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Abstract 
Network Calculus is a powerful mathematical theory for the performance evaluation of communi-
cation systems; among others it allows to determine worst-case performance measures. This is 
why it is often used to appoint Quality of Service guarantees in packet-switched systems like the 
internet. The main mathematical operation within this deterministic queuing theory is the min- 
plus convolution of two functions. For example the convolution of the arrival and service curve of 
a system which reflects the data’s departure. Considering Quality of Service measures and per-
formance evaluation, the convolution operation plays a considerable important role, similar to 
classical system theory. Up to the present day, in many cases it is not practical and simple to per-
form this operation. In this article we describe approaches to simplify the min-plus convolution 
and, accordingly, facilitate the corresponding calculations. 
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1. Introduction 
Timeliness plays an important role regarding systems with real time requirements. This Quality of Service (QoS) 
requirement can be found in many kinds of embedded systems which permanently exchange data with their en-
vironment; like safety-critical automotive systems or real time networks. Since knowledge of mean values is not 
sufficient, analytical performance evaluation of such systems cannot be based on stochastic modeling as applied 
in traditional queuing theory. For these systems worst-case performance parameters like maximum delay of ser-
vice times are required. In order to specify guarantees of performance figures—in terms of bounding values 
which are valid in any case—a mathematical tool Network Calculus (NC) as a novel system theory for determi-
nistic queuing theory has been developed [1]. 

The development of this theory has been started by Cruz [2] [3] on the ( ),σ ρ  traffic description and his 
calculus for network delay. Further steps towards NC were taken by the work of Parekh and Gallagher [4] to 
determine the service curve of Generalized Processor Sharing (GPS) schedulers. The NC framework has been 
successfully applied for the analysis and dimensioning in various domains, including industrial automation net-
works [5] or automotive communications bus systems [6]. 

This article is structured as follows, in Section 2 we describe the basic modeling elements of NC theory. The 
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subsequent Section 3 demonstrates the difficulties of convolution calculation and describes possible solution 
approaches. Finally, Section 4 draws a conclusion and indicates future steps. 

2. Basic Modeling Elements of Network Calculus 
The most important modeling elements of NC are the arrival curve (denoted by α  in the figures) and the ser-
vice curve (denoted by β  in the figures) together with the min-plus convolution. The arrival and the service 
curve are the basis for the computation of maximum deterministic boundary values like backlog and delay 
bounds [1]. 

Definition 1 (Arrival curve) Let ( )tα  be a non-negative, non-decreasing function. Flow F  with input 
( )x t  at time t is constrained by or has arrival curve ( )tα  iff ( ) ( ) ( )x t x s t sα− ≤ −  for all 0t s≥ ≥ . Flow 

F  is also called α -smooth. 
Example 1 A commonly used arrival curve is the token bucket constraint: 

( ),

:    0
0 :    0r b

b rt t
t

t
α

+ >
=  ≤

                                   (1) 

Figure 1 shows an arrival curve which represents an upper limit for a given traffic flow ( )x t  with an aver-
age rate r  and an instantaneous burst b . Therefore: 

( ) ( ) ( ),r bx t x s t sα− ≤ − . 

For :t t s∆ = −  and 0t∆ → : 

( ) ( ){ } { }
0

lim lim
t s t

x t x s r t b b
→ ∆ →

− ≤ ⋅∆ + =                               (2) 

Next the convolution operation, which plays the most important role in Network Calculus will be defined. 
Definition 2 (Min-plus convolution) Let ( )f t  and ( )g t  be non-negative, non-decreasing functions that 

are 0 for 0t ≤ . A third function, called min-plus convolution is defined as 

( )( ) ( ) ( ){ }
0
inf

s t
f g t f s g t s

≤ ≤
⊗ = + −                                (3) 

On this basis we can characterize the arrival curve ( )tα  with respect to a given ( )x t  as: ( ) ( )( )x t x tα≤ ⊗  
In other words, arrival curves describe an upper bound to the input stream of a system. Considering the sys-

tem’s output, we might be interested in service guarantees: like a minimum of output ( )y t , i.e. the amount of 
data that leaves the system. The following definition deals with this problem. 

Definition 3 (Service curve) Let a system S  with input flow ( )x t  and output flow ( )y t  be given. The 
system provides a (minimum) service curve ( )tβ  to the flow, iff ( )tβ  is a non-negative, non-decreasing 
function with ( )0 0β =  and if ( )y t  is lower bounded by the convolution of ( )x t  and ( )tβ , i.e.: 
 

 
Figure 1. Token bucket arrival curve. 
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( ) ( )( )y t x tβ≥ ⊗                                    (4) 

Figure 2 shows ( )( ) ( ) ( ){ }0inf s tx t x s t sβ β≤ ≤⊗ = + −  as lower bound of output ( )y t  and input ( )x t . 
Such service curves are functions of the time and describe the service of network elements like routers or sche-
dulers in an abstract manner [7]. 

Example 2 A commonly used service curve of practical applications is the rate-latency function: 

( ) ( ) [ ] { }, : max 0,R Tt t R t T R t Tβ β += = ⋅ − = ⋅ −                        (5) 

This function reflects a service element which offers a minimum service of rate R  after a worst-case latency 
of T . Since we want to analyze the worst-case performance, it is possible to abstractly model the complex in-
ternal behavior of the node by just describing the worst-case service using this curve. This is very important in 
practical utilization. 

In Figure 4, the (green) line depicts the rate-latency service curve with rate R  and latency T . 
Consider a system with input flow ( )x t , arrival curve ( )tα , output flow ( )y t  and service curve ( )tβ . 

According to [1] the following three bounds can be derrived: 
• Backlog Bound v : 

( ) ( ) ( ) ( ) ( ){ }0supsv t x t y t s sα β≥= − ≤ −  

• Delay Bound d  in case of FIFO service: 

( ) ( ){ }{ }0 inf :sup sd s sτ α β τ≥≤ ≤ +  

• Output Bound ( )tα∗ : 

( ) ( ) ( ){ }0: sup st t s sα α β α β∗
≥= = + −  

Remark: 
The complete backlog ( ) ( ) ( )v t x t y t= −  at time t  within a system is also called unfinished work or buffer

( )t . The expression ( ) ( ){ }inf : s sτ α β τ≤ +  is called virtual delay: the minimal time distance which is ne-
cessary for input x  for being served to output. Thus, the backlog and delay bound are the maximal vertical and 
horizontal deviation between arrival and service curve. Figure 3 depicts d  and v  for a given arrival- and 
service curve. 

Example 3 Let a system with a token bucket-smooth input and rate-latency service be given, thus: 

( ) ( ) ( ),r bx t x s t sα− ≤ −  
and 
 

 
Figure 2. Convolution as a lower output bound. 
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( ) ( ) ( ){ },infs t R Ty t x s t sβ≤≥ + − . 

Based on the three bounds above we can calculate the delay bound as bd T
R

≤ + , the output bound as  

( ) ( )t r t T bα∗ = + + , and the backlog bound as v b rT= + . Figure 4 shows these results. 

3. Difficulties of the Convolution Operation 
Within the Network Calculus (NC) theory, the convolution operation of so-called min-plus algebra is considered 
the most essential operation. This is because—based on the arrival- and service curve—it computes the depar-
ture of a network element, therefore it is the main instrument of analytical performance evaluation. For example 
in [1], this operation is carried out “by hand” using pure analytical calculation. 

Take Example 3 for which , ,r b R Tα β⊗  as the lower bound for output , ,: r b R Ty y α β≥ ⊗  needs to be com-
puted. 

3.1. Analytical Computation of Convolution Operator ⊗  
a) 0 :t T≤ ≤  

 

 
Figure 3. Backlog and delay bound. 

 

 
Figure 4. Example for the bounds. 
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( )( ) ( ) [ ]{ } ( ){ } ( ), , , , ,inf inf 0 0 0 0r b R T r b r b r bs t s t
t t s R s T t sα β α α α+

≤ ≤
⊗ = − + − = − + = + =  

b) :t T>  

( )( )
( ) [ ]{ }
( ) [ ]{ } ( ) [ ]{ } ( ) [ ]{ }
( ){ } ( ) ( ){ } ( ){ }

( ){ } ( ){ }{ } ( ){ }
( ){ } ( ){ } ( ){ }
( ){ } ( ){ }

, ,

,

, , ,

inf

inf inf inf

inf 0 inf 0

inf

r b R T

r bs t

r b r b r bs T T s t s t

s T T s t

T s t

t

t s R s T

t s R s T t s R s T t s R s T

b r t s b r t s R s T R t T

b r t T b rt RT R r s R t T

b r t T b r t T R t T

b r t T R t T

α β

α

α α α

+

≤

+ + +

≤ ≤ ≤ =

≤ < <

< <

+ +

⊗

= − + −

= − + − ∧ − + − ∧ − + −

= + − + ∧ + − + − ∧ + −

= + − ∧ + − + − ∧ −

= + − ∧ + − ∧ −

= + − ∧ − .

      (6) 

Here { }min ,A B A B∧ =  and convolution ( ), ,r b R Tα β⊗  with result (6) is depicted in Figure 5. 
For the following convolution of two rate-latency service curves (concatenation) a similarly complex calcula-

tion is required. 

( )1 1 2 2 1 2 1 2, , min , ,R T R T R R T Tβ β β β += ⊗ =                              (7) 

As we can see from above, this analytical approach is cumbersome and error-prone. But, similar to convolu-
tion of classical systems theory, the convolution ⊗  is of great importance for NC theory. This is why we are 
looking for other more elegant methods to computation. 

Next, two alternative approaches called Use of algebraic laws and Use of convex analysis will be introduced. 

3.2. Use of Algebraic Laws 
In the following, the NC-relevant functions Φ  are defined as non-negative, non-decreasing, and passing 
through the origin: 

( ) ( ) ( ){ }1 0 1 0: 0  , 0 0f f t f t t t fΦ = ≥ ≥ ∀ ≥ =                          (8) 

Among others, the following algebraic properties for the set of functions Φ  can be found in literature [1] 
 

 
Figure 5. Convolution of , ,r b R Tα β⊗ . 
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• Rule 1 (Commutativity of ⊗ ): f g g f⊗ = ⊗  
• Rule 2 (Associativity of ⊗ ): ( ) ( )f g h f g h⊗ ⊗ = ⊗ ⊗  
• Rule 3 (Distributivity of ⊗  and ∧ ): ( ) ( ) ( )h f g h f h g⊗ ∧ = ⊗ ∧ ⊗  
• Rule 4 (Addition of a constant): ( ) ( )     0g K f K g f K⊗ + = + ⊗ ∀ ≥  
• Rule 5 (Concave functions passing through the origin): { }min ,f g f g⊗ =  
• Rule 6 (Shifting of f to right): ( )( ) ( )Tf t f t Tδ +⊗ = −  with ( ) 0T tδ =  for t T≤  and ∞  otherwise. 

Now, we only apply these algebraic rules to compute the convolution ⊗ . 
We consider Example 3 in an even more general form: 

( ), ,r b R TKα β⊗ +  with any constant K ; let r r tλ = ⋅  

( )
( )

( )
( )

( )
( )

( )( )
( )

( )( )
( )

( )( )
( )

( ) ( )
( )

( )( )
( )

( )( )
( )

( )( )
( ){ }

, ,

Rule1 Rule6 Rule4

, , , ,

Rule2 Rule5 Rule3

, , ,

Rule6 Rule4 Rule6

, , , ,

r b R T

R T r b T R r b T R r b

T R r b T R r b T R T r b

R T T r R T T r R T r T

K

K K K

K K K

K b K b K b

K b r t T R

α β

β α δ λ α δ λ α

δ λ α δ λ α δ λ δ α

β δ λ β δ λ β β
+

⊗ +

= + ⊗ = + ⊗ ⊗ = + ⊗ ⊗

= + ⊗ ⊗ = + ⊗ ∧ = + ⊗ ∧ ⊗

   = + ∧ ⊗ + = + ∧ ⊗ + = + ∧ +   

= + + − ∧ ( ){ }.t T +−

      (9) 

Or take the concatenation example: 
1 1 2 2, ,R T R Tβ β β= ⊗ : 

( ) ( )
( )

( )( ) ( )( )
( )

( ) ( ) ( )( )
( )

{ } ( ) ( )( )
( )

{ } ( )( ) ( )

1 2 1 2

1 2 1 2 1 2

Rule6 Rule2

1 1 2 2 1 2 1 2

Rule5 Rule6

1 2 1 2 1 2 min , , min , min , .

T T T T

T T R R T T

R t T R t T R t t R t t R t R t t t

R R t t t R R t T T

β δ δ δ δ

δ δ β

+ +

+

= − ⊗ − = ⊗ ⊗ ⊗ = ⊗ ⊗ ⊗

= ⊗ ⊗ = − + =

   (10) 

3.3. Use of Convex Analysis 
The next approach is based on the theory of convex analysis [8]. Similar considerations related to NC theory can 
be found at [9]. However, we go another way considering “incomplete” convex functions. In Rockafellar’s book 
[8] all necessary preconditions for the following definition and proofs of the next theorems can be found. 

Definition 4 (Conjugate function) Let f  be any closed convex function on nR . 
( ) ( ){ }: sup , domtf s s t f t t f∗ = − ∈  is called the conjugate of f  or Fenchel-transform, with ,  ns t R∈   

,⋅ ⋅  the inner product in nR . 
Theorem 1 (Conjugate f**) The conjugate f ∗∗  of f ∗  is f : 

( ) ( ){ }sup , domsf t s t f s s f∗∗ ∗ ∗= − ∈ . 

Theorem 2 (Convolution) Let 1, , nf f  be proper convex functions on nR . Then: 

( )1 1n nf f f f∗ ∗ ∗⊗ ⊗ = + +  . 

Remark: 
In case of the convex NC functions of Φ : 1nR R≡ . From Theorem 1 and 2 we get 

( ) ( )1 1n nf f f f
∗∗ ∗⊗ ⊗ = + +  . 

Example: 
Again the aim is the concatenation 

1 1 2 2, ,R T R Tβ β β= ⊗  with 

( ) ( )
,

:        1, 2
0 :    i i

i i i
R T

i

R t T t T i
t

t T
β

 − ≥ =
= 

<
                         (11) 
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First of all, the conjugate of the rate-latency function ,R Tβ  i.e. ,R Tβ ∗  needs to be determined. From defini-
tion 4 we know that 

( ) ( ){ } ( ){ }sup dom supt ts st t t st R t Tβ β β∗ = − ∈ = − −                    (12) 

So, we get: 
Case 0 :s <  ( )sβ ∗ = ∞  Case 0 :s =  ( ) 0sβ ∗ =  

( )
:    0

and for  Case 0 :
:    

Ts s R
s s

s R
β ∗ < ≤

> = ∞ >
 

( ) ( ),

:    0
Altogether: :    0

:    
R T

s
s s Ts s R

s R
β β∗ ∗

∞ <
= = ≤ ≤
∞ >

                      (13) 

Determination of ( )tβ ∗∗  as conjugate of ( )sβ ∗  with doms β ∗∈ : 

( ) ( ){ } { ( ),

:    0
sup sup :    0

:    
s s R T

s
t st s st Ts s R t

s R
β β β∗∗ ∗

∞ <
= − = − ≤ ≤ =
∞ >

               (14) 

This certainly confirms Theorem 1. 
Applying Theorem 2: 
( )1 2 1 2β β β β∗ ∗ ∗⊗ = +  and by applying Theorem 1: ( ) ( )1 2 1 2β β β β∗∗⊗ = ⊗ ; here ( )1 2β β

∗∗ ∗+ . 
For the concatenation 

1 1 2 2, ,R T R Tβ β⊗  we obtain 
(let 

1 11 ,R Tβ β=  and 
2 22 ,R Tβ β= , 2 1 0T T> > , 2 1 0R R> > ) 

( ) ( ) ( ) ( ) ( )1 2 1 2 1 1 2 2 1 2 1

1 2 1

:    0 :    0 :    0
:    0 :    0 :    0
:    :    :    

s s s
s s s T s s R T s s R T T s s R

s R s R s R
β β β β∗ ∗ ∗

∞ < ∞ < ∞ <  
  ⊗ = + = ≤ ≤ = ≤ ≤ = + ≤ ≤  
  ∞ > ∞ > ∞ >  

 (15) 

( ) ( ) { ( )1 2 1 2 1

1

:    0
sup :    0

:    
s

s
t st T T s s R

s R
β β

∗∗ ∗

∞ <
⇒ + = − + ≤ ≤
∞ >

                     (16) 

But this is the same structure as in expression for ( )tβ ∗∗  and therefore 
( ) ( ) ( )1 1 2 1 2 1 21 2 , min , ,R T T R R T Ttβ β β β

∗∗ ∗
+ ++ = =  holds. Figure 6 depicts this operation. 

 

 
Figure 6. Concatenation of two rate-latency functions. 
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In conclusion, the use of convex analysis seems to be a further approach to determine the min-plus convolu-
tion operation—at least in the context of convex functions like the set of piecewise linear functions where ,R Tβ  
belongs. 

Question: 
How to deal with non-convex functions f ∈Φ . Take Example 3 with input ,r bx α=  and service curve 
,R Tβ . The min-plus convolution realizes a guaranteed lower bound for the output: ( ) ( )( ), ,r b R Ty t tα β≥ ⊗ . 

( ),

:    0
But function 

0 :    0r b

rt b t
t

t
α

+ >
=  =

 

is not convex because the ≤  relation in: 

( )( ) ( ) ( ) ( ), 0 1 , 0 , 11 1r b r b r bt t t tα λ λ λ α λα− + ≤ − +  for 0 10,  t t R= ∈  and 0 1λ< <  

is not fulfilled. Therefore Theorem 1 and 2 are not readily applicable. 
However, in contrast to [9] other ways are possible. Here the following one is suggested: making functions 

convex by redefining their values at certain points, e.g. where unnatural discontinuities appear (e.g. 0t = ). For 
example, we change ( ),r b tα  to ( ),r b tα  such that ( ),r b tα  is convex and still reflects the arrival curve feature 
well: 

( ),    for  0r b t rt b tα = + ≥                                (17) 

Now, ,r bα  is convex and the principles of convex analysis are applicable. Although ,r bα ∉Φ  (since 
( ), 0 0r bα ≠ ) it represents the important burst feature ( ): 0t t s∆ = − →  of the arrival curve ,r bα  (of formula 

2): 

( ) ( ){ } { } ( ) ( )0 0 , 0 ,lim lim lim limt s t t r b t r bx t x s r t b t t bα α→ ∆ → ∆ → ∆ →− ≤ ⋅∆ + = ∆ = ∆ = . 

Since , ,r b r bα α≠  the convolution of 

( ){ }, ,r b R T b r t Tα β +⊗ = + −  differs from ( ){ } ( ){ }, ,r b R T b r t T R t Tα β + +⊗ = + − ∧ − . 

The expression ( ){ }b r t T ++ −  is identical in both formulas. When considering rate-latency functions (c.f. 
Example 2) where an incoming input is served with minimal rate R  after a maximal delay T , the output y   

is lower bounded not only by ( ){ }b r t T ++ −  but by ( ) ( ){ }min ,b r t T R t T+ ++ − −  Of course, in the long run  

for t →∞  the term ( ){ }b r t T ++ −  is the dominant one, as you can see in Figure 5. 

4. Conclusions 
The most important operation within the Network calculus is the min-plus convolution. But the calculation of 
this fundamental operation still is complex and error-prone. For this reason we introduced other computation 
approaches to perform the convolution: here called Use of algebraic laws and Use of convex analysis. In order to 
apply the convex analysis we transform non-convex into convex functions (e.g. keeping the token-bucket arrival 
curve property) which is different, for example, from the approach of [9]. 

This article reflects work in progress and the presented examples ought to demonstrate these techniques. In 
future work we will continue to investigate the procedures of subsection 3.2 and 3.3 to answer the following 
questions: Can we extend the principles to some classes of non-convex functions or even to mixed classes of 
convex and non-convex functions? Which kinds of applications are suited considering algebraic laws and con-
vex analysis? Are there even cases where a combination of both methods is beneficial? To all of these, we want 
to find answers in future work. 
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