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Abstract 
This paper proposes an efficient, high-tech method of construction of pseudorandom binary se-
quences generators with a repetition period 2n for n-bit shift register with a nonlinear feedback 
function. The developed method is illustrated by constructing a nonlinear function feedback shift 
register. It is proved that the offered method requires the realization of a memory size propor-
tional to n2 that allows making successful use of suitable generators for practical use on the shift 
register of the longer word. 
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1. Introduction 
In tasks of information protection, statistical monitoring and diagnosis, modeling and designing, generators of 
pseudorandom sequences are widely used. The effectiveness of these generators in informational technologies is 
defined by specific features of using them [1]. 

Pseudorandom objects are very important in modern systems of information protection [2]. Especially impor-
tant role in this dynamically developing domain is played by pseudorandom binary sequences, which are used as 
a baseline for one of three types of information security algorithms—flow algorithms [3]. Pseudorandom se-
quences are widely used for generation of keys for the symmetrical data protection algorithms and pseudoran-
dom binary strings for protocols of authentication of remote users in integrated systems [4]. In modern condi-
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tions of productivity growth of computational systems and possibilities to unite a huge number of computers in a 
network for solving problems of security breach, the problem of adequate increasing the reliability of informa-
tion security becomes more actual, including methods of improving means of obtaining and using pseudoran-
dom sequences. 

Protective features of pseudorandom sequences and functional transformations in theoretical plan are defined 
by the principal impossibility of analytical solutions of the systems of non-linear Boolean equations [5]. This 
feature of Boolean transformations lies in the heart of using binary sequences and Boolean functions in informa-
tion security systems. That is why the level of protection of data with using pseudorandom sequences is directly 
dependent on the nonlinearity of Boolean functions, which are used to generate pseudorandom sequences. From 
this, important reserve for increasing effectiveness of means of information protection, which use pseudorandom 
sequences, is in improving means of formation such sequences in the direction of increasing the nonlinearity of 
Boolean transformations, which they use. 

Thus, at the current stage of development of information protection, the problem of developing methods and 
approaches for increasing effectiveness of hardware-software means of generation of pseudorandom binary se-
quences is actual. 

2. Analysis of the Current State of the Problem of Effective Generation of  
Pseudorandom Sequences for Information Security Problems 

2.1. Modern Generators of Pseudorandom Sequences Oriented to Be Used in Systems of 
Information Protection Are Built on the General Principles [5] 

• Divergence—the notion which came from the theory of dynamical systems and consisted in the fact that al-
gorithm of a generator should provide diverging sequence of binary n-bit words, that is the sequence, the re-
petitive cycle of which tends to 2n [5]. 

• Nonlinearity of used functions of transformations, which provides complexity of recognition of generation 
functions of pseudorandom sequences. 

• Computing complexity which means computational incompressibility of the procedures for pseudorandom 
sequences generation. 

Mentioned principles, formulated on the theoretical level, are not strictly defined and partly overlap each oth-
er [6]. The notion of divergence is often used if the base for the functional transformation, which lies in the base 
of the generator, is a special case of the theory of numbers [6]. For bit transformations the problem of diver-
gence which means to provide the repetitive cycle of 2n − 1, theoretically can be solved only for linear feedback 
functions: they must be isomorphic irreducible polynomials in Galois fields. For nonlinear functions of the bit 
transformation, divergence problem has a solution only for special cases [7]. 

2.2. A Criteria of Quality of the Generators of Pseudorandom Sequences Oriented to Be 
Used in Systems of Information Protection the Following Indicators Are Mostly Used 
[8] 

• Statistical criteria which allows to estimate the probability characteristics of the generated sequence [6]; 
• Divergence criteria of generator work—is estimated by the minimal length of cycle appeared during the run; 
• Unpredictability of the generator—is estimated by the complexity of the special algorithm-recognizer which 

allows to distinguish the generated sequence from random [7]; 
• Rate of sequence generation. 

Really important when these criteria are considered is the principle, formulated in [8] and postulating that the 
criterion for determining the randomness is always determined by the class of the problems in which this ran-
domness will be used, that is: use should determine the target probability distribution with the specified degree 
of approximation and the importance of each of the above criteria.  

The third of mentioned earlier criteria of quality of pseudorandom sequences generators is their algorithmic 
unpredictability, which stipulates the complexity of the algorithm which can predict next values by using data 
from previous samples [9]. From the point of reliability of data protection it is the third criterion is a determining, 
because all breaches in security provided by using pseudorandom sequences are reduced to the extrapolation of 
the recent [9]. It is proved that irreversible transformations should be used to make the sequence meet the un-
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predictability demand. For flow algorithms widely used in data transfers across networks and telecommunica-
tion systems, high speed of generation of the sequence is very important [3]. Exclusion of the possibility of 
gaining access to programs which implement the generation process is also very important. Based on the last 
two demands, more preferable is a variant of hardware realization of the generators. In this case, significant cri-
terion of quality of means of pseudorandom sequences generation is their complexity. In practice, the most im-
portant class of generators of pseudorandom sequences is the generators based on shift registers with linear 
feedback—LFSR (Linear Feedback Shift Register). The main advantage of such generators is the fact that due to 
the developed method of synthesis of the feedback functions their acyclic work is provided (it means the cycle is 
2n − 1 with n-bit shift register) along with the simplicity of circuit implementation on a hardware level and high 
performance [8]. So far as the maximum number of different combinations of n binary digits is 2n, period of the 
generated sequence cannot exceed 2n. If LFSR gets into a state with zero values of all bits, it cannot go to anoth-
er state. That is why zero state shouldn’t appear if the initial state nonzero. Therefore, the maximum number of 
possible states is 2n ‒ 1. Maximal length sequence will be provided in case when the feedback function is a sim-
ple polynomial in Galois fields [4]. Thus the number G(n) of simple polynomials in Galois fields, and therefore 
the quantity of sequences with length of 2n ‒ 1 formulated by LSFR is determined by the formula: 

( )
( )2 1n

LN n
n

φ −
=                                             (1) 

where φ(2n ‒ 1)—Euler number—quantity of integer, including ones, which are less than 2n ‒ 1 and those, which 
don’t have common divisors with 2n ‒ 1. 

Theoretically the maximum possible number of states of n-bit shift register equals 2n. Respectively, maximum 
repetition period of the binary sequence formulated by a nonlinear shift register of such length is 2n too. Such 
sequences are called Bruijn sequences. Number N(n) of nonlinear feedback functions of n-bit shift register 
which provide the maximum repetition period is determined by the formula: 

( ) 122
n nN n
− −=                                             (2) 

For example, for the 6-bit shift register (n = 6) according to (1) exist only 6 simple polynomials in Galois 
fields and respectively 6 linear functions which provide period of 26 ‒ 1 = 63 which is close to the maximum, 
though that number of nonlinear feedback functions for the register with the same bit number which provide the 
maximum period—26 according to (2) is 226 = 67108864. 

Despite such a big number of nonlinear feedback functions, providing the maximum period of repetition of 
the sequence, finding them is a challenge, which hasn’t acceptable solution to date [4]. So, for n = 6 assuming 
that the total number of functions is 264, the maximum period is provided, on average, only by one of 264-26 = 240 
functions. 

3. Method of Finding Nonlinear Feedback Functions 
The state of a shift register is characterized by w code which corresponds to the binary vector of Xw values of 
register bits: 

{ }0 1 2 1, , , ,w w w w
w n nX x x x x− −=   

During the register shift new value of v code is determined by the following method: 

( ){ } ( )1 2 2, , , , , 2 mod 2w w w n
v n wX x x x f X v w−= = ⋅

 

Suppose f(x1, x2,…, xn)—Boolean feedback function of n-bit shift register for which the following condition is 
true:  

( ) ( )0 1 1 0 1 1, , , 1 1, , ,n nf x x x f x x x− −= ⊕ ⊕                                (3) 

If the feedback function ( )1 2, , , nf x x x  satisfies the condition (3), then each v code in the register is pre-
ceded by only one w code. 

A set of codes which sequentially formulated in shift register with feedback feature which satisfies the condi-
tion [4] we will name the ring. Each of 2n possible codes in n-bit register is included into one of the rings. 
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Suppose we have two rings—A and B. If code w is included in A and the symmetrical to it code 
( )12 mod 2n nv w −= +  is included in B, then inverting the value of the function in these codes will lead to unite 

of A and B rings. 
Proof: Binary vector { }0 1 2 1, , , ,w w w w

w n nX x x x x− −=   of state of the register corresponds to w code. Code e fol-
lows after w in the A ring: ( ){ }1 2 2, , , ,w w w

e n wX x x x f X−=  . When inverting the value of the feedback function  
on code w, the following after w will be code u: ( ){ }1 2 2, , , , 1w w w

u n wX x x x f X−= ⊕ . Code v is symmetrical to w:  

{ }0 1 2 11, , , ,w w w w
v n nX x x x x− −= ⊕  . According to (3.1) ( ) ( )1v wf X f X= ⊕ , that is why code u follows after v in 

the B ring. When inverting functions on code v, the following code will be e: 
( ){ }1 2 2, , , , 1w w w

e n wX x x x f X−= ⊕ . 
Therefore, when inverting functions on symmetrical codes which are included into different rings A and B, 

after w code there will be transition to code u ∈  В. Later, serial pass of all codes of the ring B is performed, 
last of which is code v. From this code transition to code e ∈  А is performed. Further all codes of the ring A 
are passed serially. Thus, rings A and B are combined into one ring. 

Offered method of synthesis of the nonlinear feedback function which provides full period is based on basic 
procedure of combining rings, obtained during cyclic shift. 

The function of cyclic shift of the shift register equals to senior bit of the current code K. 

( ) 012
k

n n

kf X x−
 = =  

                                  (4) 

Obviously, that function (4) satisfies the condition (3). Function (4) forms NR rings, each of which includes 
codes with equal number of ones. Let’s denote with R(k) the ring, which includes code k. Suppose L(A)—num- 
ber of ones in codes of the cyclic ring A. For example, when n = 4 and k = 6: R(k) = {6(0110), 12(1100), 
9(1001), 3(0011)}, L(R(k)) = 2. 

Each of rings has only one minimal code. It is obvious that for any cyclic ring A ≠ R(0), minimal code q = 
min(A) is an odd number ( )1 1q

nx − = . It means that nonzero minimal code q of the cyclic ring can always be 
represented as q = 2∙d + 1. 

4. The Basic Procedure for Combining Cyclic Rings Is in Performing the Following 
Sequence 

1. Initial value of the current code j is chosen randomly, 0 < j < 2n. Counter of h codes, for which the value of 
the feedback function is determined, is set to one: h = 1. 

2. u = (2∙j) mod 2n + 1 is calculated. If calculated code u is minimal in its ring, which means u = min(R(u)), 
then the value of the feedback function on code j is determined as an inversion of the cyclic shift: 

( ) 01 1 1
2

j
j n

jf X x−
 = ⊕ = ⊕  

, otherwise ( ) 01 1 1
2

j
j n

jf X x−
 = ⊕ = ⊕  

, where [x]—the less of integers, which  

is greater than x. 
3. The new value of the current code j: = (2∙j) mod 2n + f(Xj) is calculated. Increment of the counter is per-

formed: h: = h + 1. If h ≤ 2n, then return to item 2, otherwise-end. 
The function of cyclic transfer forms NR rings. Described procedure provides a connection of all these rings 

into one. 
Proof: Combining of the rings is performed in pairs. Let’s consider random ring B, which consist of codes 

which include m ones (0 < m < n), minimum of them is denoted as ( )min min Bβ = . Previous to his code is 
12nβ −≥  what is more 1

min 2 2 1nβ β −= ⋅ − + . Obviously that code 12nα β −= −  differs from code β  only 
with one in senior bit and therefore belongs to another ring A. Since min 2 1β α= ⋅ + , then respectively to men-
tioned procedure the feedback function will change its value on a X α  set in a way in which code α  will be 
followed by the code minβ . Value of the function in code β  will also be changed in a way when this code will be 
followed by the code 2nextα α= ⋅ . In this way the described procedure provides a union of the rings A and B. 

Transfer to the minimal code of the B ring possible from one code of the ring A: L(B) = L(A) + 1 except the 
situation when L(B) = 0. In this case one code is a predecessor of minimal codes for both rings. For example, 
when n = 4 code 1(0001) precedes the minimal code 0 of the ring {0} and the minimal code 1(0001) of the ring 
{1, 2, 4, 8}. 

The minimal code of each of the rings (except the ring, which consist of zero code) is preceded by the code 
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with less number of ones from other ring. It means that described procedure provides a binding of all rings, 
made by cyclic shift. 

When k = 1 according to (4) RN(5,1) = 1 and, respectively, exist only one partial ring 1
1G , which includes 

only one set Xw = {10000}. Respectively, { }0000wX ′ =  and ϕ(0000) = 1. 
When k = 2 there are two partial rings: 2 2

1 2,G G . When j = 1 from 2
1G —first partial ring, set Xw = {10010};  

{ }0010wX ′ =  and ϕ(0010) = 1 is chosen randomly. When j = 2 from 2
2G —second partial ring, set Xw = {11000}  

and, respectively, { }1000wX ′ =  и ϕ(1000) = 1 is chosen. When k = 3 there are two partial rings: 3 3
1 2,G G . When 

j = 1 from 3
1G —first partial ring, which contains 3 sets, set Xw = {11010} is randomly chosen. Respectively, 

{ }1010wX ′ =  and ϕ(1010) = 1. When j = 2 from 3
2G —second partial ring, set Xw = {11100}: { }1100wX ′ =  

and ϕ(1100) = 1 is also randomly chosen.When k = 4 there is only one partial ring 4
1G , which includes 4 sets. 

For example, second of them is randomly chosen: Xw = {11101}. Respectively, { }1101wX ′ =  and ϕ(1101) = 
1.When k = 5 there is only one partial ring 5

1G , which includes only one set Xw = {11111} for which 
{ }1111wX ′ =  and ϕ(1111) = 1. 

The resulting table of the values of the Boolean function ( )1 2 3 4, , ,х х х хϕ  is showed in Table 1. 
In algebraic normal form the synthesized function ( )1 2 3 4, , ,х х х хϕ  has the following form: 
( )1 2 3 4 1 3 1 3 3 4 2 3 4 1 2 3 4, , , 1х х х х х х х х х х х х х х х х хϕ = ⊕ ⊕ ⊕ ⋅ ⊕ ⋅ ⊕ ⋅ ⋅ ⊕ ⋅ ⋅ ⋅ . Therefore, the feedback function of the 

shift register providing repetitive cycle 25 will have the following form: 
( ) ( )1 2 3 4 5 5 1 2 3 4 1 3 5 1 3 3 4 2 3 4 1 2 3 4, , , , , , , 1f х х х х x x х х х х х х x х х х х х х х х х х хϕ= ⊕ = ⊕ ⊕ ⊕ ⊕ ⋅ ⊕ ⋅ ⊕ ⋅ ⋅ ⊕ ⋅ ⋅ ⋅ . 

Let’s demonstrate that the proposed method of synthesis of the feedback function is constructive. An operation 
of setting value of the function ( )1 2 1, , , nх х хϕ −  into one which is used in this method corresponds to coupling of  
the ring which includes code { }1 2 1, , , , 1i n nX x x x x−= =  and the ring which include code 

{ }1 2 1, , , , 0j n nX x x x x−= = , where ( ){ }1, , ,i NR n k∈  , ( ){ }1, , , 1j NR n k∈ − . As the proposed method  
suggests a choice of one X code from all rings then it means that each ring is connected with one of the rings, codes 
of which have less number of ones. Thus all rings are connected into one that provides the maximum period of 2n 
repeats of the code in the shift register. 

Described procedure for constructing the nonlinear feedback function opens opportunities for optimizations of 
parameters of generated pseudorandom binary sequences by choosing the ring from set of G. Since the procedure 
is consistent and includes element of choice, then choice can be done from selected criteria, for example, criterion 
of the maximum of nonlinearity or compliance to avalanche effect. 

For comparative analysis of the effectiveness of the proposed method it is important to estimate the number of 
nonlinear feedback functions, which can be obtained from its use. The number NF(n) of Boolean functions which 
allow to synthesize the proposed method is determined by number of variants of choice of codes from partial rings. 
Since this choice is independent for each partial ring, then numeric value NF(n) is determined as a product of a 
number of variants for choice. With fixed number of k ones in the code of the ring, which contains n codes, number 
of variants to choose the code from partial ring is k. The total number of such rings is NF(n), numeric value of 
which is determined by the formula (2.12). Therefore, the total number of variants for choice of the code which 
contains k ones from the rings with length n is kNR(n,k). For rings with less length the number of variants of choice of 

the code is k d
n
⋅ , where d—divider of n and number of such rings is , k dNR d

n
⋅ 

 
 

. Thus, the total number of 

 
Table 1. Values of ( )1 2 3 4, , ,х х х хϕ .                                                                         

X′ ϕ(X′) X′ ϕ(X′) 

0 0 0 0 1 1 0 0 0 1 

0 0 0 1 0 1 0 0 1 0 

0 0 1 0 1 1 0 1 0 1 

0 0 1 1 0 1 0 1 1 0 

0 1 0 0 0 1 1 0 0 1 

0 1 0 1 0 1 1 0 1 1 

0 1 1 0 0 1 1 1 0 0 

0 1 1 1 0 1 1 1 1 1 
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NF(n) feedback functions which allows to synthesize the proposed method is defined by the following expression:  

( ) ( ) ( )

( ) ( )

( ) ( )

21
,

1 2

,

, , ,

, , 1: , , 0

, , : , , 1

nn
NR n k

k d

k dRN d
n

NF n k n k d где

k dn k d n d d
n

k d k dn k d n d d
n n

ψ

ψ ξ ξ

ψ ξ ξ

−

= =

⋅ 
 
 

= ⋅

⋅ = ⋅ = 
 

⋅ ⋅   = ⋅ =   
   

∏ ∏

                   (5) 

Analysis shows that developed method allows synthesizing 10 times more functions comparing with knows 
methods. 

For n = 5 the proposed method allows to obtain NF(5) = 144 feedback functions, when the existent methods 
propose not more than 15 functions [8]. At the same time the proposed method is quite simple and technological [4] 
that provides higher performance compared to known methods. The proposed method is realized in software and 
successfully passed all tests. 

The disadvantage of the method of building LFSR based on described procedure of combining elements of 
closed code groups is the fact, that time and amount of memory proportional to 2n is required for its implemen-
tation. A modification is proposed to significantly decrease computational complexity by narrowing the class of 
synthesized feedback functions and optimization of the procedure of building the function in disjunctive normal 
form. 

Suppose the current vector of the values of bits of n-bit shift register is { }0 1 1nR r r r −=  . As it was proved 
earlier feedback function f(R) provides full repetition period if on sets to which the minimal in its ring 

1
1

0
2

n
n k

k
k

w r
−

− −

=

= ⋅∑  code corresponds, f(R) equals the inversion of the senior bit of the set:  

( ) 0 1f R r= ⊕  

( ) 0and on other setsf R r= . 

Feedback function will formed as:  

( ) ( ) ( )0 0f R r X r Xµ µ= ⋅ ∨ ⋅  

where { } { }0 1 1 1 2 1, , , , , , ,1n nX x x x r r r− −= =  —vector of bits obtained by shifting R to the left by one bit with 
filling vacated junior bit with one; µ(X)—function which takes zero value if X corresponds to the minimal value 
of the code in the ring and one otherwise. 
µ(X) can be formed as disjunction of all tij terms:  

( )( ) ( )

2

1mod  1 mod0
 & ,

1, , 1, 1, , 1.

i

ij k ij k n j i nk
t x x x x

i n j n

−

−+ + −=
= ⊕ ⋅ ⋅

= − = − 

. 

Set cannot be minimal if it contains at least one sequence of bits ( ){ }1 1 mod, , ,j j j j i nS x x x+ + −= 

 with length i, 
with initial bit in position j, 0 1j n< < − , if numeric value of such sequence is less than value of the sequence 
with the same length of i senior bits of the set { }0 0 1 1, , , iS x x x −=  .. (If j + k > n, then senior bits of the set are 
used). 

In particular, the set isn’t minimal if i ‒ 1 of corresponding senior bits of this sequence are equal and the junior 
bit of the sequence S0 is greater than junior bit of the sequence Sj: 

( )

( )

( )

0

1 1 mod

2 2 mod

1 1 mod

,

,

,

.

j

j n

i j i n

i j i n

x x

x x

x x

x x

+

− + −

− + −

=

=

=

>


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In each term tij check of satisfying this condition is performed. If 1i −  of corresponding senior bits of se-
quences S0 and Sj are equal, and 1 1i j ix x− + −> , then tij is equal to one that means that this set isn’t the minimal in its 
ring.  

Condition is checked for all length of sequences 1, , 1i n= − , and for all values distances between initial sets 
of sequences 1, , 1j n= − . Combining all conditions through the operation of disjunction as it is during forma-
tion of the µ(X) function, provides a check if the value of the code, to which vector X corresponds, is minimal in 
the ring. In Table 2 there is an example of formation all terms tij for a 5-bit register. 

To extend the procedure of formation of the feedback functions, which provide full period, the previously de-
scribed method of pre-unification of the two rings can be used. Let’s consider examples of work of the f1(X) 
function for n = 5 with different values of bits vector X. 

Example 1. { } { }0 1 2 3 4, , , , 0,0,1,0,1Х x x x x x= =  

Let’s determine terms for sequences with the length of one. The sequence of senior bits is S0 = {x0} = {0}. Next, 
let’s compare X0 with each bit x1, x2, x3, x4: 

11 0 1

12 0 2

13 0 3

14 0 4

0,
0,
0,
0.

t x x
t x x
t x x
t x x

= ⋅ =

= ⋅ =

= ⋅ =

= ⋅ =

 

Note that for all sets with zero senior bit, values of t1j will always be zero. 
Let’s determine terms for sequences with length i = 2 : S0 = {0, 0}. 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

21 0 1 21 21 1 2

22 0 2 22 22 1 3

23 0 3 23 23 1 4

24 0 4 24 24 1 0

0 0 1, 1 0 1 0;

0 1 0, 0 0 0 0;

0 0 1, 1 0 1 0;

0 1 0, 0 0 0 0.

p x x t p x x

p x x t p x x

p x x t p x x

p x x t p x x

= ⊕ = ⊕ = = ⋅ ⋅ = × × =

= ⊕ = ⊕ = = ⋅ ⋅ = × × =

= ⊕ = ⊕ = = ⋅ ⋅ = × × =

= ⊕ = ⊕ = = ⋅ ⋅ = × × =

 

It is obvious that all t2j have zero value. As long as values of the following tij depend on p2j, we will determine 
terms only for those values j, where p2j has value of one, thus j = 1 and j = 3. The length of the sequence i = 3, S0 = 
{0, 0, 1}. Let’s find terms for j = 1 and j = 3. 

( ) ( )
( ) ( )

31 21 1 2 31 31 2 3

33 23 1 4 33 33 2 3

1 0 1 0, 0 0 1 0;

1 0 1 0, 0 0 1 0;

p p x x t p x x

p p x x t p x x

= ⋅ ⊕ = × ⊕ = = ⋅ ⋅ = × × =

= ⋅ ⊕ = × ⊕ = = ⋅ ⋅ = × × =
 

Zero values of p31 and p33 during calculations of the following terms convert the result into zero. Therefore, all 
tij for this set are equal to 0. f1(X), formed as disjunction of all tij terms, also obtains zero value. It means that code 
 
Table 2. Terms tij for n = 5.                                                                                     

 j = 1 j = 2 j = 3 j = 4 

i = 1 x0∙x1 x0∙x2 x0∙x3 x0∙x4 

i = 2 (x0 ⊕  x1)∙ 
∙x1∙x2 

(x0 ⊕  x2)∙ 
∙x1∙x3 

(x0 ⊕  x3)∙ 
∙x1∙x4 

(x0 ⊕  x4)∙ 
∙x1∙x0 

i = 3 
(x0 ⊕  x1). 

∙(x1 ⊕  x2). 
∙x2∙x3 

(x0 ⊕  x2). 

∙(x1 ⊕  x3). 
∙x2∙x4 

(x0 ⊕  x3). 

∙(x1 ⊕  x4). 
∙x2∙x0 

(x0 ⊕ x4). 

∙(x1 ⊕  x0). 
∙x2∙x1 

i = 4 

(x0 ⊕  x1). 

∙(x1⊕  x2). 

∙(x2 ⊕  x3). 
∙x3∙x4 

(x0 ⊕  x2). 

∙(x1 ⊕  x3). 

∙(x2 ⊕  x4). 
∙x3∙x0 

(x0 ⊕  x3). 

∙(x1 ⊕  x4). 

∙(x2 ⊕  x0). 
∙x3∙x1 

(x0 ⊕  x4). 

∙(x1 ⊕  x0). 

∙(x2⊕  x1). 
∙x3∙x2 
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w, corresponding to Х = {0, 0, 1, 0, 1} set, has the minimal value in the ring. Really, w = 16 × 0 + 8 × 0 + 4 × 1 + 
2 × 0 + 1 × 1 = 5 and the ring, where it is included, is {5, 10, 20, 9, 18}. We can see that 5 is the minimal value. 

Example 2. { } { }0 1 2 3 4, , , , 0,1,1,0,1Х x x x x x= =  
2.1 Since x0 = 0, then terms t11 = t12 = t13 = t14 = 0. 
2.2 Let’s determine term for sequences with length of i = 2: S0 = {0, 1}. 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

21 0 1 21 21 1 2

22 0 2 22 22 1 3

23 0 3 23 23 1 4

24 0 4 24 24 1 0

0 1 0, 0 1 1 0;

0 1 0, 0 1 0 0;

0 0 1, 1 1 1 0;

0 1 0, 0 0 0 0.

p x x t p x x

p x x t p x x

p x x t p x x

p x x t p x x

= ⊕ = ⊕ = = ⋅ ⋅ = × × =

= ⊕ = ⊕ = = ⋅ ⋅ = × × =

= ⊕ = ⊕ = = ⋅ ⋅ = × × =

= ⊕ = ⊕ = = ⋅ ⋅ = × × =

 

All terms for t2j have zero values. Among values of p2j there is only one value p23 = 1, which can be used for 
further calculations. The rest of these values turn terms, to which they are included, into zero. Let’s consider the 
sequence of length i = 3. The sequence of three senior S0 = {0, 0, 1}. For all j values except j = 3, terms t3j will be 
zero. Determining p33 and t33: 

( ) ( )33 23 1 4 33 33 2 31 1 1 1, 1 1 0 1.p p x x t p x x= ⋅ ⊕ = × ⊕ = = × × = × × =  

If we have at least one term with value of 1, the value of the function f1(X) will also be one. 
Therefore, for X = {0, 1, 1, 0, 1}, f1(X) = 1, it means code w = 13 isn’t a minimum in its ring. Let’s make sure 

that it is true. We obtain a ring by cyclic shift: {13, 26, 21, 11, 22}. Here we can see that the minimal value in this 
ring is 11, not 13. Table 3 shows the result of construction of the feedback function for a 5-bit shift register with 
minimal repetitive cycle. 

Complexity of the developed algorithm of construction of the feedback function in Zhegalkin’s algebra is 
equivalent to the function itself. 

Let’s estimate the complexity of the f1(X) function. To calculate one term tij the following number operations are 
required: 
• i − 1 operations NXOR ( )⊕  to compare corresponding bits of the sequences; 
• 1 operation AND to check the condition ( )1 1 mod ;i j i nx x− + −>  
• i − 1 operations AND to unite all conditions. 

So, in total we have 2i − 1 operations. The total complexity of calculation the terms for all values i and j is:  

( ) ( ) ( ) ( )
1 1 1 3

1 1 1
2 1 2 1 2 1 2 1

n n n

i j i
i n i n

− − −

= = =

⋅ − = ⋅ − ⋅ ⋅ − = ⋅ −∑∑ ∑                        (5) 

Another (n − 2)2 operations OR are required to unite all terms, that is to calculate the function µ(X) 2(n − 1)3 + 
(n − 2)2 operations are required, therefore, the complexity is proportional to n3. 

As we can see, the function is redundant. In each term tij calculations, which are made for ti‒1j, are performed. 
During paired comparison of the elements of the sequences S0 and Sj with length of i > 2 the results of the first i − 
2 elements are known form the previous step. That is why the formula to determine tij can be written as:  

( ), 1 1 modij i j i j i nt p x x− + −= ⋅ ⋅ , 

where pi,j-term, which compares for equality senior i − 1 bits of the sequences.  
pij can be determined as:  

( )( )2 12 mod1, if 2, , if 2 1.ij ij i i jj i np i p x x p j n− −+ −= < = ⊕ ⋅ < < −  

Since for calculations of each tij constant number of operations is performed (1 operation when i = 1 and 4 
otherwise), the complexity of the function µ(Х) will be proportional to n2: ( ) ( )4 1 2 2 2 1n n n n n− + = − . 

The amount of memory required to perform the algorithm is determined by necessity to save all terms tij, 
1, , 1i n= − , 1, , 1j n= − . Therefore, memory expenses are proportional to n2.  

5. Conclusions  
An approach is proposed for the construction of the important element of the contemporary systems for the pro- 
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Table 3. Construction of the feedback function.                                                                 

No. R X µ f 

0 00000 00001 0 1 

1 00001 00011 0 1 

2 00010 00101 0 1 

3 00011 00111 0 1 

4 00100 01001 1 0 

5 00101 01011 0 1 

6 00110 01101 1 0 

7 00111 01111 0 1 

8 01000 10001 1 0 

9 01001 10011 1 0 

10 01010 10101 1 0 

11 01011 10111 1 0 

12 01100 11001 1 0 

13 01101 11011 1 0 

14 01110 11101 1 0 

15 01111 11111 0 1 

16 10000 00001 0 0 

17 10001 00011 0 0 

18 10010 00101 0 0 

19 10011 00111 0 0 

20 10100 01001 1 1 

21 10101 01011 0 0 

22 10110 01101 1 1 

23 10111 01111 0 0 

24 11000 10001 1 1 

25 11001 10011 1 1 

26 11010 10101 1 1 

27 11011 10111 1 1 

28 11100 11001 1 1 

29 11101 11011 1 1 

30 11110 11101 1 1 

31 11111 11111 0 0 

 
tection of information-generators of pseudorandom binary sequences with the repetition period 2n on the basis of 
n-bit shift register with the nonlinear feedback function. Such generators are considerably simpler and more ef-
ficient compared with the generators constructed in the form of LFSR system and nonlinear inverter.  

Within the common approach, based on the technology of the association “rings”, realization of which requires 
memory with size 2n, is developed with high-tech modification, which makes it possible to build the generators of 
pseudorandom sequences on the basis of the shift register with the nonlinear feedback function of with the use of 
memory, proportional to n2. The use of the method proposed makes it possible to build a suitable for the practical 
use in the telecommunication technologies. An experimental study made it possible with the use of the method 
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proposed to build generators of word length up to 128 bit. 
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