram, Lyapunov exponent spectrum, Poincare section, power spectrum and return map, 
are presented.  

2. Seven-Mode Lorenz-Like Equations 
Consider the incompressible Navier-Stokes equations: 

( ) ,u u u p f u
t

ν∂
+ ⋅∇ = −∇ + + ∆

∂
                                (1) 

0,u∇⋅ =                                          (2) 

2 d 0,
T

u X =∫                                         (3) 

on the torus [ ] [ ]2 0, 2π 0,2πT = × , where u  is the velocity field, p  is the pressure and f  is a (periodic) 
volume force. 

We expanded u , f , p  in Frourier series: 

( )
0

, eiK X
K

K

Ku X t r
K

⊥
⋅

≠

= ∑                                    (4) 

( )
0

, eiK X
K

K

Kf X t f
K

⊥
⋅

≠

= ∑                                   (5) 

( )
0

, eiK X
K

K

Kp X t p
K

⊥
⋅

≠

= ∑                                   (6) 

where ( )1 2,K k k=  is a “wave vector”, with integer components, ( )2 1,K k k⊥ = − , ( )K Kr r t=  is a function of 
t , and the reality condition K Kr r−= −  holds. Substituting (4)-(6) into (1), we get formally the following equa-
tions for { } 0K Kr

≠
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where L  is a set of wave vectors such that if K L∈ , also K L− ∈ . 
We take as the set of vectors ( )1 1, 1 ,K = −  ( )2 0,3 ,K =  ( )3 1, 2 ,K =  ( )4 1, 2 ,K = −  ( )5 0,1 ,K =  

( )6 1,0 ,K =  ( )7 2,1K = , and their opposites, namely { }1 2 3 4 5 6 7, , , , , ,L K K K K K K K= ± ± ± ± ± ± ± . Let 1ν = , 
and make the following transform 
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Taking the force acting on the mode 3K , and let 7

31=
K

K Kk Kr f f Re= = =∑  (Reynolds number), with a lot  
of Calculation we obtain the following system 
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3. The Stationary Solution and Their Stability Properties 
In this section we discuss the stationary solution and their stability properties of the system (2.8). Let 
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setting ( ), 0F X r =  we can find out stationary solutions of the system (8). In the following we present stability 
properties 

(a) For 1
5 60

2
r R≤ < =  there is only one stationary solution 0 0,0, ,0,0,0,0

5
rP  =  

 
, which turns out to be 

stable for r  small enough (this is a particular case of general results on the theory of the Navier-Stokes equa-
tions [6]), and numerical evidence suggests that the above solution is a global attractor. 

(b) For 1 67.54R r< <  there are 3 stationary solutions: the old one 0P , which has become unstable (as a 
consequence of the crossing of the imaginary axis by one of the eigenvalues of the Lyapunov matrix) and two 
additional P±  as follow 

( ) ( ) ( )6 2 5 6 6 2 5 6 6 2 5 65 6 6 9 305 , , ,0,0,0,
836 6 836 2 10 836

r r r
σ σ σ
 − − − − 
 
 

 

where 1σ = ± , and they are stable. Numerical evidences indicate that any randomly chosen initial data is at-
tracted by them, so they are global attractors. When 114.685r ≥ , a pair of complex conjugate eigenvalues 
crosses the imaginary axis, so we have the following conclusion. 

(c) For 114.685r > , all the stationary solutions of (8) become unstable. 
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4. The Existence of Attractor and Analysis of Global Stability 
In the following we prove the existence of attractor of the system (8). 

By calculating ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 4 5 6 78.1 8.2 8.3 8.4 8.5 8.6 8.7x x x x x x x× + × + × + × + × + × + ×  we get 
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accordingly, 
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letting ( ) 2 2 2 2 2 2 2 2
1 2 3 4 5 6 7u t x x x x x x x= + + + + + + , and using Young Inequality we get 
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From above we have 
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2t

ru t ρ
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If ρ  big enough, ( )0,B ρ  is an not only functional invariant set but also absorbing set. As a result the 
system (8) has the global attractor [7] [8]. 

When the system is a global stability,its orbits contract into a domain called the trapping region. Therefore, if 
the existence of the trapping region is proved, the system has the global stability, though the stationary solutions 
are unstable. We construct a following Liapunov function of the system (8) 

( ) 2 2 2 2 2 2 2
1 2 3 4 5 6 7 1 2 3 4 5 6 7, , , , , , 0V x x x x x x x x x x x x x x= + + + + + + >                (9) 

Setting ( )1 2 3 4 5 6 7, , , , , ,V x x x x x x x k= , obviously, when k  is a positive constant, the Equation (9) represents 
a sphere,which is labeled as E . By calculating we obtain the following derivative 
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beled as C . From (10) We know that 
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is big enough, E  will include C . Therefore, from (10) we know that 
d 0
d
V
t
< , 

d 0
d
VV
t
<  on outside of C. 

From the Liapunov theory we know that the orbits out of system (8) will enter E. Namely E is the trapping re-
gion of the Equations (8). Though the stationary solutions 0 ,P P±  are all unstable, the system (8) still has the 
global stability. orbits of system contract into the trapping region and oscillates in the trapping region. Finally 
the orbits form an invariant set in the trapping region, which is called the attractor. 

5. Numerical Simulation 
With the increasing of Reynolds number r , the stability of the Equation (8) will change, and some nonlinear 
phenomena appear, such as the Hopf bifurcation and the chaos. In this section, we present the numerical simula-
tion results of dynamical behavior of the system (8). 

1) At 114.685r <  the stationary solutions P±  of (8) is stable, Numerical evidences indicate that any ran-
domly chosen initial data is attracted by one of them, so they are global attractors(Figures 1-4). 

2) When 114.685r = , the stationary solutions P±  of (8) become unstable because a pair of complex conju-
gate eigenvalues of Jacobian matrix at stationary point P±  cross the imaginary axis, and the stable periodic orbits 
ζ +  and ζ −  around the fixed points P±  arise via a Hopf bifurcation, and they are stable up to 143.463r =  
and numerical results shows that they attract any point chosen at random (Figure 5 and Figure 6). 

3) At 143.463r = , the periodic orbits lose stability. As predicted by the general theory of bifurcation [3], the 
Numerical Simulation shows that two attracting tori ( )T ζ +  and ( )T ζ −  arise from the two periodic orbits ζ +  
and ζ −  (Figure 7 and Figure 8). 

 

 
Figure 1. (P± is stable for r < 114.685). 

 

 
Figure 2. (P± is stable for r < 114.685). 
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Figure 3. (P± is stable for r < 114.685). 
 

 
Figure 4. (P± is stable for r < 114.685). 

 

 
Figure 5. (Periodic orbit for r = 114.685). 
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Figure 6. (Periodic orbit for r = 114.685). 

 

 
Figure 7. (The attracting tori for r = 143.463). 

 

 
Figure 8. (The attracting tori for r = 143.463). 
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4) With the increasing of the Reynolds number r, a strong hysteresis phenomenon(i.e., coexistence of stable 
attractors) appears, in some intervals hysteresis takes place between closed orbits and tori (Figures 9-19). 

5) At 158.631r = , these attracting toris lose stability, the strange attractor appears (Figures 20-25). 
6) Figure 26 and Figure 27 show Bifurcation diagrams and the largest Lyapunov exponents of the system 

(2.8). 
7) Figures 28-30 show Poincare section, return map and power spectrum of the system (2.8) when 184r = , 

they indicate chaos behavior feature of the new chaos system. 
8) For 158.631r >  all stable orbits disappears, by studying the flow of a randomly chosen initial point, tra-

jectories are observed which all appear completely chaotic and sensitively dependent on initial conditions. The 
entire process repeats itself indefinitely. This situation appears analogous to that found by Curry in [4], where 
the flow in the turbulent parameter range is driven by a similar mechanism, When r  increases, the behavior of 
our system becomes more complicated (Figures 20-25). 

6. Conclusions 
In this work we have reported the results of our theoretical and numerical investigation on a model of seven 
nonlinear ordinary differential equations. Such a model, obtained by a suitable seven-mode truncation of the 
Navier-Stokes equations for an incompressible fluid on a torus, exhibits a very varied phenomenology, with an 

 

 
Figure 9. (Quasi-periodic orbit for r = 148.685). 

 

 
Figure 10. (Quasi-periodic orbit for r = 148.685). 
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Figure 11. (Quasi-periodic orbit for r = 149.35). 

 

 
Figure 12. (Quasi-periodic orbit for r = 151.35). 

 

 
Figure 13. (Quasi-periodic orbit for r = 152.65). 
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Figure 14. (Quasi-periodic orbit for r = 154.35). 

 

 
Figure 15. (Quasi-periodic orbit for r = 155.12). 

 

 
Figure 16. (Quasi-periodic orbit for r = 156.43). 
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Figure 17. (The attracting tori for r = 156.43). 

 

 
Figure 18. (Quasi-periodic orbit for r = 156.83). 

 

 
Figure 19. (The attracting tori for r = 157.23). 
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Figure 20. (The strange attractor for r = 158.5). 

 

 
Figure 21. (The strange attractor for r = 159.5). 

 

 
Figure 22. (The strange attractor for r = 159.5). 
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Figure 23. (The strange attractor for r = 160.5). 

 

 
Figure 24. (The strange attractor for r = 250.5). 

 

 
Figure 25. (The strange attractor for r = 360.5). 
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Figure 26. (Bifurcation diagrams). 

 

 
Figure 27. (The largest Lyapunov exponents). 

 

 
Figure 28. (The Poincare section for r = 184). 
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Figure 29. (The return map for r = 184). 

 

 
Figure 30. (The power spectrum for r = 184). 

 
interesting sequence of bifurcations. From numerical results we present four different and independent stories 
describing the complete phenomenology of the model. The first story consists of a sequence of a bifurcations 
very similar to the one found by Curry in [4]: The fixed point 0P  bifurcates to the two fixed P± ; via a direct 
Holf bifurcation P+  and P−  bifurcate to the periodic orbits ζ +  and ζ − , which on their turn bifurcate to the 
tori ( )T ζ +  and ( )T ζ − . The further three stories show three interesting examples of “life” of orbit (Figure 9, 
Figure 14 and Figure 18), each one with its own characteristics. A remark feature concerns a strong phenome-
non of hysteresis (i.e, coexistence of stable attractors) characterizing the model (Figures 9-19); three different 
stable orbits are present in some intervals, and hysteresis takes place between closed orbits and tori in the 
intervals. 

For all the values of the Reynolds number r larger than 158.631, when no stable periodic orbits or tori are 
present any more, the model exhibits a turbulent behavior. In fact any randomly chosen point describes trajecto-
ries which appear to be completely random and sensitively dependent on initial conditions. Since all the numer-
ical investigations carried up to 5000r =  keep showing a stochastic behavior, we think that turbulence might 
also persist for r  tending to infinity and that no stable attracting periodic orbit exists at the high values of the 
Reynolds number. Our seven-mode system does not reproduce the qualitative features of the five-mode model 
from which it has been obtained as an extension. This result makes more striking what appears already in [4], 
where a 14-mode generalization of the three-mode Lorenz system is presented: new modes can change quite 
completely the phenomenology of a model. 
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