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Abstract 
Bell’s theorem, first presented by John Bell in 1964, has been used for many years to prove that no 
classical theory can ever match verified quantum mechanical predictions for entangled particles. 
By relaxing the definition of entangled slightly, we have found a mathematical solution for two 
entangled photons that produces the familiar quantum mechanical counting statistics without re-
quiring a non-local theory such as quantum mechanics. This solution neither is claimed to be 
unique nor represents an accurate model of photonic interactions. However, it is an existence 
proof that there are local models of photonic emission that can reproduce quantum statistics. 
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1. Introduction 
One of the strongest constraints on a local theory of light is Bell’s theorem [1]. Bell’s theorem is usually inter-
preted to mean that any local model of physics cannot satisfy the type of counting statistics predicted by quan-
tum mechanics. Since these statistics have been verified fairly well, the conclusion is that there is no possible 
local theory of physics where all interactions are determined by the local properties of fields.  

The logic of Bell’s theorem proceeds as follows: any local theory of light says that for a given E&M pulse 
from a photonic decay, one can write the probability of detection as a function of polarizer angle θ  by a sim-
ple function ( )0 ,P aθ  where a is an unspecified set of hidden variables identifying the state of the photonic 
pulse. As illustrated in Figure 1, for two entangled photons, the probability that one will be detected in polariza-
tion state 1θ  and the second in polarization state 2θ  is: 

( ) ( ) ( )12 1 2 0 1 0 2, , , ,P a P a P aθ θ θ θ= ⋅                                  (1) 
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Figure 1. The Bell’s theorem test of quantum mechanics uses a source of 
entangled photons, where each photon goes to a different detector through 
two different polarizers. The probability of simultaneous detection is 
proportional to ( )2

1 2cos θ θ− .                                             
 

If we assume from rotational symmetry of the source that one of the hidden parameters is an angle φ  (such 
as the polarization direction of the emitted photon), which rotates the probability function uniformly over the 
polarizer angle in the detector, then we can write Equation (1) as shown below in Equation (2) where a′  is the 
rest of the hidden variables which are assumed to be independent of φ . 

( ) ( ) ( )12 1 2 0 1 0 2, , , , ,P a P a P aθ θ φ θ φ θ φ′ ′ ′= − ⋅ −                          (2) 

By averaging over φ , we get Equation (3) which can be rewritten in the form of a convolution by changing 
variables as shown in Equation (4). (Replace 2θ φ−  by φ′ .) 

( ) ( ) ( )2π
12 1 2 0 1 0 20

1, , , , d
2π

P a P a P aθ θ θ φ θ φ φ′ ′ ′= ⋅ − ⋅ −∫                          (3) 

( ) ( ) ( )2π
12 1 2 0 1 2 00

1, , , , d
2π

P a P a P aθ θ θ θ φ φ φ′ ′ ′ ′ ′ ′= ⋅ + ⋅−∫                         (4) 

We can now average over the other potential hidden variables a′  to get the final result in Equation (5). 

( ) ( ) ( )2π
12 1 2 0 1 2 00

1, Mean , , d
2πaP P a P aθ θ θ θ φ φ φ′

 ′ ′ ′ ′ ′= ⋅ + ⋅ 


−
∫                      (5) 

Quantum mechanics says that the result must be Equation (6). 

( ) ( )2
12 1 2 1 2

1, cos
π

P θ θ θ θ= ⋅ −                                   (6) 

Bell’s theorem says that there is no function ( )0 ,P aφ′ ′  for any possible set of hidden variables a′  which 
can make Equation (5) match Equation (6)—not even close. The simple mathematical principle which leads to  

this conclusion is that there is no non-negative real function which can be correlated with itself to give ( )2cos θ .  
This principle applies here because 0P  is a probability function and must be nonnegative. The short proof is 
summarized below. 

2. Short Proof of Bell’s Theorem for the Given Formulation 
The easy way to prove that there can be no solution 0P  to Equation (5) which matches Equation (6) is to write 
both Equation (5) and Equation (6) using Fourier components. Equation (7) shows a general probability function 

0P  written in terms of its Fourier components 0PF .  

( ) ( )0 0
1 e
2π k

i k
kP PF θθ ∞ ⋅ ⋅
=−∞

= ∑                                 (7) 

Equation (8) shows the familiar result that when 0P  is convolved with itself, as in Equation (5), the Fourier 
components of the result equal the magnitude-squared of the Fourier components of 0P .  

( ) ( ) ( )1 2
2

12 1 2 0
1, e
2π k

i k
kP PF θ θθ θ ∞ ⋅ ⋅ −
=−∞

 = ⋅  ∑                          (8) 
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Now experimental data require that the answer must be Equation (9). 

( ) ( )

( ) ( )1 2 1 2

2
12 1 2 1 2

2 2

1, cos
π
1 1 1e 1 e

2π 2 2
i i

P

θ θ θ θ

θ θ θ θ

− ⋅ ⋅ − ⋅ ⋅ −

= ⋅ −

 = ⋅ ⋅ + + ⋅  

                         (9)  

Since the Fourier components of 12P  are the magnitude-squared of the Fourier components of 0P , we see 
that the magnitudes of the three Fourier components for 0P  have to be  

2 0 20 0 0
1 1    1    
2 2

PF PF PF
−

= = =                          (10) 

Equation (10) does not tell us what the phase is for the second Fourier components, only the magnitude, so if 
we give the phase a name ϕ , and note that the two Fourier components have to be complex conjugates of each 
other to make a real probability function, we get the most general form for the probability distribution 0P  
which can convolve to give the experimentally verified result in Equation (9). 

( )

( )

2 2
0

1 1 1e 1 e
2π 2 2
1 11 cos 2

2π 2

i iP θ ϕ θ ϕθ

θ ϕ

− ⋅ ⋅ − ⋅ ⋅ − 
= + + 

 
 

= + + 
 

                         (11) 

The minimum of Equation (11) is −0.414, which violates the principle that a probability function must be 
non-negative. This is why it is said that no classical theory can even come close to the quantum mechanical re-
sult—providing a strong argument in favor of quantum mechanics. 

3. Rethinking Bell’s Theorem 
Bell’s theorem is a mathematic result which follows from its assumptions. To construct a successful local theory, 
we need to loosen one of the assumptions which led to the contradiction. One subtle but critical assumption is 
that the set of hidden variables a′  applies identically to both E&M pulses (i.e., both of the entangled photons). 
This assumption makes each of the probability functions identical. We suggest alternatively that what is required 
instead is that the two photons be tied together in a symmetric manner so that, over the allowed range of hidden 
variables, they cannot be distinguished in their properties. This change in the definition of an entangled state al-
lows us to match experimental results with a local theory.  

In this simplest implementation of this altered model of entangled photons, the pair of photons have different 
probability functions versus polarization angle, ( )1P θ  and ( )2P θ . Assignment of a distribution to a particular 
one of the two photons is random so that statistically the two photons are identical. Even more if one entangled 
photon has probability distribution 1P  then the other photon has probability distribution 2P  and vice versa. 
Thus the two photons are tightly locked together. 

With this formulation, the next step is to choose two different real, non-negative functions over 0 - 2π which 
integrate to unity and whose cross-correlation probability distribution is ( )2cos πθ  Obviously there is consi-
derably more freedom to find solutions here. Written in equation form, the constraints on 1P  and 2P  are giv-
en by Equations (12). 

( ) ( )
( ) ( )

( ) ( ) ( )

1 2

2π 2π
1 20 0

2π 2
1 1 2 2 1 20

0    0,

d d 1,

1d co
π

,s

P P

P P

P P

θ θ

θ θ θ θ

θ θ θ θ θ θ θ

≥ ≥

= =

− ⋅ − = ⋅ −

∫ ∫

∫

                       (12) 

The only solution we have found where each function is finitely differentiable in the nonzero quadrants is 
given in Equations (13) and plotted in Figure 2. Note that both functions are nonzero only over half the 0 - 2π 
domain. This is required to get zero correlation at a 90 degree angular difference. The two functions are plotted 
versus angle in Figure 2.  
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Figure 2. Plot of two functions which cross-correlate to give the experimental 

( )2cos πθ  polarization correlation.                                                     
 

( )
( ) ( )

( ) ( )

1

2

sin 2
if  sin 2 0

2
0 otherwise

1 πif  mod , π
π 2
0 otherwise

P

P

θ
θθ

θ
θ


>= 


 ≤= 


                              (13) 

4. Discussion 
Bell’s theorem has long been considered a fundamental barrier to classical theories of light interaction with 
matter. C.B. Parker [2] summed up Bell’s theorem by saying, “No physical theory of local hidden variables can 
ever reproduce all of the predictions of quantum mechanics.” And Henry Stapp [3] summarized a broad feeling 
among scientists that: “Bell’s theorem is the most profound discovery of science.” 

The original test of Bell’s theorem used entangled electrons, but soon after that entangled photons were the 
experimental choice. John Clauser and Stuart Freedman [4] and later Alain Aspect et al. [5] demonstrated that 
the predictions of QM were accurately matched by experimental data. Clauser and Freedman summarized their 
work below: 

“We have measured the linear polarization correlation of the photons emitted in an atomic cascade of cal-
cium. It has been shown by a generalization of Bell’s inequality that the existence of local hidden variables 
imposes restrictions on this correlation in conflict with the predictions of quantum mechanics. Our data, in 
agreement with quantum mechanics, violate these restrictions to high statistical accuracy, thus providing 
strong evidence against local hidden-variable theories.” 

Quantum mechanics requires the collapse of a probability wave as one of the photons passes through its pola-
rizer, which then determines—faster than the speed of light—whether the other photon would pass through its 
polarizer. This connection has been probed in many forms over the last half century since Bell’s seminal 1964 
paper [1]. 

A 2014 paper called Bell Nonlocality by Bruner, N. et al. [6] comprehensively summarizes research into Bells’ 
theorem especially in regard to its nonlocal behavior with over 500 references. This nonlocal behavior has led to 
a difficult concept where what happens to one photon will determine what happens to the other even if the two 
are far away. Even stranger, this nonlocal interaction must happen faster than the speed of light to prevent one 

http://en.wikipedia.org/wiki/Local_hidden_variables
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photon from being in a measured state inconsistent with the other. 
The key advantage of a local theory of light is that this mysterious process that communicates the collapse of 

a quantum state faster than the speed of light is no longer required. The two photons agree with each other be-
cause they are in deterministic interlocked states. What we have found here is that by allowing the entangled 
photons to have independent but fixed probabilities of detection with the angle of their polarizers, there is indeed 
a local model of interaction that matches the predictions of quantum mechanics. 

The probability functions that result are strange looking to us and not explained or predicted by current theo-
ries of light, and yet the experimentally verified zero correlation of counts when the two polarizations are set 90˚ 
apart forces the two functions to have 90˚ sections with zero probability of detection. If there is a local theory of 
light interaction, it will have to have probability curves similar to those shown here. 

5. Conclusions 
One might conclude that such behavior of detection probability with angle would violate experimental data, but 
no one has ever measured the probability distribution of a single entangled photon. No one has even proposed a 
technique to do that. The reason why it is so difficult is that the orientation of a random pair of photons is ran-
dom and thus always has an equal probability of being detected at any angle of a polarizer. We can relate the 
probability of one photon detection correlating with the other, but so far we have no way to measure one pho-
ton’s probability of detection versus angle by itself. 

This paper has shown there are probability functions for individual entangled photons that will match verified 
quantum mechanical predictions. While many questions come up here, such as what theory of light would pre-
dict such probability of detection functions, we suggest that Bell’s theorem as a mathematical result should no 
longer be considered a definitive proof of non-local interaction. 
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