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Abstract 
This paper presents a robust image feature that can be used to automatically establish match cor-
respondences between aerial images of suburban areas with large view variations. Unlike most 
commonly used invariant image features, this feature is view variant. The geometrical structure of 
the feature allows predicting its visual appearance according to the observer’s view. This feature 
is named 2EC (2 Edges and a Corner) as it utilizes two line segments or edges and their intersec-
tion or corner. These lines are constrained to correspond to the boundaries of rooftops. The de-
scription of each feature includes the two edges’ length, their intersection, orientation, and the 
image patch surrounded by a parallelogram that is constructed with the two edges. Potential 
match candidates are obtained by comparing features, while accounting for the geometrical 
changes that are expected due to large view variation. Once the putative matches are obtained, the 
outliers are filtered out using a projective matrix optimization method. Based on the results of the 
optimization process, a second round of matching is conducted within a more confined search 
space that leads to a more accurate match establishment. We demonstrate how establishing match 
correspondences using these features lead to computing more accurate camera parameters and 
fundamental matrix and therefore more accurate image registration and 3D reconstruction. 
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1. Introduction 
Establishing match correspondences between two or more images are one of the most common tasks in applica-
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tions of image processing in computer vision. This is a challenging task especially under conditions such as 
oblique view, illumination change, and large view variation where the viewing camera undergoes a large trans-
formation. Most cutting-edge matching approaches extract affine-invariant regions and assess their similarities 
using intensity-based image properties. These methods perform well for images with shorter baselines or small 
affine transformations. However, they easily fail when it comes to images of wider baselines or those with larger 
view variation. When establishing match correspondences in aerial images of suburban regions, the difficulties 
of the matching lie in several factors. Firstly, these images could be visually significantly dissimilar if the view-
ing direction or angle (pitch angle in specific) is not at nadir. In such situations, the projective transformations 
between the two views cannot be simply ignored. Secondly, due to changes in the background (originating from 
perspective projection) identical physical regions of the scene, at best, contain only partial similarities. Finally, 
the existence of many repetitive shapes with similar sizes, colors and, patterns in the construction of suburban 
areas (originating from similar design plans and identical construction materials) makes the identification based 
on simple features an erroneous one. Therefore, recognition of identical features cannot be accurately and robus-
tly achieved via traditional matching techniques [1]. 

This paper presents a novel approach to creating unique features in complex suburban environments that can 
be identified even when they undergo large viewpoint variation. The paper is structured in the following order. 
Related works are reviewed next followed by the contributions of the proposed approach. Section 2 describes 
the characteristics of the input images and their accompanying auxiliary data. Section 3 introduces the proposed 
2EC features and describes how they are constructed. Section 4 presents our proposed method for establishing 
2EC match correspondences in two or more images. Experimental results and comparison with the state of the 
art are provided in Section 5. Finally, Section 6 summarizes the conclusions of this work. 

1.1. Related Work 
During several last decades, the problem of wide baseline matching has been addressed in numerous ways. A 
wide variety of approaches involve detection of distinct features and viewpoint invariant descriptors. Discrete 
points are among the most popular features used in the applications of computer vision. Lowe [2] proposed to 
detect Scale-Invariant Feature Transform (SIFT) using DoG filter. He used a 64 dimension descriptor based on 
image gradients to describe each feature. These features are scale and partially rotationally invariant. Mikolajc- 
zyk [3] described a scale-adapted Harris measure that located interest points at different scales using a Laplace 
function that selected points at local measure maxima. Compared with Lowe’s SIFT features, this method toler-
ated higher scale variation. The Harris-Affine [4] and Hessian-Affine [5] methods were also developed by Mi- 
kolajczyk to achieve higher repeatability under larger affine transformations. The interest points were extracted 
by multi-scale Harris detector. Using an iterative procedure, each point’s location would converge to the most 
stable affine invariant region. Tuytelaars et al. [6] extracted Parallelogram-shaped regions around Harris corner 
points and considered them as affine invariant regions. They established affine invariant regions based on local 
intensity extrema. By checking the intensity profiles along each ray radiating from the extrema, a maximum 
point on each ray was then selected. These points were then joined together to form a region which was fitted to 
an ellipse. In [7], Matas’ detection of maximally stable extremal regions (MSER) was introduced based on in-
tensity thresholding. A voting strategy along with the correlation was utilized to identify tentative matching cor-
respondences. According to [8], MSER provides the best result when dealing with planar projective transforma-
tions, followed by Hessian-Affine, while [9] reported that SIFT is the best descriptor for the MSER detector. 

One common trait of all the above features is the drop in the features’ repeatability as the viewpoint differ-
ences increase. Moreover, all of these methods assume that the local areas associated with features are planar. 
This, however, is not a valid assumption when working with aerial imagery of suburban regions. These regions 
include buildings at variable heights. Naturally these methods have less success in handling the registration of 
aerial imageries under larger view variation. 

Corners, as rotationally and scale invariant features, have been used for image registrations for many years. 
To add to the consistency of the features’ locations, some methods have suggested incorporating edges into the 
detection procedure. Xiao et al. [1] reported a novel feature called edge-corner that announced corners as the in-
tersection of two or more edges. The initial matching method was done by comparing patches around the edge- 
corners, using Sum of Squared Differences (SSD) and followed up by an optimization process that modeled a 
more precise affine model for the matching. Similar to all the other affine invariant approaches, the method as-
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sumed that the local areas around the edge-corners were flat plane and had no depth differences or occlusion. 
Xie et al. [10] solved this problem by creating corner-edge-regions around the proposed edge-corner features in 
[1]. The corner-edge-region was separated into several sub-regions by edges emanating from the center corner 
as its intensity was used for determining the match correspondences. This method performed better than the 
other methods when local neighboring regions had certain depths, since comparison was only applied within 
each sub-region, which were more likely to be planar surfaces. A disadvantage of this method was that the local 
corner-edge-region may not be distinctive enough in images with repetitive patterns. 

Beside points and their invariant regions, lines are also commonly used as features when it comes to image 
registration. Schmid et al. [11] developed an approach using intensity values on the two sides of line segments. 
Bay et al. [12] introduced an algorithm using color information along line segments. Wang et al. [13] developed 
a segment grouping method based on spatial proximity and relative saliency, and a new descriptor based on con-
figuration of line segment pairs. Generally, since there are plenty of straight lines in man-made environments, 
methods that rely on lines as features are more robust for urban and indoor scenes. Using line segments as fea-
tures has some drawback of its own. For example, the end points of line segments may not be very stable and 
change locations as the viewing angle changes. Moreover, pixels’ intensity and color values vary as the illumi-
nation or viewing direction change. 

There are also some works that utilize combination of interest points and lines or edges. Tell et al. [14] cre-
ated line segments between two Harris points. Affine invariant Fourier coefficients were then computed from 
intensity profiles along the line segments. Cyclically order constraint was added to achieve more accurate results. 
This method, however, required textured objects that were locally planar. Kingsbury [15] proposed a matching 
system that took both appearance and spatial constraints into consideration. SIFT descriptor and a pair-wise re-
lationship descriptor was used to measure the similarity between them. Eric [16] presented a descriptor which 
disambiguate locally similar features by combining SIFT descriptor with a global context vector. This method 
was a time consuming one, specially for larger images, since it took every pixel into account when creating and 
updating global shape context for each SIFT feature. 

Some methods take advantage of the characteristics of man-made objects, such as straight lines and planar 
surfaces. In order to establish correspondences between images of building facades, Lee [17] proposed to detect 
quadrilateral shapes formed by four line segments and their intersections. This method achieved true correspon-
dences between two images of building facades even over 50˚ view angle differences. It, however, required a 
dominant plane that limited its application domain. Ding [18] proposed a method to map oblique aerial images 
onto 3D LiDAR data using 2DOC feature, created based on orthogonal vanishing point pairs. A real 2DOC fea-
ture was supposed to represent the orthogonal corner of a building profile. The number of true 2DOC was sig-
nificantly influenced by the type of buildings and environment. For large and simple building shapes, such as 
those in downtown district, the method worked well. However, for complex building structures like those on 
campus and residential areas, it failed up to 50% of the times due to the lack of real 2DOC features. Wang [19] 
reported a novel feature called 3CS to map oblique aerial images onto 3D LiDAR data. Each 3CS feature con-
tained three line segments, which were connected to each other based on their endpoints proximity. Six attrib-
utes including length ratios, and orientation were used to describe 3CS features. The distinctiveness of 3CS fea-
tures increased the number of correct correspondences among candidates. However, when registering two aerial 
images, 3CS feature could not be used directly, since the repeatability of such features in both images was too 
low. 

In this paper, we introduce a novel feature and a unique matching technique for automatic establishing match 
correspondences between two oblique aerial images of the suburban regions under a large projective transforma-
tion. The proposed feature utilizes two straight lines and their intersections, which could correspond to a vertex 
and two connected edges of a building’s rooftop. We refer to our proposed features as 2 Edges and a Corner or 
2EC features. Similar to [19], our method takes advantage of typical structures on man-made environments. 
However, [19] intersects lines merely based on their spatial proximity and therefore it could lead to fake features 
that do not correspond to true outlines of building rooftops. Our feature detection algorithm utilizes the image 
edge map as a reference to extend/complete line segments that may have been detected partially. In addition, the 
stability of the endpoints of each line segment is strengthened using Harris corners. Unstable features, usually 
arising from unstable or very small lines, are identified and eliminated to accelerate the performance and the ro-
bustness of the matching process. The description of our features involves both geometrical and visual informa-
tion. [19] uses length and orientation of line segments as feature descriptors. Even though it performs very well 
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on 3D LiDAR models, it fails for aerial images due to numerous similar patterns that naturally exist in the con-
struction of cities and suburban areas. During the matching process, we assume that a rough estimation of the 
camera parameters (i.e. yaw, pitch, roll angles, and xyz coordinates) are provided. For every feature in the first 
image, its candidate correspondences in the second image are searched within a narrow belt along the corre-
sponding epipolar line (estimated using the rough camera parameters). To predict the shape of a feature in the 
second image, the line segments and intersections are transformed using a rough estimate of the acquisition ge-
ometry. The descriptors are computed for the converted features and all the candidate matches in the search 
space. Matches are obtained by comparing descriptors. The epipolar geometry is utilized to refine match corre-
spondences and improve the final registration parameters. 

1.2. Contributions 
The main contributions of this paper are as following: 

1) We propose 2EC features that hold geometrical traits of straight edges and their intersections with each 
other and are especially designed to represent typical configurations in man-made structures. Since 2EC features 
hold geometrical relationships between structures’ lines and corners, they can be tracked and associated even 
when they are viewed from a completely different viewing direction. 

2) A new matching algorithm is developed that utilizes both visual and geometrical properties in a hierarchi-
cal approach to robustly and accurately 2EC match correspondences between two or more images of a scene. 

2. Input Data 
The oblique aerial images from Pictometry International Corp. dataset are used as the input of the proposed al-
gorithm. All the aerial images in our dataset are 2672 × 4008 pixels covering a ground area of 420 × 640 m2 
with a sample distance of 0.15 meter/pixel. These images are captured at a slant angle from an elevated position. 
The image acquisition system includes four cameras, each obliquely downward pointing to North, West, South 
and East. The input images are captured via an airplane flying over the region of interest in a zigzag way. Con-
sidering the way these images are acquired, usually several images cover each particular scene. These images 
are taken at an average of 50˚ pitch angle, and therefore any two images of the same scene, captured by different 
cameras, undergo large projective variation. An example of an oblique aerial image pair, taken under such con-
dition, is shown in Figure 1. 

A file called metadata is accompanied with each image that includes the flight information, the internal and 
external parameters of the camera at the time of image capture. A sample metadata file is presented in Figure 2. 
The camera orientation and location provided in the metadata file have limited accuracy and relying on them 
solely to establish correspondences between image pairs is not practical. However, they can be still used to re-
duce the search space in finding match correspondences. Once the initial correspondences are established with  
 

 
(a)                                                      (b) 

Figure 1. An example of a pair of oblique aerial images: The images are taken from (a) the North direction and (b) the 
West direction of the same scene. The red X marks the same building. 
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Figure 2. A sample of metadata file. 

 
our proposed algorithm, the camera parameters can be refined. 

3. Methodology 
Figure 3 depicts the overall flowchart of the proposed system. Details of each section are provided next. 

2EC Feature Extraction and Description 
The main idea behind 2EC features is to utilize the geometrical traits of straight edges on the man-made struc-
tures and provide distinctive features that can be robustly matched between input images with large projective 
transformations. Here we introduce 2 Edges and one Corner (2EC) features, which consist of two connected line 
segments and their intersection. 2EC features could correspond to the boundaries of building rooftops. The pro-
cedures for detecting these features are explained in the order that they are implemented. 

1) Straight line extraction: Here a set of straight-line segments are extracted from the image. The Burns line 
detector [20] is utilized, which uses both the gradient magnitude and the gradient orientation to form line sup-
port regions and eventually straight line segments. We briefly describe this procedure, however, we refer to [21] 
for more details. Burn’s method includes the following steps: 

a) Partition image pixels into bins based on the gradient orientation values. A bin size of 45˚ was selected. 
b) Run a connected-components algorithm to form line support regions from groups of 4-connected pixels 

that share the same shifted gradient orientation bin. 
c) Eliminate line support regions that have an area smaller than 3 pixels. 
d) Repeat steps a, b, and c by spatially shifting the gradient bins to produce a second set of line support re-

gions. This accounts for the possibility that some true lines may have component pixels that lie on either side of 
an arbitrary gradient orientation boundary. 

e) Use the voting scheme in [20] to select preferred lines from the two sets (the original set and the shifted set) 
of candidate lines. 

f) For each line support region, compute the line represented by that region by performing a least square fit. 
The least-squares fit estimates planar model of each line using the gradient magnitude values. 

2) Line linking: The objective of this step is to link collinear line segments that are separated by very small 
gaps. Following algorithm describes linking process: 

a) Sort the lines in the order they would be encountered if a horizontal sweep was performed across the im-
age. 

b) Use a divide-and-conquer method to efficiently determine nearby pairs of lines. 
c) Test each pair of nearby lines to determine whether they should be linked. Conditions (a) and (b) and one 

of the conditions of (c) and (d) in Figure 4 must be satisfied for a pair to be linked. 
More details for this process can be found in [21]. 
3) Obtaining edge map: Edge map serves as a clue to decide on the extension of a line and selection of its po-

tential intersections. First, the original image is processed via Canny edge detector, followed by dilation with a 3 
× 3 pixels square structuring element to widen edges and fill out narrow gaps. Next, isolated blobs with areas  
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Figure 3. Flowchart of the proposed system. 

 

 
(a)                               (b) 

 
(c)                               (d) 

Figure 4. Four criteria for line linking process. 
 
smaller than 1 m2 are removed. In aerial images, smaller blobs usually correspond to protuberant objects or tex-
ture on the surface of rooftops and they could be misleading when extending lines. Thus, they should be re-
moved before the succeeding steps. 

4) 2EC Feature extraction: Once the edge map is obtained, 2EC features are extracted by the following 6 
steps: 

a) Line extension: The objective of this step is to adjust the detected line segments according to the image’s 
edge map such that most of the corresponding edges of rooftops are covered, while as many as possible non- 
significant lines (lines on the grass regions or grounds) are removed. The extension of a line, on the other hand, 
should not be too long as it could incorrectly represent edges of multiple buildings along the same street/block 
and at a close proximity of each other. Only with meaningful and true line segments, the 2EC features can be 
constructed robustly. According to this principle, the line extension procedure has the following three steps: 
• From the set of detected lines, the lines with less than 80% overlap with the edge map are identified and re-

moved. 
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• To cover for those cases where partial occlusion or low contrast between the rooftop and the background 
have created breakage in the line segments, where they indeed correspond to complete building rooftop 
edges, each line segment is extended on both ends until it no longer overlaps with the edge map. The image 
boundaries are used in the cases where the extension of the line falls outside of the image area. 

• Once all lines are extended, the endpoints of each extended line must be in close proximity of rooftop verti-
ces, if it is from a real rooftop. However, in some cases, small discontinuities exist between the lines end-
points and the vertices that correspond to the rooftop corners. Those corners are supposed to be reached by 
further continuation of the lines. As a result, the extension of each line is continued by 10% of its length. 

b) Line merge: In aerial images of urban scene, a rooftop edge often consists of several parallel lines, with 
each of them representing some parts of the edge. In order to avoid such ambiguity, nearby parallel lines are 
fused together to form one single continuous line that uniquely corresponds to the full length of a rooftop edge. 
If all the following three criteria are satisfied, the two line segments are assumed to be from one physical edge 
and therefore are merged together. 
• They are parallel or almost parallel (a maximum cross angle of 5˚ is tolerated). 
• The lateral distance between two lines is less than 1.5 pixels or 22.5 cm. 
• When one line is projected onto the other, there exists at least at least 1 pixel overlap. 

c) Line intersection: Using all the remaining line segments after the extension and merging procedures, the 
intersections of each line with all the other lines are found. An intersection is recorded only if it satisfies the fol-
lowing two conditions: 
• The two intersected lines have an angle larger than 20˚ and less than 160˚. 
• The intersection point lands on the edge map. 

d) Endpoints redefinition: The definition of a 2EC feature includes two rooftop contour line segments and 
their intersection, which is obtained using previous steps. Each line segment starts from the intersection and 
ends at one of the endpoints of a line. However, the endpoints of each line might not be stable or might not pre-
cisely occur at its right place. Therefore, it is necessary to redefine the endpoints for each line. For this purpose, 
for each line, we detect all Harris corners [22] lie along the line and within 2 pixels lateral distances from it. 
Once all such corners are identified, they are projected onto the line to form potential locations where the line 
may end. All the projected points together with all the intersections on each line are sorted and the most left and 
most right points are chosen as the two endpoints of each line. Three parameters are used in Harris corner de-
tector: standard deviation of smoothing Gaussian, quality level, and sensitivity factor. In our work, they are set 
to 1.5, 0.01, and 0.04 respectively. 

e) Removal of unstable lines: Here, all the unstable lines are identified and removed. Based on our experi-
ments and observations, we classify three conditions as unstable. Lines with at least one of these three condi-
tions are labeled as unstable and removed iteratively until no more lines can be removed. 
• Lines with only one intersection and missing at least one endpoint. 
• Individual short lines (5 pixels of 0.75 cm or shorter). 
• Short lines connected together forming a chain (if all connected lines are shorter than 5 pixels/0.75 cm). 

f) 2EC feature extraction: At each intersection of a line, one or more features can be constructed. As shown in 
Figure 5, G is the intersection of l1 and l2. G13, G12, G11, and G21, G22 are all the other intersections and end-
points on l1 and l2. For G, there are 6 possible combinations of two line segments. In each combination, if both 
segments are longer than 15 pixels, a feature will be generated. In Figure 5, since GG13 is shorter than 15 pixels, 
it cannot be used to generate any feature. As a result, only four 2EC features are generated, which share the 
same intersection point G, but with different line segments combinations. These features are: G11GG21, G11GG22, 
G12GG21 and G12GG22. 
 

 
Figure 5. 2EC feature generation 
for the intersection point G. 
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For each 2EC feature, we refer to the intersection as the center point, and the two endpoints of the lines as end 
points. As suggested by the name, the center point of 2EC feature could represent the corner of a rooftop where 
two rooftop boundary lines intersect. Considering the way 2EC features are extracted, more than one 2EC fea-
tures may share a common center point, while they have line segments with different lengths. Since the center 
points are the most stable components of 2EC features (invariant to rotation and scale change), they are used as 
the point correspondences after 2EC feature correspondences are established. Figure 6 represents extracted fea-
tures in one of our input images for a specific building structure. 

4. Feature Correspondences Establishment 
In this section, we present a matching process for matching 2EC features between images with wider view dif-
ferences. Two assumptions are made here: 

1) Each feature in one image can match only with one feature in the other image. 
2) Not every feature has a correspondence. 
For each feature in the first image, a search space is created by predicting the extracted location of that feature 

in the other image using the acquisition parameters in the metadata files. Both features’ shapes and image con-
tent are used to identify correspondences within the search space. Once the potential matches are obtained, a 
projective matrix optimization method is used to remove outliers. The matching process is repeated in an itera-
tive way within smaller search spaces, which is computed based on the result of the first round of the projective 
matrix optimization. Following steps describe in details the proposed matching algorithm: 

4.1. Feature Location Prediction 
In this work, with each image a metadata file is associated that provides additional information including camera 
orientation (Yaw, Pitch and Roll angles) and location (latitude, longitude, and altitude), camera internal parame-
ters, etc. Although these parameters are imprecise, they can still be used to roughly predict the shape and the po-
sition of each 2EC feature from one image to another. 

1) Feature location estimation using metadata: Let us consider a pair of images taken by two cameras (C1 and 
C2) from different viewpoints. m is a point in I1, and m' is its actual corresponding location in I2. m can be trans-
formed from I1 to I2 with a two-step transformation, which is computed using the imprecise camera parameters 
in the metadata files. The transformed location can then be used as a rough estimation of the location of m'. 

Two assumptions are made in here. First, since the altitude of the camera (typically 1 km) is much higher than 
the heights of scene buildings, we assume that the building rooftops are located at the surface of the earth. 
Therefore, the depth of the image is assumed as the altitude of the camera, and the 3D location of any point in 
the image can be determined with a single image and its camera parameters. Second, since the ground region  
 

 
Figure 6. Detected 2EC features. Red circle 
represent the center of each feature. Blue dots 
represent the end points and yellow lines are 
the edges of each feature. 
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covered by two cameras is small compared to the entire surface of the earth, we consider the ground as flat. 
Based on these two assumptions, the model for two cameras and the ground region covered by their images 

are illustrated in Figure 7. Two steps are taken for this transformation: first, m in I1 is projected onto the 3D 
world (M), next M is projected back into 2D on I2. In order to implement such transformation, a world coordi-
nate is used as the reference coordinate. Here, the center of the world coordinate system is located at the center 
of camera 1 ( )1C . The X axis is pointing to North, the Y axis is pointing to West, and the Z axis is pointing to 
the Earth Center. This means that the world coordinate system is the same as the first camera coordinate system, 
and its yaw, pitch, and roll angles are all zero. The transformation of a point ( )0 0,m x y  from I1 to the 3D world 
includes two procedures: 

a) Transformation of the image coordinates of ( )0 0,m x y  into the world coordinate system using the internal 
and external parameters of camera 1: 

( )
( )
( )

0 1 1

1 1 1 0 1 1

1

yaw , pitch , roll
x xw

w y y

w

x p dx
y R y p d
z f

 − × 
   = − ×  
     

                         (1) 

The values of yaw1, pitch1, and roll1 represent the orientation of camera 1. ( )T
1 1,x yp p  is the coordinate of 

the principal point in I1. dx1 and dy1 represent the conversion between the image pixel and metric world. f1 is the 
focal length of the first camera. 3D rotation ( ), ,R α β γ  is defined by: 

( )
( )
( )

( )
( )

( )

( )

( )

( )
( )
( )

( )
( )

cos sin 0 cos 0 sin 1 0 0
, , sin cos 0 0 1 0 0 cos sin

0 0 1 sin 0 cos 0 sin cos
R

α α β β
α β γ α α γ γ

β β γ γ

−     
     = × × −     
     −     

      (2) 

b) Projection of ( )T, ,w w wx y z  onto the ground by connecting it to the camera center and continuing it until it 
intersects with the ground. The relationship between the projected 3D point ( )0 0 0, ,M X Y Z  and ( )T, ,w w wx y z  
can be shown as: 

0 0 0

w w wx y z
X Y Z

= =                                      (3) 

0 1Z alt=                                        (4) 
Here alt1 is the altitude of camera 1 from metadata. 
Next, according to [23], ( )T

0 0 0, ,M X Y Z  can be projected onto I2 using the camera matrix P2, which can be 
computed using the camera parameters in the metadata of I2: 

1 1
2 2 2 2 2 2,     m P M P K R R t− − ′ = = −                               (5) 

In the above equations, K2 is the calibration matrix computed using the internal camera parameters: 

2 2 2

2 2 2 2

0
0
0 0 1

x x

y y

f d p
K f d p

 
 =  
  

                              (6) 

 

 
Figure 7. The procedure of prediction of features 
from one image to another. 
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R2 is the orientation of the camera 2 with respect to the world coordinate system centered at C1. R2 can be com-
puted by: 

( ) ( ) ( )1
2 1 1 2 2 2 2 2lon , lat 90,0 lon , lat 90,0 yaw ,pitch , rollR R−= − − × − − ×               (7) 

where lat1, lon1, lat2 and lon2 are the latitudes and longitudes of the two cameras. t2 is the coordinate of the sec-
ond camera, C2, in the world coordinate system. It can be computed by: 

( )( )1
2 1 1 cam2 cam1lon , lat 90,0t R C C−= − − −                            (8) 

Ccam1 and Ccam2 represent the 3D Cartesian coordinates of the two cameras with respect to ECEF (Earth-Centered, 
Earth-Fixed) coordinate system, and they are computed using the longitude and latitude of the two cameras ac-
cording to [24]. 

The above algorithm can be applied on each one of the 2EC features in I1 to predict its location and shape in I2. 
In fact, since we consider the ground as a plane, the corresponding points in the two image planes are related by 
a projective matrix Hm that can be found using the following steps: 
• Four points are selected in ( )T

1 1: 1,1I p = , ( )T
2 1,p N= , ( )T

3 ,1p M= , ( )T
4 ,p M N= , where N × M is the 

size of I1. 
• Transform these four points to I2 using the method explained above. Let us assume the transformed points as 

1p′ , 2p′ , 3p′ , and 4p′ . 
• With four corresponding points i ip p′↔ , 1, , 4i =  , the projective matrix Hm is computed a least squared 

algorithm, which is explained in [23]. 
During the matching process, the projective transformation Hm is applied to all 2EC features in I1 to predict 

their locations and shapes in I2. 
Figure 8 shows an example of the prediction. The feature highlighted in the bottom image is transformed to 

the top image using the above transformation. The transformed feature is shown in the top image with red color 
and its corresponding true location is highlighted with green. One can notice that the predicted location is very 
close to its true location. Moreover, the lengths and orientations of the two are also similar. 

2) Evaluation of prediction accuracy: To investigate the accuracy of prediction and provide a basis for select-
ing some of the thresholds required in the matching process, we applied the above transformation on 10 pairs of 
images. Among them, 5 pairs had 90˚ difference in yaw, and the other 5 pairs had 180˚ difference. For each pair 
of images, 120 matching points, which were uniformly spread over the entire images, were selected manually. 
Points in I1 were then transformed to I2 using the method explained in the above section and four measurements 
were calculated: 1) The distances between the transformed points and their ground truth locations. 2) For each 
point in I1, its epipolar line was computed according to [23]. The distances from the ground truth locations in I2 
to their corresponding epipolar lines were calculated. 3) The lengths of the line segments, which were generated 
byany combination of two transformed points were computed and compared with that of the corresponding 
ground truth features. The length difference was measured as a percentage of the ground truth length. 4) The 
cross angles between the transformed line segments and their ground truth. 
 

 
Figure 8. Transformation of a 2EC feature from I1 to I2. 
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The statistical values for the above measures are provided in Figures 9-12. One can see that the predicted po-
sitions have a maximum offset of 300 pixels from the ground truth locations. Also, the predicted epipolar lines 
are less than 150 pixels away from their true locations. Moreover, about 96.58% of the predicted line segments 
have less than 10% length differences compared to their corresponding ground truth line segments, and about 
95.26% of the predicted line segments have less than 5˚ orientation differences. These errors are mainly induced 
by two sources: 1) the imprecise camera parameters provided in the metadata file, and 2) the assumption that all 
buildings in the images have zero heights. According to the epipolar geometry, each point in I1 can be mapped 
onto an epipolar line in I2. The location of the mapped point on the epipolar line, however, depends on the height 
of this point from the ground. Since the actual heights of the points vary in both images, their predicted locations 
 

 
Figure 9. Histograms of distances between predicted locations and their ground truth (GT) 
locations for image pairs of 90˚ (left) and 180˚ (right) viewpoint variations. 

 

 
Figure 10. Histograms of distances from GT locations to their estimated epipolar lines for 
image pairs of 90˚ (left) and 180˚ (right) viewpoint variations. 

 

 
Figure 11. Histogram of differences in the length of the transformed line segments and their 
GT for image pairs of 90˚ (left) and 180˚ (right) viewpoint variations. 
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Angle differences [˚]                          Angle differences [˚] 

Figure 12. Histogram of orientation differences for transformed line segments and their GT 
for image pairs of 90˚ (left) and 180˚ (right) viewpoint variations. 

 
in I2 would have different offsets from their ground truth locations. 

4.2. Search Space Creation 
Since the aerial images are large (2672 × 4008 pixels), it is very time consuming to search for correspondences 
over the entire image. Also, searching in a large domain means a higher chance of wrongly identifying matches. 
Therefore, creating a smaller search space that contains the correct correspondence is very critical to the process. 
Let’s Pabc represents a 2EC feature in I1. Its center point is denoted by cP and its two end points are denoted by 
aP and bP. The following two steps are designed to create its corresponding search space in I2: 

1) Transform the center point cP to I2 using the method described in Section 4.1. Let’s denote the transformed 
point by Pc′ . Create a square neighborhood of size ( ) ( )square square2 1 2 1S S+ × +  pixels, centered at Pc′  (Figure 
13). In our experiments, Ssquare is selected to be 500 pixels. This value is chosen based on the test results of the 
prediction accuracy in Section 4.1. 

2) Compute the epipolar line of cP using the estimated fundamental matrix [23]. A window along the epipolar 
line is then created. The width of the window is chosen to be window2S  pixels, where window 150S =  pixels 
based on the test results of the prediction accuracy in Section 4.1. 

As shown in Figure 13, the intersection of the two areas generated above, denoted by 
abcPΩ , is utilized as the 

search space for Pabc (the gray area). All the features in I2 with their center points in 
abcPΩ  will be considered 

as potential matching candidates for Pabc. 

4.3. Filter Candidate Features Based on Feature Shape 
Once the search space 

abcPΩ  for the feature Pabc has been determined, an exhaustive search among all the fea-
tures inside 

abcPΩ  will be initiated. This includes two rounds of processes in a hierarchical way. First, the can-
didates are filtered based on the shape of the features. Next, all the qualified candidates are compared using the 
image region inside the parallelogram area that can be constructed on the 2EC feature. The first round of search 
includes the following tasks: 

1) Transform Pabc to a b cP ′ ′ ′  in I2 using the method explained in Section 4.1. The transformed center point is 
denoted by c0P and two end points are denoted by Pa′  and Pb′ . 

2) For the transformed feature a b cP ′ ′ ′ , and each of the candidate features in 
abcPΩ , a four dimensional de-  

scriptor ( )1 2 1 2, , ,l l α α  is defined. Take a b cP ′ ′ ′  as an example, 1 P Pl a c′ ′= , 2 P Pl b c′ ′= , 1α  and 2α  are the 
orientations of P Pa c′ ′  and P Pb c′ ′  with respect to the x axis of the image (as shown in Figure 13). 

3) Given two 2EC features with their descriptors of ( )1 2 1 2, , ,l l α α  and ( )1 2 1 2, , ,l l α α′ ′ ′ ′ , their similarity is de-
ter-mined using the following four equations: 

1 1 2 2
len len

1 2

,     
l l l l

T T
l l
′ ′− −
< <                                 (9) 

1 1 angle 2 2 angle,     T Tα α α α′ ′− < − <                              (10) 
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Figure 13. Search space generation. 

 
The thresholds lenT  is set to 10%, and angleT  is set to 5˚ for all of our test cases. 

4.4. Filter Candidate Features Based on Image Correlation 
After the first round of filtering, for a typical feature in I1, there may be one or more qualified candidate features 
in I2. In order to identify the feature with the highest similarity, a correlation based method is incorporated. 
Since each 2EC feature, composed of three critical points (one center point and two end points), an image patch 
can be constructed by adding a fourth point to form a parallelogram with the other three points. The similarity 
between 2EC features can be evaluated by computing the correlation of their corresponding image patches. 
There are two reasons that make the use of correlation possible. 1) The images are taken by cameras from rela-
tively high altitude, so rooftops can be seen in both images, even though they do go into projection and defor-
mation. Since 2EC features represent the rooftop profiles of the buildings, they can be extracted in both images. 
2) Since the rough camera parameters are provided via the metadata file, the image patches created by 2EC fea-
tures can be transformed from I1 to I2. 

Instead of using pixel intensity in the input images to compute correlation, we use the gradient images. The 
advantage of using gradient images is that they are less sensitive to the illumination variation. The Sobel opera-
tor is used to approximate the first derivative of the image in both horizontal and vertical directions. Magnitude 
of the gradients are then obtained by summing xI  and yI  together, followed by normalization over the en-
tire images. The similarity between Pabc in I1 and Qabc in I2 using correlation are measured using following steps: 

1) Consider that { }kx  ( )1 k K≤ ≤  are the pixels inside the parallelogram by Pabc, where K is the number of 
pixels. Transform the coordinate of each pixel inside the parallelogram to I2 using the method detailed in Section 
4.1. Let us assume the transformed pixels locations are { }kx′  in I2, where 1 k K≤ ≤ . 

2) Compute vector t Q Pv c c′= − , where tv  is the translation that moves Pc′  to Qc . 
3) Translate each kx′  with the vector tv  such that Pc′  coincides with :Q k k tc x x v′ ′= + . 
4) A similarity value for Pabc and Qabc is set by computing the correlation of the two sets of image gradient 

values: ( )1 kI x∇  and ( )1 kI x′∇ , where 1 k K≤ ≤  using following formula: 

( ) ( )

( ) ( )

1 1 2 21

2 2

1 1 2 21 1

K
k kk

K K
k kk k

I x I I x I

I x I I x I

=

= =

   ′∇ −∇ ∇ −∇   

   ′∇ −∇ ∇ −∇   

∑

∑ ∑
                      (11) 

A similarity measure is assigned to each of the remaining candidate features in 
abcPΩ  using the above proc-

ess. If the maximum similarity value of all the candidates is larger than a threshold tcorr, the corresponding fea-
ture is extracted as a match to Pabc Otherwise, there is no match found for Pabc. Considering that the prediction 
procedure in Section 4.1 is not a precise one, due to the imprecise camera parameters in the metadata files, tcorr is 
set to 0.5. Increasing this value would result in higher accuracy of the matching, with smaller number of match 
correspondences. If two or more 2EC features in I1 share the same center point, the one with the highest match-
ing score is kept, while the others are dismissed. Finally, the center points of the 2EC feature correspondences 
are selected as the initial set of point correspondences. 

4.5. Removal of the Outliers 
After the initial set of point correspondences is obtained, a statistical method is used to identify outliers among 
these point correspondences. Figure 14 shows the flowchart of this procedure. 



P. Saeedi, M. Mao 
 

 
1337 

 
Figure 14. Flowchart of the outlier removal process. 

 
Consider the initial point matches as { }, 1, ,iP p i N= =   and { }, 1, ,iQ q i N= =  . The coordinate of pi in 

I1 is represented by ( )T,i i ip x y=  and the corresponding coordinate of qi in I2 is represented by ( )T,i i iq u v= . 
If all the corresponding points in the 3D world are coplanar, the perspective points in two image planes are re-
lated by a projective transformation H. In such case, for each corresponding point pairs iip q↔ , i iq Hp= . For 
aerial images, the two image planes are not strictly related by a projective transformation because of the height 
variations of the buildings and terrain. However, since the height variation is relatively small, compared to the 
altitudes of the two cameras, the two input aerial images can still be related by a homography with some residual 
error. The projective matrix H is computed using the initial matches. With the estimated homography transfor-
mation H, points in I1 are mapped to I2 by i ip Hp′ = . Let us assume the transformed point ( )T,i i ip x y′ ′ ′= . The 
distances between the transformed points and their matched locations in I2 are calculated as: 

( ) ( ) ( )2 2dist ,i i i i i i is q p u x v y′ ′ ′= = − + −                          (12) 

Next, point pairs with their distances larger than ( )NoIs t sσ+  are removed as outliers, where s  and ( )sσ  
are the mean and standard deviation of the distance set { }is . The above procedure is repeated iteratively for 
four times with NoIt  equals 3, 2.5, 2 and 1.5 in each iteration. Decreasing coefficients are considered here since 
as the number of iteration increases so does the quality of the matches. In other words as more iterations are 
performed, more incorrect matches are rejected and since the projective matrix becomes more accurate, the cri-
teria for rejecting outliers become more strict, and more shaky matches will be removed. 

Once the above four iterations are exhausted, a new round of iteration is initiated. At each iteration, 5% of the 
matched pairs with the largest distance error are removed iteratively and the process stops if at least one of the 
following conditions is satisfied: 1) The maximum distance in { }is  becomes less than 30 pixels. 2) The num-
ber of matches becomes less than 20. 

At the end of this process, a new projective transformation ( )H ′  is computed using the remaining matches. 
The residual error set { }is  is also updated and the current largest distance in { }is  is found and denoted by 

larges . Next, the matching process is repeated again, but this time the search space is reduced using larges . Spe-
cifically, for each 2EC feature ( )abcP  in 1I , instead of transforming the center point pc  to 2I  using the 
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method explained in Section 4.1, we transform it to 2I  using H ′ : p pc H c′ ′= . The search space is created as a 
( ) ( )large large2 1 2 1s s+ × +  square shape centered at the projected point pc′ . Since larges  is much smaller than 
ssqu, the search space is much more confined than the one created in Section 4.2. For each feature abcP , the 
search for the correspondence is performed within this confined search space. Once this round of search is fin-
ished, the final match correspondences are selected as the center points of the 2EC feature correspondences. 
Figure 15 shows a pair of sample images with all their found matches via the proposed algorithm. In these im-
ages, the matching pairs are labeled by the same number. 

5. Experimental Results 
In this section, the stability and distinctiveness of 2EC features are investigated. The quality of 2EC features is 
evaluated by registration of slant aerial image that include wide variations in the viewing angles. The superiority 
of these features is shown by comparing the registration results for these features and those of the state of the art. 

5.1. Feature Detection Results 
Figure 16 shows the extracted 2EC features on a test image. In the figure, the red circles represent the locations 
of the center points of 2ECs. The yellow line segments are the lines attached to the center points. The blue stars 
at the end of the yellow lines are the end points of the 2EC features. 

In this figure, 67 and 61 features were detected respectively. Among these features 13 common features exist 
between the two images. Figure 17 shows the results of SIFT features for the same building as in Figure 16. It 
can be noted that more SIFT features were detected in these images, however, most of the features were located 
on tree branches and cars. Compared with 2EC features, there were also more SIFT features detected on the  
 

 
Figure 15. A pair of images with their corresponding matches. Corresponding features are labeled with the same number. 

 

 
Figure 16. 2EC features for a building from different views. 
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Figure 17. SIFT features for a building from different views. 

 
buildings. Not only did these features occur on the rooftop corners, but also they appeared on the white protu-
berant objects on the rooftops. Through a manual inspection we found only five common SIFT features were 
existing between the two views. 

Here, we will evaluate the quality of 2EC features through establishing match correspondences in oblique ae-
rial images. Considering the way these images are acquired, for one subject scene, there would be several im-
ages taken from North, East, South and West directions. If image pairs are captured from the similar directions, 
they will have similar yaw angles and therefore they mostly undergo a linear translation and a small projective 
transformation. For such images, it is very easy to process and establish match correspondences and usually 
most existing methods work well. However, two oblique aerial images taken from two different directions, for 
example, North and East, result in large projective transformation. Therefore, we only focus on image pairs with 
severe yaw angle variations from now on. Fifteen pairs of images were chosen from our database. Among them, 
five image pairs had a difference of 90˚ in yaw angle, five pairs had a difference of 180˚, and the other five pairs 
have 270˚ difference. All these images have pitch angles between 40˚ to 50˚. The combination of yaw and pitch 
angles variation leads to large projective transformations between these images. 

For each image pair, 2EC features were first extracted and initial correspondences were established. Then the 
outliers were removed using optimized projective matrix. Finally, the matching procedure was repeated one 
more time based on the new search space that was created in each case using the optimized projection matrix. 
The original size of each image is 2672 × 4008 pixels. In our experiments, in order to reduce the running time 
and for the convenience of comparison with the state of the art, we have down-sampled the input images by a 
factor of 2. All the system parameters were kept the same for all the input images. 

The results generated for the 15 image pairs are summarized in Table 1. In this table, the entry Yaw diff. 
represents the difference between the two capturing cameras in yaw angles. The No. of features column provides 
the number of 2EC features detected in each image (separated by a hyphen). The GT column represents the 
number of ground truth correspondences that are manually detected in both images. The next three entries of IC, 
CC, CR respectively present the number of Initial Correspondences, the number of correct correspondences, and 
the percentage of correct matches or the ratio of CC/IC. The statistics of the final results after the projective ma-
trix optimization are presented in the next succeeding three entries (PMC, PCC, PCR). The last column of the 
table, Err, presents the accuracy of the established matches in pixels which are computed using the epipolar 
geometry. This column represents the average perpendicular distance in pixels from the ground truth points to 
their computed epipolar lines. 

This measurement is estimated using the following steps: 
1) Compute the fundamental matrix F over the input image pairs using the normalized 8-point algorithm [23] 

and the initial point correspondences obtained by matching the 2EC features. 
2) For each ground truth pair 1 2i icp cp↔ , 1, ,i N=   the epipolar lines of 1icp  and 2icp  are computed 

using the fundamental matrix F. The equations used to compute the epipolar lines are shown below: 
T

2,     i li i il F cp l F cp′= ⋅ = ⋅                                  (13) 

3) The distance of 2icp  from its corresponding epipolar line li and the distance of 1icp  from its corre-
sponding epipolar line il′  are measured. The average residual error is computed by: 
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Table 1. Matching results in oblique aerial images using 2EC features. 

Pair 
No. 

Yaw  
Diff. 

No. of Features 
I1 [#] - I2 [#] 

GT 
[#] 

IC 
[#] 

CC 
[#] 

CR 
[%] 

PMC 
[#] 

PCC 
[#] 

PCR 
[%] 

Err 
[pixels] 

1 90˚ 1879 - 1415 140 100 92 92.00 90 88 97.78 1.3 

2 90˚ 2431 - 2047 58 67 40 59.7 36 34 94.44 6.2 

3 90˚ 2512 - 1772 75 67 56 83.58 44 43 97.73 1.2 

4 90˚ 1186 - 1292 45 33 31 93.94 32 31 96.88 4.6 

5 90˚ 2095 - 3084 57 57 47 82.46 41 39 95.12 1.5 

6 180˚ 1393 - 1333 95 48 44 91.67 48 48 100 1.7 

7 180˚ 1843 - 2503 60 43 33 76.74 35 32 91.43 2.4 

8 180˚ 2560 - 3241 94 69 58 84.06 55 54 98.18 1.9 

9 180˚ 1874 - 1823 59 43 34 79.07 37 35 94.59 2.1 

10 180˚ 738 - 1046 51 35 32 91.43 33 32 96.97 2.3 

11 270˚ 2238 - 1871 106 89 75 84.27 82 79 96.34 2.5 

12 270˚ 3334 - 2084 81 45 41 91.11 40 39 97.50 1.5 

13 270˚ 887 - 932 58 41 37 90.24 32 31 96.88 2.8 

14 270˚ 1470 - 1750 92 70 60 85.71 70 67 95.71 1.5 

15 270˚ 738 - 1046 85 76 64 84.21 60 58 96.67 1.3 

 

( ) ( )( )2 1
1

1Err , ,
2

N

i i i i
i

d cp l d cp l
N =

′= +∑                             (14) 

where distance of ( ),d cp l  is the distance of the point cp from the line l, N is the number of ground truth points. 
As shown in columns PMC, PCC, and PCR of Table 1, even though the number of true correspondences is 

relatively small, the correct ratio in all image pairs is higher than 90%. An average correct rate of 96.41% is 
achieved, with an average residual error of 2.32 pixels. Since the purpose of establishing correspondences in ae-
rial images is often to reconstruct 3D models, 8 pairs of match correspondences with high accuracy is sufficient 
for computing fundamental matrix. Therefore, as long as the number of correspondences is not too small, the 
results are considered meaningful. However, higher number of correct matches generally leads to more accurate 
fundamental matrix. Besides, match correspondences that are uniformly distributed all over the image result in a 
more accurate fundamental matrix. Since the ground truth correspondences used for the above measurements are 
spread all over the entire image, the residual error in the last column of the table can sometimes reflect the accu-
racy of the fundamental matrix computed using the found matches. Before applying the projective matrix opti-
mization, the correct ratio is relatively low as shown in the entry CR. The projective matrix optimization step 
removes most of the outliers and successive iterations of the matching process adds in more true matches to the 
final results. Compared to the percentage shown in the column of CR, the results in PCR are improved signifi-
cantly. It should be noted that some of the outliers could not be filtered out as they are too similar to the true 
matches. 

Figure 18 shows an example of oblique aerial image pair with the correspondences established using 2EC 
features. The two images have yaw difference of about 180˚ and are taken with a pitch angle of about 50˚. The 
epipolar geometry is verified in Figure 18 (bottom). The three red dots are randomly selected. They represent 
the points that are used to generate the epipolar lines in both images. It can be seen that the corresponding epi-
polar lines have passed through the same image locations. 

5.2. Comparison with the State of the Art 
In order to compare the quality of 2EC features with that of the state of the art, three popular features including 
SIFT [25], SURF [26], and ASIFT [27] were utilized. We evaluated the quality of the features by finding match 
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correspondences between images of wide view variations. For this purpose, the same 15 image pairs were util-
ized. 

Tables 2-4 show the matching results for each of the above three algorithms. To assess the quality of the re-
sults, the accuracy of matching was inspected manually. The number of correspondences, the number of correct 
correspondences, and their ratio are given in the columns of Total Matches, Correct Matches, and Correct Rate. 
The average residual errors are provided in the last column of Error. 

As shown in Table 2, SIFT achieved an average correct matching rate of 86.32%. Comparing to Table 1, one 
can see that 2EC features have higher correct matching rate than SIFT in all cases. For SIFT features, the aver-
age residual error over 15 pairs of input images is 10.81 pixels. Comparing the last column of Table 1 with that 
of Table 2, one can observe that the error for 2EC features is less than that of SIFT features in all the cases ex-
cept row 3, which has very similar values for both 2EC and SIFT features. In conclusion, the proposed 2EC fea-
ture outperforms SIFT by an average correct rate of 10.09% in all the cases except one. 
 

 
Figure 18. Results of matching 2EC features for an aerial image pair with 180˚ view difference: (Top) All 48 existing 
match correspondences are identified correctly by the proposed algorithm; (Bottom) The epipolar lines generated by the red 
dots. 

 
Table 2. Matching results using SIFT features. 

Pair No. Yaw Diff. Total Matches [#] Correct Matches [#] Correct Rate [%] Error [Pixels] 

1 90˚ 95 87 91.58 2.7 

2 90˚ 40 30 75.00 36.7 

3 90˚ 257 250 97.28 0.5 

4 90˚ 66 59 89.4 9.2 

5 90˚ 160 152 95.00 3.5 

6 180˚ 153 149 97.39 2.6 

7 180˚ 81 73 90.12 2.5 

8 180˚ 20 6 30.00 13.2 

9 180˚ 245 223 91.02 3 

10 180˚ 50 36 72.00 18.2 

11 270˚ 43 37 86.05 51.4 

12 270˚ 20 19 95 4.7 

13 270˚ 209 199 95.22 6 

14 270˚ 106 100 94.34 6.4 

15 270˚ 22 21 95.45 1.6 
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Table 3. Matching results using SURF features. 

Pair No. Yaw Diff. Total Matches [#] Correct Matches [#] Correct Rate [%] Error [Pixels] 

1 90˚ 51 44 86.27 18.6 

2 90˚ 85 75 88.24 64 

3 90˚ 200 171 85.50 4.8 

4 90˚ 86 56 67.44 14.8 

5 90˚ 138 131 94.93 2 

6 180˚ 70 65 92.86 11 

7 180˚ 57 51 89.47 4.9 

8 180˚ 12 8 67 26.9 

9 180˚ 173 159 91.91 2.9 

10 180˚ 37 30 77 44.6 

11 270˚ 20 6 30 45.4 

12 270˚ 15 6 40 47.1 

13 270˚ 226 196 86.73 10.9 

14 270˚ 47 41 87.23 6.6 

15 270˚ 20 9 45 38.2 

 
Table 4. Matching results using ASIFT features. 

Pair No. Yaw Diff. Total Matches [#] Correct Matches [#] Correct Rate [%] Error [Pixels] 

1 90˚ 403 390 96.77 1.5 

2 90˚ 491 403 82.08 13.3 

3 90˚ 1366 1331 97.44 1.0 

4 90˚ 251 147 58.57 29.4 

5 90˚ 979 919 93.87 1.6 

6 180˚ 560 480 85.71 19.2 

7 180˚ 213 190 89.20 4.1 

8 180˚ 0 n/a n/a n/a 

9 180˚ 1023 924 90.32 2.5 

10 180˚ 149 125 84 9.8 

11 270˚ 53 0 0 n/a 

12 270˚ 32 18 56 730 

13 270˚ 999 964 96.50 0.9 

14 270˚ 214 195 91.12 3.5 

15 270˚ 52 0 0 n/a 

 
As shown in Table 3, the average correct rate for SURF is 75.31%. In all the cases of SURF, the correct rate 

and the residual error are worse than the proposed 2EC feature. 
As for ASIFT feature, it has an average correct rate of 85.13%, with an average residual error of 68.07 pixels. 

It, however, outperforms 2EC feature in two cases (rows 3 and 13) with less residual error and similar correct 
rates. This is due to the fact that in those two cases the input scene included abundant texture on the ground and 
some rooftops and therefore correspondences were easily identified using ASIFT features. Also, the match cor-
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respondences for these two cases were spread all over images and as a result ASIFT resulted in a fundamental 
matrix with higher accuracy and less residual error. 

6. Conclusion 
In this work, 2EC features were proposed for the purpose of establishing match correspondences between 
oblique aerial images with large projective transformations. A complete solution for generating and matching 
2EC features was proposed. The established correspondences could be used to accurately compute the funda-
mental matrix and obtain refined camera parameters that are used for image registration or 3D reconstruction 
purposes. The extraction of 2EC features required detecting straight lines in the input images and these lines 
were utilized as a medium to extract viewpoint invariant corners. Both lines and corners were encapsulated in 
the definition of 2EC features, such that each feature could potentially correspond to a vertex and two connected 
edges of a building rooftop. The geometrical characteristics of 2EC features ensured their surrounded image re-
gions to be planar, and therefore viewpoint invariant under large viewpoint variations. In the matching process, 
both geometrical and visual properties of each feature were used. The experimental results showed the effec-
tiveness of 2EC features to identify and locate true match correspondences between oblique aerial images under 
large projective transformation. The superiority of 2EC features was demonstrated by comparing it with the state 
of the art features. 
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