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Abstract 
Based on the violation of Bell inequalities, it has been believed that the derivation of Bell correla-
tions requires a quantum description that depends on entanglement. However, the present paper 
computes Bell correlations among polarization analyzer output intensities from two spatially se-
parated sets of superposed random wave pairs. To obtain proper Bell correlations, the general 
statistics must be modified to represent single event pair selection. The correlations between 
analyzer output components are then in one-to-one correspondence with those computed from 
the entanglement formalism. 

 
Keywords 
Bell Correlation, Bell Theorem, Locality, Nonlocality, Entanglement 

 
 

1. Introduction 
The Bell theorem and experimental violation of Bell’s inequalities are believed to make the description of Bell 
correlations impossible without the use of entanglement. If valid, this view would rule out the possibility of local 
descriptions of these correlations. However, it is shown in [1] and references therein that conclusions based on 
the Bell theorem as historically reasoned may not be logically drawn. Thus, it becomes appropriate to investi-
gate possible alternatives to quantum descriptions that are widely believed to imply nonlocality.  

Below, it is shown that properly normalized covariances resulting from a statistical model of local “twin 
beams” from a down converter (see Figure 1) exhibit a one-to-one correspondence with Bell correlations. The 
experimental selection of single photon pairs from the down-converter source, and imposition of quan-  

http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2014.518276
http://dx.doi.org/10.4236/am.2014.518276
http://www.scirp.org/
mailto:lousica@jhu.edu
http://creativecommons.org/licenses/by/4.0/


L. Sica 
 

 
2900 

 
Figure 1. Output of a spontaneous parametric down-converter (SPDC) in type II configuration. Light from the 
overlap regions of two light-cones constitutes Beams 1 and 2 as used in Bell experiments. Photons are 
produced in pairs on opposite sides of the arrow with one photon having î , and the other ĵ  polarization. In 
the overlap regions of Beams 1 and 2, each polarization occurs with equal probability, with the two members 
of a pair having opposite polarization. Correlations of output counts from polarization analyzers (not shown) 
placed down-beam in each of Beams 1 and 2 are used to measure Bell correlations.                        

 
tum source boundary conditions, result in modification of a general wave stochastic model to produce results in 
agreement with the entanglement description.  

In Section 2 below, the correlation of polarization analyzer intensity outputs is first derived from the superpo-
sitions of orthogonally polarized light wave output from a type II down-converter as used in Bell experiments 
(see Figure 1). The correlation has the same form as a Bell correlation but is derived from continuous wave va-
riables rather than individual photon-pair events. In Section 3, a semi-classical assumption is introduced: wave 
intensity is defined to be a statistic representing temporal count density. The two equal source output intensities 
become Poisson parameters for corresponding count-pair processes. When single count pairs are selected (per 
detector time constant) from the multiple possible analyzer output pairs, the resulting modified correlations be-
come equal to those given by the quantum entanglement description. However, the process does not imply non- 
locality, since it results from pairs of equal input intensities and associated twin counts originating in one local 
spatial region, i.e., the correlations result from common initial conditions imposed on each of two subsequently 
separated twin beams. 

The formalism uses statistical assumptions common in the description of chaotic optical waves [2]. It does not 
specify a mechanism for the association of photon counts with such waves. Imposition of count-pair statistics as 
a source boundary condition at rotation angles equal to zero results in Bell correlations at non-zero rotation an-
gles due to random wave interference. 

The overall model may be thought of as a generalization of wave particle duality. In two-slit interference, dis-
crete entities assumed to be emanating from a source are manifested as discrete counts at a detector but exhibit 
the intervening effects of wave interference. In the model below, pairs of counts at initial analyzer angles equal 
to zero are inserted into, and determine, the statistical parameters of a wave system that determines the count 
correlations at non-zero analyzer angles. 

2. Random Wave Description Based on Type II Down-Converter Outputs 
Based on the geometry of parametric down converter sources for Bell correlation experiments (see Figure 1) [3], 
two complex amplitudes 1U



 and 2U


 are introduced corresponding to superpositions of orthogonally polarized 
light amplitudes in regions denoted as Beams 1 and 2 of the figure. 1U



 and 2U


 are superpositions of random 
waves: 

1 1 1
ˆ ˆ

H VU u i u j= +


                                   (2.1) 
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and 

2 2 2
ˆ ˆ

H VU u i u j= +


.                                 (2.2) 

In these equations, horizontal and vertical polarization components are indicated by subscripts H  and V  
respectively, with î  and ĵ  indicating unit vectors along the x  and y  axes. The regions of H  and V  
component overlap are used as light sources in Bell experiments. Transient interference of the H  and V  
components is assumed and is indicated by the amplitude superpositions in Equations (2.1) and (2.2). Following 
common usage in optics [4], such complex amplitudes may be stated in the more explicit form exp uu u iθ=  if 
necessary, and thus contain both amplitude u , and phase information uθ  characterizing a light wave. 

The action of polarization analyzers placed in each of Beams 1 and 2 is now described. These transmit and re-
flect components of 1U



 and 2U


 depending on the angle of rotation of the analyzer with respect to the î  di-
rection. Unit vectors in the pass ( )n  and reflect ( )p  directions of the two analyzers are denoted by 

ˆ ˆ ˆ ˆˆ ˆcos sin  ,   sin cos      1, 2.ln l l lp l ln i j n i j lθ θ θ θ= + = − + =                    (2.3) 

From these, and 1U


 and 2U


, one obtains the analyzer’s transmitted and reflected complex output ampli-
tudes: 

ˆ cos sin  ,  
ˆ sin cos ,     1, 2.

ln l ln lH l lV l

lp l lp lH l lV l

U U n u u
U U n u u l

θ θ

θ θ

≡ ⋅ = +

≡ ⋅ = − + =



                        (2.4) 

Thus, two polarized output amplitudes from each input beam occur in directions determined by the rotation an-
gle of the analyzers. 

The intensities of the analyzer output components n  and p  for each of the inputs 1U


 and 2U


 are given 
by  

;         1,2,ln ln ln lp lp lpI U U I U U l∗ ∗= = =                             (2.5) 

where, for example, 1 1 1 1 1cos sinn H VU u uθ θ∗ ∗ ∗= + . Inserting the quantities of Equation (2.4) into Equation (2.5),  
yields analyzer 1 outputs 

( )2 2
1 1 1 1 1 1 1 1 1 1cos sin cos sin2n H V H V H VI I I I Iθ θ θ θ θ= + + −                    (2.6) 

and 

( )2 2
1 1 1 1 1 1 1 1 1 1sin cos cos sin2p H V H V H VI I I I Iθ θ θ θ θ= + − − ,                   (2.7) 

where 1Hθ  and 1Vθ  are the phases of the fields 1Hu  and 1Vu , respectively, and the original source intensities 
at 1 0θ =  are 1 1 1x x xI u u∗= , ,  x H V= . Similarly, for analyzer 2 one obtains 

( )2 2
2 2 2 2 2 2 2 2 2 2cos sin cos sin2n H V H V H VI I I I Iθ θ θ θ θ= + + −                  (2.8) 

and 

( )2 2
2 2 2 2 2 2 2 2 2 2sin cos cos sin2p H V H V H VI I I I Iθ θ θ θ θ= + − − .                 (2.9) 

To proceed, further conditions on the parameters in Equations (2.6)-(2.9) must be specified. First, imposing 
source characteristics used in Bell experiments [3] requires that  

1 2 1 2;     H V V HI I I I= = .                                (2.10) 

This is implied by the fact that photons are produced in pairs of opposite polarization in Beams 1 and 2. By ap-
plying Equations (2.10) to Equations (2.6)-(2.9) it follows that 

1 1 1 1 2 2 2 2 1 1,     and    .n p H V n p H V H VI I I I I I I I I I+ = + + = + = +                 (2.11) 

One concludes that for lossless analyzers, the sum of powers in the output polarizations equals the sum of pow-
ers in the input polarizations, which by Equation (2.10) are equal for the two beams. 

A phase relation between the input beams must be imposed to make the analysis consistent with requirements 
of the nonlinear optics process [5] used to produce spontaneous parametric down-conversion (SPDC): 
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2 1 2 2 1 2const ,     const ,H V H V H Vθ θ θ θ+ = + ∆ + = + ∆                     (2.12) 

where the ∆ ’s are additional phase shifts implemented by a wave plate used in experiments [3]. The difference 
of phases in the two beams is then 

2 2 1 1 2 2H V H V H Vθ θ θ θ− = − + ∆ −∆ .                            (2.13) 

The condition 2 2 πH V∆ −∆ =  is used so that 

2 2 1 1 .H V H Vθ θ θ θ π− = − +                                (2.14) 

When quantities specified in Equations (2.10) and (2.14) are inserted into Equations (2.6)-(2.9), one obtains 

( )
( )
( )
( )

2 2
2 1 2 1 2 1 1 1 1 2

2 2
2 1 2 1 2 1 1 1 1 2

2 2
1 1 1 1 1 1 1 1 1 1

2 2
1 1 1 1 1 1 1 1 1 1

cos sin cos sin2 ,

sin cos cos sin2 ,

cos sin cos sin2 ,

sin cos cos sin2 .

n V H V H H V

p V H V H H V

n H V H V H V

p H V H V H V

I I I I I

I I I I I

I I I I I

I I I I I

θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ θ

θ θ θ θ θ

= + − −

= + + −

= + + −

= + − −

              (2.15a-d) 

Note, if 1θ  equals 2θ , 2 1n pI I= , and 2 1p nI I= . Two identical beams, “twin beams”, have been created  
with one set rotated 90˚ with respect to the other. The output wave intensities of the analyzers are interchanged 
due to Equations (2.10) and (2.14). 

From Equations (2.15a)-(2.15d), and setting 1 1H Vθ θ θ− = , the differences of the output intensities of the two 
analyzers, 1 1 1n pS I I= −  and 2 2 2n pS I I= −  are 

( )1 1 1 1 1 1 1cos2 2 cos sin2V H H VS I I I Iθ θ θ= − − +                    (2.16a) 

and 

( )2 1 1 2 1 1 2cos2 2 cos sin2V H H VS I I I Iθ θ θ= − − .                    (2.16b) 

To compute the correlation of 1S  and 2S , statistics of the amplitudes and phases are introduced that are 
consistent with experimental findings [6]. These are: 

1) The complex amplitude variables introduced in Equations (2.1) and (2.2) are circular complex Gaussian 
random variables [7]. They are assumed to be statistically independent but subject to the phase condition intro-
duced in Equation (2.14). 

The properties that will be used below follow from assumption 1. 
2) From 1, it follows that the wave intensities 1 1 1H H HI u u∗= ×  and 1 1 1V V VI u u∗= ×  are exponentially distri- 

buted. They are assumed to be statistically independent, but they have the same mean 0I . 
3) The phases are statistically independent of the amplitudes and are uniformly distributed from π  to π−  

so that this condition also holds for θ  in Equations (2.16a) and (2.16b). 
Conditions 1 - 3 are discussed in [2] and [7], and are commonly used to describe properties of light from 

thermal sources (and laser speckle patterns). Similar randomness is suggested by photographs of spatial distribu-
tions of down converted photons given in [8]. 

From points 2 and 3 above, two results are obtained that are used repeatedly in the following. First, if I  is 
exponentially distributed,  

2 22I I= .                                      (2.17a) 
Second, a uniform distribution of θ  over 2π  implies averages (denoted by { } E ) 

{ } ( ){ }2cos 1 2;     cos 0E Eθ θ= = .                          (2.17b) 

The latter condition plus property 2 applied to Equation (2.15c) implies that 

{ }2 2 2 2
1 1 2 1 2 1 1 2 0 2 0 2 0cos sin cos sin2 cos sinn V H H VI I I E I I I I Iθ θ θ θ θ θ= + − = + =            (2.17c) 
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Thus, for Equations (2.15a)-(2.15d), 

1 1 2 2 0n p n pI I I I I= = = = .                              (2.17d) 

An important result of this section is now obtained by computing the correlation of 1S  and 2S . First: 

{ } ( ){ } { }2 2
1 2 1 1 1 2 1 1 1 2cos2 cos2 4 cos sin2 sin2V H H VE S S E I I E I Iθ θ θ θ θ= − − − .              (2.18) 

Using Equations (2.17b) and the independence of the H  and V  intensities and phase variables stated in 
properties 2 and 3, 

( ){ } { } { } { }2 2 2 2 2 2 2
1 1 1 1 1 1 0 0 0 02 2 2 2 2 ,V H V H V HE I I E I E I E I I I I I I− = + − = + − =          (2.19a) 

while 

{ } { }2 2 2
1 1 1 1 04 cos 4 cos 2V H V HE I I I I E Iθ θ= = .                  (2.19b) 

Inserting the averages of Equations (2.19a) and (2.19b) into Equation (2.18) yields 

{ } ( )2
1 2 0 1 22 cos2E S S I θ θ= − − .                             (2.20) 

From the definition of the correlation of any two variables, the correlation of 1S  and 2S , using Equation 
(2.20) is 

( ) { } ( ) ( )
2

1 2 0 1 2
1 2 1 22 22 2

0 01 2

2 cos2
cos2 .

2 2

E S S I
C S S

I IS S

θ θ
θ θ

− −
= = = − −                (2.21) 

The square root variances of 1S  and 2S  in the denominator may be computed from Equation (2.18) by setting 
1 2θ θ=  and taking the absolute value. Thus, intensity components, Equations (2.15a)-(2.15d), yield a correla-

tion that is the same as the Bell correlation. However, the above calculation has been performed with random 
continuous variables, while the Bell correlation is based on measurements of discrete counts. 

3. Modification of the Formalism to Represent Selection of Event Pairs 
In spite of Equation (2.21), correlations among individual pairs of 1nI , 1pI , 2nI , and 2 pI  are not yet in a  
form that allows interpretation in terms of discrete quantum counts. However, the use of normalized covariances 
rather than the intensites of Equations (2.15) does result in such a form. It will be shown below that the cova-
riances result from modification of the statistics to represent selection of single event pairs in a detector 
time-constant (as implemented in experiments), rather than arbitrary numbers of event pairs as implied by the 
statistics thus far. 

The appropriate modifications are obtained by subtracting their common mean value 0I  from each of the in- 
tensity components of 1S  and 2S : 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

1 0 1 0 2 0 2 0

1 2
2 2

1 0 1 0 2 0 2 0

cos2 .
n p n p

n p n p

I I I I I I I I

I I I I I I I I
θ θ

   − − − − − −    = − −
   − − − − − −   

        (3.1) 

The right-hand side of Equation (3.1) equals that of Equation (2.21), and it appears that nothing has been 
changed. However, Equation (3.1) may be written as a sum of terms resulting from the contributions of products  
such as ( )( )1 0 2 0n pI I I I− −  and ( )( )1 0 2 0p nI I I I− − . Thus, 

( )( ) ( )( )
( )1 0 2 0 1 0 2 0 2

1 22
2 2 0

1 2

1 cos
22

n p p nI I I I I I I I

IS S
θ θ

− − − −
= = − .             (3.2a) 

Similarly, the contributions of products ( )( )1 0 2 0n nI I I I− −  and ( )( )1 0 2 0p pI I I I− −  to Equation (3.1)  
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are given by 

( )( ) ( )( )
( )1 0 2 01 0 2 0 2

1 22
2 2 0

1 2

1 sin
22

p pn n I I I II I I I

IS S
θ θ

− −− −
= = − .           (3.2b) 

However, while Equations (3.2a) and (3.2b) are equal to the corresponding quantum results, it is important to 
realize that at this point, little discreteness has been introduced into the model. 

To achieve a quantum interpretation of Equations (3.1)-(3.2), the continuous variables used are defined in 
terms of equivalent photon count statistics [2]: 

1) Wave intensities are defined as count densities in time.  
2) 1HI  and 1VI  are the means (Poisson parameters) of two independent processes that each produce dupli- 

cate count pairs as seen by analyzers at 1 2 0θ θ= = . As stated previously, existence of these duplicate counts  
implies that 1 2H VI I=  and 1 2V HI I= . 

3) Experimental parameters and observational protocols are adjusted so that single count pairs are selected as 
assumed in the entanglement formalism.  

To understand the reason for the quantization analysis to be given in Section 3.1, first compute individual av-
erages among the variables of Equations (2.15), ,  ,  , 1, 2xn ypI I x y =  without subtracting the mean 0I . For ex-
ample, the computation 1 2n pI I , using Equations (2.15b) and (2.15c) is 

2 2 2 2 2 2 2 2 2 2
1 2 1 1 1 2 1 1 2 1 1 2 1 1 1 2

2
1 1 1 2

cos sin cos cos sin sin sin cos

               cos sin2 sin2 .

n p H V H V H V

H V

I I I I I I I I

I I

θ θ θ θ θ θ θ θ

θ θ θ

= + + +

+
      (3.3a) 

Using Equations (2.17a) and (2.17b), this becomes 

( )2 2 2
1 2 0 0 1 2

12 cos
2n pI I I I θ θ= + − .                          (3.3b) 

In a similar manner, the other averages may be computed. The relevant averages are 

( )2 2 2
1 2 1 2 0 0 1 2

12 cos
2n p p nI I I I I I θ θ= = + − ,                      (3.4a) 

( )2 2 2
1 2 1 2 0 0 1 2

12 sin
2n n p pI I I I I I θ θ= = + − ,                      (3.4b) 

2
1 1 2 2 0n p n pI I I I I= = .                               (3.4c) 

While Equations (3.4a)-(3.4c) suggest Equations (3.2a) and (3.2b) (and quantum mechanical results), they have 
an additional constant offset, and an amplitude 2

02I  multiplying the squared sinusoidal terms. It will now be 
shown that interpretation of intensities in terms of discrete counts, under the condition of single count pair selec-
tion, transforms Equations (3.4a) and (3.4b) into Equations (3.2a) and (3.2b). 

Selecting Single Photon Pairs from Indefinite Numbers of Photon Pairs 

First, consider Equation (3.4c). To measure correlations at the source, analyzer angles are set to 1 2 0θ θ= = .  
Writing wave intensities as count averages yields 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1Poisson
0 0 1 1

1 1 1 1

0 0 1 0 1 0

                                   0 1 0 1 .
H V H V

n p H H V V H V H V H V H V
n n n n

H V H V

I I n P n n P n n n P n P n P P

P P

∞ ∞ ∞ ∞

= = = =

= = +

+

∑ ∑ ∑ ∑ (3.5a) 

The 0’s and 1’s in the last two terms are subscripted to indicate to which variable they belong. They represent 
selected count pair products for which each product equals zero. Note that the values in the right-most double 
sum occur with low probability, and are deleted under the protocols used in experiments. After averaging over 
the exponentially distributed variables, the average over the double sum is  

( ) ( ) ( ) ( )
1 1

2
1 1 1 1 1 1 1 1 1 1 0expPois exp 1 1 exp

0 0 .
H V

n p H V H V H V H V
n n

I I n n P n P n I I I I I
∞ ∞

= =

= = = =∑ ∑      (3.5b) 
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Thus, the constant on the right side of Equation (3.4c) corresponds to events that are excluded if single event  
pairs are selected from the range of possibilities. Clearly, the situation is the same for ( ) ( )2 20 0n pI I . Fur- 

ther, Equation (3.4c) holds for all equal analyzer angles so that the boundary condition at 1 2 0θ θ θ= = =  de-
termines the results at other equal angles as well. Thus, Equation (3.4c) represents the result that follows from 
the selection of single photon pairs if the constant term is subtracted from both sides: 

( ) ( ) ( ) ( )2 2
1 1 0 2 2 0Pois Poisexp exp

0;     0.n p n pI I I I I Iθ θ θ θ− = − =                (3.6) 

From Equations (2.15a)-(2.15d), when 1 2θ θ= , 2 1n pI I= , and 2 1p nI I= . Equation (3.4b) reduces to Equa-
tion (3.6) (which also holds at 0θ = ): 

( ) ( ) ( ) ( ) ( )2 2 2 2
1 1 2 2 0 0 0exp exp

12 sin
2n p n pI I I I I I Iθ θ θ θ θ θ= = + − = .              (3.7) 

As above, Equation (3.4b) represents observation under the condition of single pair selection if the additive con-
stant 2

0I  is subtracted from both sides. 
The same reasoning may be extended to Equation (3.4a). Observe from Equations (2.15) that 

( ) ( ) ( )
( ) ( ) ( )

2 2 1

2 2 1

π 2

π 2 .
p n p

n p n

I I I

I I I

θ θ θ

θ θ θ

+ = =

+ = =
                            (3.8a) 

Under this condition, Equation (3.4a) reduces to Equation (3.4c): 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2
1 2 1 1 0

2
1 2 1 1 0

π 2

π 2 .

n p n p

p n p n

I I I I I

I I I I I

θ θ θ θ

θ θ θ θ

+ = =

+ = =
                      (3.8b) 

The end result is that Equations (3.4a)-(3.4c) represent observations under single count pair selection, if 2
0I  is 

subtracted from both sides of each of them. 
Similar considerations apply to the interpretation of the multiplicative factor 2

02I  in Equations (3.4a) and 
(3.4b) due to source boundary conditions at 1 2 0θ θ= = . Consider the average of the left-most expression in 
Equation (3.4a), 

( ) ( ) ( ) ( )
1 2

1 2 1 2 1 2 1 2exp exp
, 0 exp

0 0 ,
n n

n p n p n p n p
n n

I I n n n n P n P n
∞

=

= = ∑            (3.9a) 

where 1nn  equals 2 pn  since counts are produced in duplicate pairs. Given single pair selection, Equation (3.9a) 
becomes 

( ) ( ) ( ) ( ) ( )2 2
1 2 1 2 1 2 1 1 1exp exp exp

0 0 1 1 1 1 1 1 1n p n p n p H H HI I P P P I I= = ⋅ ≈ .         (3.9b) 

The probability product for duplicate photons equals the probability for one photon squared, i.e.  
( ) ( ) ( )2

1 2 11 1 1n p nP P P= , since the Poisson probability densities for photon counts on each side must be the  

same. Given that the probability of two counts on a side is made small compared to one count, 2I I . Hence,  
( ) ( )1 expP I I I I= − ≈ . Similarly, since the two possible polarization pairs correspond to two statistically inde- 

pendent processes with equal parameters, the second component of Equation (3.4a) yields 

( ) ( ) ( ) ( ) ( )2 2
1 2 1 2 1 2 1 1 1exp exp exp

0 0 1 1 1 1 1 1 1 .p n p n p n p V VI I P P P I I= = ⋅ ≈            (3.9c) 

Given Equation (2.17a), 2 2 2 2
1 1 0 02H VI I I I= = = . Since the additive constant 2

0I  must be subtracted in Equations 
(3.9b) and (3.9c) for correction of Equations (3.4a)-(3.4c), the required single-pair correction of Equations (3.9b) 
and (3.9c) implies 

( ) ( ) ( ) ( )2 2 2 2
1 2 0 0 1 2 0 0exp exp

0 0 ;      0 0n p p nI I I I I I I I− = − = .                (3.10) 
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It is now necessary to apply the normalization used in the definition of correlation (the denominator of Equa-
tion (3.2a) to Equation (3.10), again taking pair selection into account. For beam 1, since 2 2

1 02S I=  (see Equa-
tion (2.16a)) for all 1,θ  one may set 1 0θ =  to obtain: 

( ) ( ) ( )
2

22
1 1 1 1 1 1 1

exp 0 0
exp

H V H H V VS I I n P n n P n
∞ ∞ = − = − 

 
∑ ∑ .             (3.11a)  

From count selection at 1 0θ = , and given low intensities, 

( ) ( )( ) ( )2 22 2
1 1 1 1 1 1 1 0

expexp
1 1 1 1 2 ,H H V V H VS P P I I I= − − =

       
   (3.11b) 

after ensemble averaging as in Equation (2.19a). Then 

2
1 02S I≈ ,                                  (3.11c) 

with an equal result for 2S .  

From Equations (3.10) and (3.11c), one has 

( ) ( ) 2 2
1 2 0 0

2
2 2 0

1 2

0 0
1 2,

2
n pI I I I

IS S

−
= =                            (3.12) 

with an equal result for ( ) ( )( )2 2 2
1 2 0 1 20 0p nI I I S S− . Thus, corrected for single event-pair selection as  

used in experiments, Equation (3.4a) is modified to Equation (3.2a). From the above analysis, the same proce-
dure modifies Equation (3.4b) to Equation (3.2b). 

4. Discussion 
It has been shown above that the interference of twin pairs of waves yields polarization analyzer intensity out-
puts whose appropriate cross correlations may be used to compute Bell correlations. The wave statistical para-
meters used are set equal to the basic observational count parameters found in SPDC. These results depend on 
interpreting wave intensity variables as counts per unit time and on the experimental restriction of correlations to 
represent single event pairs. When the general wave optical statistics are adjusted to represent single 
source-pair selection at analyzer angles equal to zero, the formalism provides the same results as the entangle-
ment formalism at non-zero angles. This is a principle result of this paper. 

5. Conclusions 
It has been believed that the violation of the Bell inequalities from Bell’s theorem implies that only the formal-
ism of quantum entanglement can describe the observed correlations of Bell experiments. Although it produces 
the experimentally observed correlations, the entanglement formalism has the troubling implication of non-lo- 
cality, or what some call “non-reality”. The purpose of the present investigation has been to examine an alterna-
tive formulation of the problem that does not have these troubling properties. It is based on the superposition of 
duplicate pairs of orthogonally polarized waves that, due to quantum source boundary conditions, produce “twin” 
count pairs and hence “twin” wave intensity pairs. Non-locality does not appear to be a consequence of the for-
malism. Results of measurements on the spatially separated beams are correlated due to the duplicate wave in-
tensities and counts. 

No hidden variables have been used in the calculation. The wave optics formalism and assumed statistics for 
describing correlations among twin beam polarization components depend on empirical results. These lead to 
the following assumptions: 1) intensities are defined as counts/time; 2) counts are not divided at polarization 
analyzers; and 3) photons are created in duplicate at the source, with the two members of each source pair hav-
ing opposite polarization. Condition 3) provides initial conditions for the physical processes that follow in each 
down-converter beam. The fact that photons occur in duplicate does not in itself imply nonlocality, since initial-
ly, in the down-converter crystal where the photons are created, the output waves are superimposed. 
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The formalism is silent on the question of the connection of photons to waves other than through the usual in-
tensity definition of count rate. Thus, one obtains a statistical description in both the semi-classical wave optics 
picture presented, and the quantum entanglement picture. 

The possibility of an alternative to the entanglement description has been thought to be ruled out by violation 
of Bell’s inequalities. However, the Bell theorem is fundamentally flawed, as shown in [1] and references there-
in, so it may no longer be used ab initio to deny efforts to construct alternative descriptions of these phenomena. 

Some of the analyses given in the present paper were described in a preliminary (unpublished) form in [9].  
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