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Abstract

In this paper, based on the theories of a-times Integrated Cosine Function, we discuss the ap-
proximation theorem for a-times Integrated Cosine Function and conclude the approximation
theorem of exponentially bounded a-times Integrated Cosine Function by the approximation
theorem of n-times integrated semigroups. If the semigroups are equicontinuous at each point

te [0, oo] , we give different methods to prove the theorem.
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1. Introduction

Integrated semigroups were introduced by Arent [1] [2] and Davies and Pang [3] in 1987. The approximation
theorem is one of the fundamental theorems in the theory of operater semigroups. There have been many results
on approximation [4]-[7]. Cao [8] obtained the approximation theorem for m-times Integrated Cosine Function,
m e N . In this paper, we refine the theory by introducing a-times Integrated Cosine Function for positive real
numbers « . Moreover, if the semigroups are equicontinuous at each point t e [O,oo], we give different me-
thods to prove the theorem.

Throughout this paper, we will denote by X —a Banach space with norm |+|, by B(X)—the Banach
space of all bounded linear operators from X to X ; A isalinear operatorin X, by

D(A).R(A), p(A),R(2,A)

respectively the domain, the range, the resolvent set, and the resolvent of A.
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2. Preliminaries

Definition 2.1. Let « € R", then a strongly continuous family {S(t)}t>0 in B(X) iscalled an « -times In-

tegrated Cosine Function, if the following hold:
1) S(0)=0;
2)Forany xe X ,and Vs,t>0,

25(5)5(0) = g (0 sl s(ryper
H{[l Jers—ry s (ar

+j;(t—s+ r)a_ls(r)xdr+j:(t—s+ r)“_1 S(r)xdr}.

Definition 2.2. A isa linear operatorin X, a€R", A is called the generator of an « -times Integrated
Cosine Function if there are nonnegative numbers »,M and a mapping S :[O,oo) - B(X) such that

1) {s (t)}t>0 is strongly continuous and HJ';S(s)dsH <Me" forall t>0;

2) (a)oo) is contained in the resolvent set of A;

3) R(4%,A)=A""["e s(t)dt for 2>w.

Lemma23.[9] Foreach neN let f, el ([0,%),X), with

loc

t W\
[, fn(s)dsHs Me™, t>0

and let
F(A)=["e"f (ydt, i>e

Assume that
limF, (1) exists for 1> o,

n—oo

f, (to )" <o, and

and that for a fixed t, €(0,0), sup
neN

lim [ (1, (t,+5) T, (t,))ds =0

h—0 h
with uniform concergence for ne N . Then lim f (t,) exists.
m-—oo
Lemma 2.4. [10] If A isalinear operatorin X, «>0. The following assertions are equivalent:
1) There exist constant o, M >0, such that (a)z,oo) c p(A),and
(A-w) (2“R(42%, A))(

k)
< MK!.

for 1>w, keN;=NU{0}.
2) VBe(a,a+1], A generate a f-times Integrated Cosine Function {Sﬂ (t)}m, and exist constant k

such that « +1-times Integrated Cosine Function {Sw(t)}t>0 hold

msup%”sw (t+h)-S, . (V)] <ke” (t>0,n>0).

3. Main Results

Theorem 3.1. If A, generates a «o -times Integrated Cosine Function {Sn (t)}t>0, and there is M,weR"
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such that [S, (t)] < Me®, then the following statements are equivalent:

1) lim R(4%, A )x=R(4%,A))x, VxeX, for some A, >w, and {S,(t)}  is equicontinuous at each
point te[0,00];

2) mR(#,An)x =R(2%,A)x, VxeX, i>w, and {S (1)}
te[0,];

3) !m S, (t)x=S,(t)x, ¥xe X uniformly on compacts of t>0.

is equicontinuous at each point

Proof: 1) = 2) Consider the set

Q:{/’t: limR (22, A, )x = R(4%,A))x Vx e x,z>a)},

n—o0

which is nonempty by assumption.
Let 4eQ,then

A2 A =P = A+ =[| —(ﬂz_ﬂz)R(ﬂz’A“)J(#z_A“)

S Ty
R(2% A ) =R (s A1 (a =2 R ()] = 32 R(a )

k=0

Obviously R /lz,Aw) converges as n— o . Therefore, the set Q is open.
On the other hand, taking an accumulation point 42 of Q with A>w, we can find xz€Q, such that

|y2 —/12|< ” By the above considerations, A must belong to Q, i.e., Q is relatively closed in

[R( =)

S={1:4>w}, which leads to the conclusion.

2)=>3)Let F,(1)=A""R(4*A)=]"e™s,(t)dt,

for

!ETJOR(AZ,A])Xz R(4%,A))x
lims, (t)x

n—oo

and {Sn(t)}t>0 is equicontinuous at each point te[0,0]; using Lemma 2.2, it is easy to know that

limS, (t)x exists. We now fix b>0,thenforeach £>0, 3K eN ;when |t—S|S%,t,Se[0,b],We have

n—oo

5w (t)=Sn(s)] <5 M

Pick ti:%be[o,b],i:1,2,3,~-,K,then IN, €N such that

Sn(ti)—S,(ti)||<§, nI>N,,i=123k. @)

From (1) (2), we have ||Sn(t)—S|(t)||<% , nI>N,, te[0b].

It shows that 3) is right.
3) = 2)fix t,€[0,), foreach £>0, 3N, eN,when n>N,.
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We have

Sn(s)—SND(s)"<§, se[0t+1].

For S, (t) iscontinuouson [0,t+1],then 35, >0, [s—t/<d,, when se[0,t+1]
We have

||Sn(s)—Sn(t)||<§, n=12,3--,N,
Therefore, if n>N,, se[0,t+1], then
1, (5) =S, (V)] <81 (5)= S, (8)]+|Sw, (5) =S, ()] |8, (1) =S, ()] < 2

In conclusion {S, (t),ne N} is equicontinuous at t.

By using the dominated convergence theorem, we obtain

limF, (1)=4""R(2% A )=["e™s, (t)dt=["e s, (t)dt

n—w

So 2) is right.
2) = 1) the proof is obvious.
The proof is completed.

Corollary 3.2. If A, isthe generator of « -times Integrated Cosine Function {Sn (t)}tZO satisfying:

S, (t+h)=S, (t)| <Me”“h", neN,t,h=0, y<(0,1] €)

Then (1)-(3) are equivalent:
1) imR(4% A )x=R(4* A)x, VxeX, forsome 4, >w.

2) EDOR(zZ,Mx:R(f,Ab)x , VxeX, A>w.

3) Ml S, (t)x=S,(t)x, Vxe X, uniformly on compacts of t>0.

Theorem 3.3. If A, is the generator of o -times Integrated Cosine Function {Sn (t)}tzo, and there is
M,oeR" suchthat [S,(t)|<Me”, vxeX, A>w, {S,(t)}_ isequicontinuous at each point te[0,o0].
lim R(iz,Aj)x: R(/lz)x exist, for some 4, >w, kerR(/loz):{O}, then there is a linear operator A —ge-

nerator of « -times Integrated Cosine Function S(t), such that limS (t)x=S(t)x, Vxe X, and uniformly

on compacts of t>0.
Proof: By lim R(/iz, A ) X = R(/lz)x , from the resolvent identity, we have

(4R A=~ R AR
then R(ﬂz)—R(,uz):(,uz—/IZ)R(/lz)R(yZ), A, ;t>@ hence kerR(ﬂz) and RangR(ﬂz) independent

4. Since kerR(4)={0}, then there is a linear operator A, D(A)=RangR(4*), R(2%)x=(2"1- A)f1 X.
By Definition 2.2, we know that

ATUR(A2 A )x = e s, (t)xdt, Yxe X, 1> o, @)
for limR(A% A )x=R(A%)x exist, by the proof of the Theorem 3.1, we obtain that
A,

n—ow

limS, (t)x=S(t)x exist,

n—o0
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hence ﬂl‘“R(ﬂz,A)X:I:e“‘s(t)xdt, VxeX, A>m.

then A generates a « -times Integrated Cosine Function {S(t)}lzo, such that limS, (t)x=S(t)x, VxeX,

n—o

and uniformly on compacts of t>0.
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