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Abstract 
In this paper, we make an initial value investigation of the unsteady flow of incompressible visc-
ous fluid between two rigid non-conducting rotating parallel plates bounded by a porous medium 
under the influence of a uniform magnetic field of strength H0 inclined at an angle of inclination α 
with normal to the boundaries taking hall current into account. The perturbations are created by a 
constant pressure gradient along the plates in addition to the non-torsional oscillations of the up-
per plate while the lower plate is at rest. The flow in the porous medium is governed by the 
Brinkman’s equations. The exact solution of the velocity in the porous medium consists of steady 
state and transient state. The time required for the transient state to decay is evaluated in detail 
and the ultimate quasi-steady state solution has been derived analytically. Its behaviour is com-
putationally discussed with reference to the various governing parameters. The shear stresses on 
the boundaries are also obtained analytically and their behaviour is computationally discussed. 
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1. Introduction 
The rotating flow between parallel plates is a classical problem that has important applications in magneto hydro 
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dynamic (MHD) power generators and pumps, accelerators, aerodynamic heating, electrostatic precipitation po-
lymer technology, petroleum industry, purification of crude oil and fluid droplets, sprays, designing cooling 
systems with liquid metal, centrifugal separation of matter from fluid and flow meters. The flows of fluids 
through porous medium are very important particularly in the fields of agricultural engineering for irrigation 
processes; in petroleum technology to study petroleum transport; in chemical engineering for filtration and puri-
fication processes. A series of investigations have been made by (Raptis et al., 1981 [1]; Raptis et al., 1981 [2], 
Raptis et al., 1982 [3]) into the steady of two-dimensional flow past a vertical wall for constant permeability of 
the porous medium. (Singh and Verma, 1995 [4]) analyzed an oscillatory three-dimensional flow through a 
porous medium when the permeability varied in space periodically. (Singh et al., 2000 [5]) investigated further a 
three-dimensional fluctuating flow and heat transfer through a porous medium when the permeability varied 
both in time and space. Further the flow of electrically conducting fluids in channels and pipes under the effect 
of transverse magnetic field occur in magnetohydrodynamic (MHD) generators, accelerators, pumps and flow 
meters. In view of these and many other important applications of these flows a number of scholars have shown 
their interest. Notable amongst them are (Shercliff, 1965 [6]; Ferraro and Plumpton, 1966 [7]; Crammer and Pai 
1973, [8]). (Yen and Chang, 1964 [9]) studied the effects of wall electrical conductance on the MHD Couette 
flow. A magnetohydrodynamic (MHD) flow in a duct has also been studied by (Chang and Lundgren, 1961 [10]). 
(Attia and Kotb, 1996 [11]) investigated the two dimensional MHD flow between two porous, parallel, infinite, 
insulated, horizontal plates and the heat transfer through it when the lower plate was kept stationary and the up-
per plate was moving with uniform velocity. Very recently (Singh and Mathew, 2008 [12]) studied the injec-
tion/suction effect on a hydromagnetic oscillatory flow in a horizontal porous channel in a rotating system. The 
Hall current effect on the velocity and temperature fields of an unsteady Hartmann number has also been studied 
by (Attia, 2006 [13]). (Singh and Sharma, 2001 [14]) studied a three-dimensional Couette flow with transpira-
tion cooling in the presence of stationary magnetic field applied perpendicular to the planes of the insulated 
plates. Another aspect of the above three-dimensional Couette flow when the magnetic field is fixed with the 
moving plate has also been investigated by (Singh, 2004 [15]). There are various other industrial applications of 
flows of electrically conducting fluids in the fields of geothermal systems, nuclear reactors, filtration, etc. where 
the conducting fluid flows through a porous medium which also rotates about an axis. In view of the importance 
of rotating flows a number of studies have appeared in the literature. (Mazumder, 1991 [16]) studied an oscilla-
tory Ekman boundary layer flow bounded by two horizontal plates one of which is oscillating and the other is at 
rest. (Ganapathy, 1994 [17]) presented an alternative solution to the above problem. (Mazumder et al., 1976 [18]) 
analyzed the Hall effects on combined free and forced convection hydromagnetic flow through a channel. 
(Singh, 2000 [19]) studied the effects of transversely applied uniform magnetic field on oscillatory flow between 
two parallel flat plates when the entire system rotates about an axis normal to the planes of the plates. Hartman 
and Lazarus (1937 [20]) studied the influence of a transverse uniform magnetic field on the flow of a viscous 
incompressible electrically conducting fluid between two infinite parallel stationary and insulating plates. Then 
the problem was extended in numerous ways. The Hall current is important and it has a marked effect on the 
magnitude and direction of the current density and consequently on the magnetic force. The unsteady hydro 
magnetic viscous flow through a nonporous or porous medium has drawn attention in the recent years for possi-
ble applications in geophysical and cosmical fluid dynamics. Debnath et al. (1979 [21]) have studied the effects 
of Hall current on unsteady hydro magnetic flow past a porous plate in a rotating fluid system and the structure 
of the steady and unsteady flow fields is investigated. Rao and Krishna (1981 [22]) studied Hall effects on the 
non-torsionally generated unsteady hydro magnetic flow in semi-infinite expansion of an electrically conducting 
viscous rotating fluid. Krishna and Rao (1982 [23]) discussed the Stokes and Eckmann problems in magneto 
hydro dynamics taking Hall effects into account. M. VeeraKrishna and S. V. Suneetha (2009 [24]) discussed 
Hall effects on unsteady flow of incompressible viscous fluid between two rigid non-conducting rotating plates 
through porous medium under the influence of a uniform transverse magnetic field. S. V. Suneetha et al. (2010 
[25]) discussed Hall effects on unsteady rotating magneto hydro dynamic flow of an incompressible homogene-
ous second grade fluid through a porous half space. Recently Hall effects on an unsteady MHD flow of a vis-
cous incompressible electrically conducting fluid in a horizontal porous channel with variable pressure gradient 
in a rotating system have been studied by Sanatan Das and Rabindranath Jana (2013 [26]). In this paper, we 
make an initial value investigation of the unsteady flow of incompressible viscous fluid between two rigid 
non-conducting rotating parallel plates bounded by a porous medium taking hall current into account. 



P. Sulochana 
 

 
398 

2. Formulation and Solution of the Problem 
We consider the unsteady flow of an incompressible electrically conducting viscous fluid bounded by porous 
medium with two non-conducting rotating parallel plates. A uniform transverse magnetic field is applied to 
z-axis. In the presence of strong magnetic field a current is inclined in a direction normal to the both electric and 
magnetic field viz. Magnetic field of strength H0 inclined at angle of inclination α  to the normal to the boun-
daries in the transverse xz-plane. The inclined magnetic field gives rise to a secondary flow transverse to the 
channel. The hydro magnetic flow is generated in a fluid system by non-torsional oscillations of the upper plate. 
The lower plate is at rest. The origin is taken on the lower plate and the x-axis parallel to the direction of the up-
per plate. Since the plates are infinite in extent, all the physical quantities except the pressure depend on z and t 
only. In the equation of motion along x-direction, the x-component current density— sine z oJ Hµ α  and the z- 
component current density sine x oJ Hµ α . We choose a Cartesian system 0 (x, y, z) such that the boundary walls 
are at z = 0 and z = l. The flow through porous medium governed by the Brinkman equations. The unsteady hy-
dro magnetic equations governing flow through porous medium under the influence of a transverse magnetic 
field with reference to a rotating frame are 

sind2
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∂ ∂
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where, (u, w) is the velocity components along O (x, z) directions respectively. ρ  is the density of the fluid, 
eµ  is the magnetic permeability, ν  is the coefficient of kinematic viscosity, k is the permeability of the me-

dium, oH  is the applied magnetic field. When the strength of the magnetic field is very large, the generalized 
Ohm’s law is modified to include the Hall current, so that 

( )
0

e e
eJ J H E q H

H
ω τ
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where, q is the velocity vector, H is the magnetic field intensity vector, E is the electric field, J is the current 
density vector, eω  is the cyclotron frequency, eτ  is the electron collision time, σ  is the fluid conductivity 
and, eµ  is the magnetic permeability. In Equation (3) the electron pressure gradient, the ion-slip and thermo- 
electric effects are neglected. We also assume that the electric field E = 0 under assumptions reduces to 

0sin sinx z eJ mJ H wα σµ α− = −                               (4) 

0sin sinz x eJ mJ H uα σµ α+ =                                (5) 

where e em ω τ=  is the Hall parameter. 
On solving Equations (4) and (5) we obtain 
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Using the Equations (6) and (7), the equations of the motion with reference to rotating frame are given by 
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By combining the Equations (8) and (9), we get. 
Let ,q u iw= +  
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The boundary and initial conditions are 
0, 0, 0q t z= ≤ =                                     (11) 

e e , 0, .i t i tq a b t z lω ω−= + > =                                (12) 

We introduce the following non dimensional variables are 
2 2
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Using non-dimensional variables, the governing equations are (dropping asterisks) 
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where, 
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e em ω τ=  is the Hall parameter. 
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∂
 is the prescribed of pressure gradient, then the Equation (13) reduces to 
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Corresponding initial and boundary conditions are 

0, 0, 0q t z= ≤ =                                    (15) 

e e , 0, 1.i t i tq a b t zω ω−= + > =                               (16) 

Taking Laplace transform of Equation (14) using initial condition (15) the governing equations in terms of the 
transformed variable reduces to  
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The relevant transformed boundary conditions are 

0, 1,q z= =                                      (18) 
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Solving the Equation (17) and making use of the boundary conditions (18) and (19), we obtain  

( )
0 1

1 1 2 2
1 1 1

cosh sinh
P Pq A z B z

s s i
λ λ

λ λ ω
= + + +

−
                       (20) 

where  



P. Sulochana 
 

 
400 

( )
0 1
2 2

1 1 1

P PA
s s iλ λ ω

= − −
−

, 

( ) ( )
0 01 1

12 2 2 2
1 1 1 1 1 1 1

1 cosh
sinh

P PP Pa bB
s i s i s s i s s i

λ
λ ω ω λ λ ω λ λ ω

  
= − + − − + +   − + − −   

 

( )
2 2

1 2
1

sin 2 .
1 sin
Ms D iK

im
αλ
α

− 
= + + +  + 

 

Taking inverse Laplace transform to the Equation (20), we obtain 
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The shear stresses on the upper plate and the lower plate are given by 
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d dand .
d dU L

z z

q qτ τ
z z= =

   = =   
   

                              (22) 

3. Results and Discussion 
The flow is governed by the non-dimensional parameters M the Hartman number, D−1 the inverse Darcy para-
meter, K is the rotation parameter and m is the Hall parameter. The velocity field in the porous region is eva-
luated analytically its behaviour with reference to variations in the governing parameters has been computation-
ally analyzed. The profiles for u and w have been plotted in the entire flow field in the porous medium. The so-
lution for the velocity consists of three kinds of terms 1) steady state, 2) the quasi-steady state terms associated 
with non-torsional oscillations in the boundary, 3) the transient term involving exponentially varying time de-
pendence. From the expression (21), it follows that the transient component in the velocity in the fluid region  

decays in dimensionless time 
2 2

1 1
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π

t
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  >  
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. When the transient terms decay the steady oscillatory  

solution in the fluid region is given by 
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We now discuss the quasi steady solution for the velocity for different sets of governing parameters namely 
viz. M the Hartman number and D−1 the inverse Darcy parameter, K the rotation parameter, m is the Hall para-
meter, P0 & P1 the non dimensional pressure gradients, the frequency oscillations ω, a and b the constants re-
lated to non torsional oscillations of the boundary, for computational analysis purpose we are fixing the axial 
pressure gradient as well as a and b, and 0 1 10P P= = , π 4ω = , 1 π 4ω = , π 3α = . Figures 1-8 correspond-
ing to the velocity components u and w along the prescribed pressure gradient for different sets of governing 
parameters when the upper boundary plate executes non-torsional oscillations. The magnitude of the velocity u 
and w increases for the sets of values 0.1 ≤ z ≤ 0.3 as well as which reduces for all values of z with increase in 
the intensity of the magnetic field (Figure 1 and Figure 5). The resultant velocity q decreases with increasing 
the Hartmann number M. The magnitude of the velocity u decreases in the upper part of the fluid region 0.1 ≤ z 
≤ 0.2 while it experiences enhancement lower part 0.3 ≤ z ≤ 0.9 with increasing the inverse Darcy parameter D−1 
(Figure 2). The magnitude of the velocity w increases in the upper part of the fluid region 0.1 ≤ z ≤ 0.3, while it 
reduces in lower part 0.4 ≤ z ≤ 0.9 with increasing the inverse Darcy parameter D−1 (Figure 6). The resultant 
velocity q reduces with increasing the inverse Darcy parameter D−1. The magnitude of velocity u decreases in 
the upper part of the fluid region while it experiences enhancement lower part 0.3 ≤ z ≤ 0.9 and also the magni-
tude of velocity w increases throughout the fluid region (Figure 3 and Figure 7). However the resultant velocity 
q enhances with increasing the Hall parameter m. Finally we notice that, from (Figure 4 and Figure 8) the mag-
nitude of the velocity component enhances for 0.1 ≤ z ≤ 0.3 and z = 0.7, and reduces within the region 0.4 ≤ z ≤ 
0.6 and 0.8 ≤ z ≤ 0.9 with increase in rotation parameter K. while the velocity component w enhances for 0.3 ≤ z 
≤ 0.4 and z = 0.9, and reduces for 0.1 ≤ z ≤ 0.2, with increase in rotation parameter K. 

The shear stresses xτ  and yτ  on the upper plate have been calculated for the different variations in the go-
verning parameters and are tabulated in the Table 1, Table 2. On the upper plate we notice that the magnitudes 
of xτ  enhances the inverse Darcy parameter D−1, the hall parameter m, rotation parameter K decreases with in-
crease in the Hartmann number M (Table 1). The magnitude of yτ  decreases with increase in the Hartmann 
number M, the inverse Darcy parameter D−1 rotation parameter K and the Hall parameter m fixing the other pa-
rameters (Table 2). The similar behaviour is observed on the lower plate (Table 3, Table 4). We also notice that 
the magnitude of the shear stresses on the lower plate is very small compare to its values of the upper plate. 
 

 
Figure 1. The velocity profile for u with M. 

 

 
Figure 2. The velocity profile for u with D−1. 
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Figure 3. The velocity profile for u with m. 

 

 
Figure 4. The velocity profile for u with K. 

 

 
Figure 5. The velocity profile for w with M. 

 

 
Figure 6. The velocity profile for w with D−1. 
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Figure 7. The velocity profile for w with m. 

 

 
Figure 8. The velocity profile for w with K. 

 
Table 1. The shear stress ( )xτ  on the upper plate. 

M I II III IV V VI VII 

2 0.045274 0.052798 0.668876 0.052787 0.065525 0.084474 0.144589 

5 0.032905 0.043535 0.050487 0.043465 0.051896 0.052248 0.125547 

D−1 1000 2000 3000 1000 1000 1000 1000 

m 1 1 1 2 3 1 1 

K 2 2 2 2 2 3 4 

 
Table 2. The shear stress ( )yτ  on the upper plate. 

M I II III IV V VI VII 

2 −0.05356 −0.040556 −0.03558 −0.04955 −0.32511 −0.041125 −0.0044585 

5 −0.04555 −0.034255 −0.02622 −0.03512 −0.02222 −0.024451 −0.0001254 

D−1 1000 2000 3000 1000 1000 1000 1000 

m 1 1 1 2 3 1 1 

K 2 2 2 2 2 3 4 
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Table 3. The shear stress ( )xτ  on the lower plate. 

M I II III IV V VI VII 

2 0.008554 0.005542 0.002554 0.006658 0.003325 0.000144 −0.104595 

5 0.007885 0.004102 0.001001 0.005114 0.002114 0.000025 −0.002852 

D−1 1000 2000 3000 1000 1000 1000 1000 

m 1 1 1 2 3 1 1 

K 2 2 2 2 2 3 4 

 
Table 4. The shear stress ( )yτ  on the lower plate. 

M I II III IV V VI VII 

2 −0.000255 −0.000149 −0.000025 −0.000228 −0.000187 −0.0000145 −0.0000054 

5 −0.000246 −0.000124 −0.000012 −0.000193 −0.000078 −0.0000102 −0.0000029 

D−1 1000 2000 3000 1000 1000 1000 1000 

m 1 1 1 2 3 1 1 

K 2 2 2 2 2 3 4 

4. Conclusions 
1) The resultant velocity q enhances with increasing hall parameter m and rotation parameter K, and decreases 

with increasing inverse Darcy parameter D−1 as well as the Hartmann number M. 
2) On the upper plate the magnitude of xτ  enhances when increasing the hall parameter m; rotation parame-

ter K and the inverse Darcy parameter D−1 decrease with increase in the Hartmann number M. 
3) On the upper plate the magnitude of shear stress enhances when increasing the hall parameter M; rotation 

parameter K and the inverse Darcy parameter D−1 decrease with increase in the Hartmann number M. 
4) The similar behaviour is observed on the lower plate. 
5) The magnitude of the shear stresses on the lower plate is very small than the values of the upper plate. 
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