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Abstract 
We propose and demonstrate an original geometric argument for the ancient Babylonian square 
root method, which is analyzed and compared to the Newton-Raphson method. Based on simple 
geometry and algebraic analysis the former original iterated map is derived and reinterpreted. 
Time series, fixed points, stability analysis and convergence schemes are studied and compared 
for both methods, in the approach of discrete dynamical systems. 
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1. Introduction 
The oldest known algorithm for successive numerical approximations to the square root of a real number was 
created by the Babylonians (1950 BC-648 BC) as reported by the Greek mathematician Heron of Alexandria [1] 
in the first century of our era, named as the Babylonian Method (BABM) in this work. The equivalent mathe-
matical problem has been addressed in the seventeenth century by a more general method to solve numerically 
the equation 2 0x k− = , the famous Newton-Raphson method (NRM) [2]. In spite of having been studied and 
applied for centuries, the lack of a geometric argument to the Babylonian square root method has been a missing 
link for a better understanding of the ancient Babylonian’s mathematics. 

Recent applications of iterated maps in numerical analysis have been found in literature, using and extending 
the techniques of dynamical systems to the study of numerical algorithms and number theory [3]-[5]. Applica-
tion in technology and hardware devices are also frequent nowadays [6]-[9]. 

In this work, we study and compare two methods that are based on iterated maps, and some common tools 
from nonlinear dynamics [10] [11] are used to study the orbits, i.e., the numerical time series obtained for each 
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map are investigated. The numerical approximations , 0,1, 2,ix i =   to solve the general equation nx k= , 
where n∈  and k ∈+  are obtained, and the results are valid for positive real values of n∈+ . The ex-
act solution is found at the fixed point of each map and its stability is tested. We propose an original geometric 
argument to construct graphically the BABM basic equation and fill the gap left by this early Babylonian me-
thod. We show that both NRM and BABM reduce to a common map for 2n = , in spite of having different 
geometric arguments, and also that the BABM cobwebs are simpler than the NRM ones. 

2. The Numerical Methods 
From the point of view of discrete dynamic systems BABM is a one-dimensional iterated map defined over the 
set of real numbers   and over a one-dimensional parameter space ( )k . The basic idea implemented in this 
map is that if x  is an overestimation for the square root of a real number k , then k x , will be underesti-
mated and thus the arithmetic mean of these two numbers can be used as best numerical approximation to the 
exact root. Repeating this procedure with the new value obtained, the approximation can be refined, and so on. 
The demonstration that this method usually depends on the inequality between arithmetic and geometric mean 
shows that this average is always an overestimation of the square root, ensuring convergence to the exact root. 
This algorithm has a quadratic convergence, which means that the number of digits of the numerical approxima-
tions nearly doubles at each iteration [12]. 

The Babylonian method (BABM) is based on the iterated map defined by  

1
1
2i i

i

kx x
x+

 
= + 

 
                                  (1.1) 

where k  is the radicand and ix  are the successive numerical approximations for the square root of k . The 
initial condition 0x  is arbitrarily chosen. For example, Table 1 shows the BABM approximations for the 
square root of 2, i.e., in Equation (1.1) parameter 2k =  and 0 3x = . In this case, after six iterations the ap-
proximation converges to the exact numerical value of 2  within the standard double precision, i.e., to 16 sig-
nificant digits.  

The BABM can be seen as particular case of the more general NRM used to evaluate a zero of the function  

( ) 2 .f x x k= −                                    (1.2) 

The geometric construction used by NRM can be reduced to the following geometric path: 1) take an initial 
value ix  as an approximation of the root of ( )f x ; 2) find the value of the function ( )if x ; 3) draw a tangent 
line from the function at that point using its derivative ( )if x′  at this point; 4) determines the intersection of 
the tangent with the X -axis, to find the next approximation 1ix +  to the root; 5) increment i  to 1i +  and re-
turn to step 2). This algorithm is graphically illustrated in Figure 1(a). 

The numerical approximations generated by the NRM method are in general represented by the iterated map  

( )
( )1 ,i

i i
i

f x
x x

f x+ = −
′

                                 (1.3) 

where i  indicates the i-th iteration of the map and ( )if x′  is the derivative of the function ( )f x  at ix . For 
the case we are studying the function is used (1.2) and the derivative of this function is ( ) 2f x x′ = , assigning 
these values in Equation (1.3) we obtain  
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                            (1.4) 

which is exactly the same BABM iterated map function. 

3. The Hidden Geometry 
There is no historical report showing any geometric argument perhaps used to construct the BABM, but in this 
section we propose a simple and original one, in the same spirit of that used to construct the NRM. Figure 1(b) 
shows the schematic geometric path used by the BABM, so that we gain a more intuitive understanding of the 
convergence schema of this map that permits to demonstrate Equation (1.1). 
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Table 1. Numerical approximations to 2  using 0 3x =  obtained 
with the Babylonian method.                                     

i  ix  i  ix  

0 3.000000000000000 4 1.414213780047197 

1 1.833333333333333 5 1.414213562373111 

2 1.462121212121212 6 1.414213562373095 

3 1.414998429894802 7 1.414213562373095 

 

 
(a)                                                    (b) 

Figure 1. (a) The geometric paths for the Newton-Raphson and (b) Babylonian methods.                   
 

The root of the function (1.2) is found by approximation, from the initial condition, doing arithmetic mean 
between two numbers. We assume that the root is between two points, do the arithmetic mean between these 
two points we are closer and closer to the root. These two points are ix  and is  and the average between them 
is the next point 1ix +  in the series, closer to the exact root k . So, from the initial condition ix , the auxiliary 
point is  is found, and their average renders the next point 1ix +  of the map series, as shown in Figure 1(b). 
This point is obtained by knowing the equation of the auxiliary straight line iA B , that intersect the X -axis at 
the auxiliary point is . This line contains the auxiliary point ( )0,B k− , vertex of the parabola.  

Given an initial condition we start the geometric path construction. The first step is to find out the equation of 
the first auxiliary line iA B , whose slope is i i im y x= ∆ ∆ . According to Figure 1(b), ( )i iy f x k∆ = +  and 

i ix x∆ = , and the slope is ( )( )i i im f x k x= + , and replacing ( )if x  for their function (1.2) we find the slope,  

( )2

, 0,1, 2,3, , ,i
i i

i

x k k
m x i N

x

− +
= = =                        (1.5) 

that generates the ix  series recursively. 
Drawing the straight line y mx b= +  whose linear coefficient is k−  passing through the point ( )0,B k− , 

we have iy x x k= − , and the auxiliary point is  can be found when 0y = , which is the intersection point of 
the line with the X -axis, and solving 0 i ix s k= −  we finally find the auxiliary points i is k x= , for 

0,1, 2,3, ,i N=  , and the original Equation (1.1) of BABM is exactly recovered. The term ik x  corresponds 
to the auxiliary point is , and the BABM basically works by doing the arithmetic mean between these points. 

The convergence analysis of time series generated by BABM will be done analytically and graphically by 
determining the its fixed point and testing its stability. By inspecting Equation (1.1) we see its general form 

( )1i ix f x+ = , with the mapping function  

( ) 1
2

kf x x
x

 = + 
 

                                (1.6) 

where k  is a fixed parameter, that will be analyzed below. 
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In general, the first values of the series { }, 0,1, 2,ix i =   are irregular, not having a well defined pattern, and 
this irregular initial behaviour is called the transient. After discarding the transient, the values of ix  can 
basically: 1) cycle between N  fixed values, or a period- N  orbit; 2) assume an aperiodic bounded sequence of 
values that are never repeated, or a chaotic orbit; 3) an unbound orbit, or divergence. 

When a series converges asymptotically to a single fixed value x∗ , the fixed point, we have an orbit of 
period-1 . An attractive fixed point of a function ( )f x  is a fixed point x∗  of ( )f x  such that for any value 
of x  in the domain that is close enough to x∗ , the iterated function sequence x , ( )f x , ( )( )f f x , 

( )( )( )f f f x ,  , converges to x∗ . An expression of prerequisites and proof of the existence of such solution 
is given by Banach’s fixed point theorem [13]. An attractive fixed point is also called a stable fixed point. 
However, if the map ( )f x  is continuously differentiable in an open neighbourhood of a fixed point x∗ , the 
stability criterion (1.10) is satisfied. 

4. Fixed Points and Stability Analysis 
For the analytical determination of a fixed point x∗ , we have to solve the equation 1i ix x+ = , or  

( ) ,x f x∗ ∗=                                    (1.7) 

that for BABM is  

1
2

kx x
x

∗ ∗
∗

 = + 
 

                                  (1.8) 

whose solution for x∗  renders  

x k∗ = ±                                     (1.9) 
and the existence of this fixed points is the starting point to use the map for square root extraction. For the sta-
bility of the fixed point of the map, we have to ensure that  

( ) 1f x∗′ <                                   (1.10) 

which is the general condition for stability of fixed points of any onedimensional map [14]. Since ( )f x∗′  is the 
derivative of the function (1.6), we have,  

( ) 2

1 1
2

kf x
x

 ′ = − 
 

                                 (1.11) 

and according to the stability criterion (1.10), that at the point fixed (1.9) is  

( )
( )2

1 1 0,
2

kf x
k

∗

 
 ′ = − = 
 ± 

                            (1.12) 

and its fixed points k±  are both stable, regardless of the value of k , so the stability criterion is verified with 
no dependence on this parameter. 

Another important tool to analyze the orbit of a map and its evolution in time is called return diagram or 
cobweb. A cobweb is built with all the values of ix  obtained in series to construct a graph that has coordinates 

ix  to the X -axis and 1ix +  for the Y -axis, recursively following the steps: 1) choose an initial condition 0x  
and iterate the map to obtain the next point ( )1 0x f x= ; 2) draw the line segment from ( )0 ,0x  to ( )0 1,x x ; 3) 
join this point to point ( )1 1,x x  on the identity line y x= ; 4) use this point to return to X -axis, joining it to 
point ( )1,0x ; 5) go to to step 2). 

Figure 2(a) shows the BABM cobweb for the square root of 2. Plotted on the graph is the equation of BABM, 
the identity function and the return diagram, for the initial condition 0 9x = . Figure 2(b) plots separately the 
linear and nonlinear terms of Equation (1.4) indicating that when the linear term has a weight greater than he 
nonlinear one the map converges to the root, independent of the values of parameters n  and k . For parameter 

2k = , Figure 2(b) shows in red the linear term 2x  in NRM, in green the nonlinear term k n  and in blue 
the sum of both terms, according Equation (1.4). The identity function is drawn in black and yellow is used for  
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(a)                                                       (b) 

Figure 2. For 2k =  (a) the BABM cobweb for 0 9x = ; (b) the NRM linear term (red), nonlinear term (green) 
and the map function (blue).                                                                         

 

the tangent line at the fixed point of the map. The linear term has a greater weight ensuring that ( ) 1f x∗′ < ,  

what guarantees that the fixed point is stable. Other important information we can obtain from this figure is the 
stability of the fixed point, since the map function has a minimum exactly at fixed point, and thus the derivative 
of the map is zero at this point. According to the stability criterion this is necessary and sufficient condition for 
the fixed point to be stable. 

5. Conclusions 
The use of iterated maps to solve the fundamental mathematical problem of square root estimation by numerical 
approximations was revisited and some tools from nonlinear dynamics were used to predict their stable fixed 
points and test the behaviour of the corresponding time series over a large region of parameter k . 

The main result of this paper is fulfilled once we have proposed and demonstrated an original geometric ar-
gument to the underlying geometry in the Babylonian square root method, the oldest known and one of the most 
efficient methods to solve this classical and current problem. The proposed argument is very simple and intuitive, 
and can be easily extended to other similar maps, and perhaps its basic idea could be useful for constructing new 
iterated maps, from the geometrical point of view. 
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