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Abstract 
 
Computer model is developed for non-steady and steady-state process of thin-walled tube extension by the 
rigid punch with curved profile. Rigid-plastic membrane shell theory with quadratic yield criterion is used. 
Tube material normal anisotropy, work hardening, wall thickness variation and friction effects are considered. 
FORTRAN programs of the model predict distributions of the thickness, meridian stress, yield stress and 
pressure along curved generator of deformed tube and the tube extension force versus punch displacement 
relation. Model predictions are correlated with experimental data. 
 
Keywords: Tube Extension, Rigid-Plastic Membrane Shell, Curved Rigid Punch, Normal Anisotropy, Work 

Hardening, Wall Thickness Variation 

1. Introduction 
 
Thin-walled tube extension by rigid punch with curved 
generator can be used for forming of specified profiles at 
the tube ends defined by its function in machine design. 
Approximate analysis of the thin-walled tube extension 
by rigid punch is constrained, mainly, by conical form 
with approximate yield criterion of isotropic material, 
approximate wall thickness variation and work hardening 
effect [1-4]. Practical technology of the tube extension 
by cone punch reveals curved generators forming at tran-
sition regions from cone to cylinder parts of the tube 
[2-4], which are difficult to control. But curved generator 
can be specified by hydro- or aerodynamic parameters of 
the tube profile. Thin-walled metal tube can reveals 
normal anisotropy induced by cold rolling technology 
with the result of stress-strain and wall thickness effects 
during tube extension. So, development of computer 
model of the tube extension process by rigid punch with 
curved generator and material normal anisotropy consid-
eration, deems, is important engineering problem. 

Simulation of non-steady tube plastic forming by the 
finite element method (FEM) is limited by difficult 
problem of large matrix Equations accurate solution for 
nonlinear plastic material model with work hardening 
effect, stress-strain relations, variable shell thickness and 
curved tool boundary. Nonlinear plastic problem in 
commercial FEM codes is treated as non-linear elasticity 
or viscous solid without finite yield stress, with the result 

of non-accurate stress state calculations. More accurate 
simulation of thin-walled tube plastic forming, deems, 
should be made by correct numerical solution of ordinary 
differential Equation derived from exact equilibrium 
Equations of membrane rigid-plastic thin-walled shell 
model with Mises yield criterion, including work hard-
ening and normal anisotropy effects. This approach was 
used successfully for non-steady models of plastic shells 
drawing, which good correlated with experiments [5-8], 
and for thin-walled tube reduction by matrix with curved 
profiles [9]. 

Presented model of the thin-walled tube extension by 
rigid punch with curved generator is based on membrane 
theory of the rigid-plastic shell of revolution, with mate-
rial normal anisotropy, work hardening, wall thickness 
variation and friction effects included. FORTRAN pro-
grams are written for numerical solution of the problem 
differential Equations. Numerical results of computer 
simulation are given for the S- mode cosine, double cir-
cular and cone-circular punch profiles. Presented model 
for cosine punch profile and related model [9] for the 
tube reduction by curved matrix are reasonable corre-
lated with experimental data. 
 
2. Problem Formulation 
 
Scheme of the thin-walled tube extension by the punch 
with curved generator is shown in Figure 1. Cylindrical 
co-ordinates r, z, θ are related with fixed punch, while  
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the tube is moved in positive z direction. The punch 
curved profile is specified by differentiable function r = r 
(z) on the axial length H0 with continues tangent angle 
 , defined by derivative d dr z  = tg . The S- mode 
profile is considered with continues conjunction with 
cylinder surfaces of the tube with inner radius r0 at the 
point A, and the punch with maximal radius R0 at the 
point C. The angle  = 0 at the points A and C, and  = 
α at the maximum point d dz = 0. The profile curva-
ture available should satisfy condition of continues 
punch-tube contact with positive pressure p, defined by 
solution of differential equilibrium Equation with plastic 
yield criterion. 

Plastic forming of the tube is generated by axial dis-
placement s of the tube rigid part with initial wall thick-
ness h0. Displacement s defines deformed tube segment 
AB. If s = l0 then point B of the tube edge is coincided 
with the final punch profile point C, where the tube plas-
tic strain increase is stopped. Tube extension process is 
non-steady at the displacement interval 0 ≤ s ≤ l0 with 
the plastic strain increase and the wall thickness h de-
crease on the curved tube segment AB. If s ≥ l0 then 
steady-state extension process begins, with accuracy of 
friction effect defined by slip of cylindrical tube segment 
with radius R0 on the punch surface. 

Tube extension ratio 0 0R r is constrained by the limit 
plastic strain ep* of tension in circular direction θ of the 
tube front edge which leads to local increase of the plas-
tic strain followed by fracture of the tube edge. The ep* 
value is defined by material work hardening behavior 
[10]. Limit ratio 0 0R r , defined by the plastic strain ep*, 
is 1.2-1.3 for high plastic steel tube extension by cone 
punch [1,4]. Increase of the metal plasticity by heat of 
the deformed tube leads to essential increase of extension 
ratio [4]. In the case of tube extension at elevated tem-
peratures the ideal plastic material model can be used 
with the yield stress estimation for mean strain rate and 
temperature values. 

Second constraint of the limit tube extension ratio is 
buckling of thin-walled initial tube induced by com-
pression meridional stress σA at the section z = 0. De-
tailed experimental investigations of cylindrical tube 
buckling are given in Refs [11,12]. Approximate esti-
mations of the critical relation A S  for the tube ex-
tension by cone punch are given in Ref [4]. Critical 
buckling ratio of the tube can be increased essentially 
by kinematical constraints of the tube wall in tube ex-
tension die design [4]. 

 
3. Stress—Strain Relations 
 
In the case of thin-walled tube extension deformed mate-
rial element of the tube middle surface is loaded by 
membrane principal stresses σ1 = σθ > 0 in circular direc-

tion θ, σ2 =  < 0 in meridian direction tangent to the 
punch profile, and σ3 = 0 in normal direction to the 
punch profile. Generalized Mises yield criterion for the 
principal stresses in the case of normal anisotropy in di-
rection of the tube wall thickness can be written as fol-
lows [7] 
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Coefficient of normal anisotropy a is ratio of the width 
to thickness plastic strains defined by axial tension of 
sheet metal specimen [10]. Material yield stress σs is de-
fined by accumulated plastic strain ep using work hard-
ening relation 
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Plastic flow rule associated with the yield criterion (1) 
defines increments of the plastic strains in   and θ di-
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Accumulated effective plastic strain increment d pe is 
defined by the   and de  increments using plastic 
incompressibility condition 
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Substitution relation deθ = dr r and Equation (3) into 
Equation (4) defines dep as the function of the stress state 
and circular plastic strain increment 
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Plastic incompressibility condition and Equation (3) 
define differential relation for the wall thickness versus 
circular plastic strain increment and stress state coeffi-
cient c 
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At the tube edge B (Figure 1) we have  = 0, c = 
– (1 )a a , and wall thickness is found by integration of  
Equation (6) 
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Extension process can be used to form of short ring 
with initial dimensions r0, h0, l0 to final dimensions R0, h, 
l, with the wall thickness h defined by Equation (7) 
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and length l defined by constant volume condition 
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Stress equilibrium Equations considered below will be 
solved using the yield criterion (1) to write positive cir-
cular stress σθ as the function of meridian stress   and 
yield stress σs 
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4. Tube Stress State 
 
Stress state of deformed tube is calculated using mem-
brane theory of the rigid-plastic shell with yield criterion 
(1), work hardening (2), wall thickness variation (6) and 
Coulomb’s friction coefficient f at the punch contact 
boundary specified by its generator. The shell element 
equilibrium equation in normal direction to the shell 
middle surface defines relation of the normal pressure p 
versus stresses σφ, σθ and the shell curvatures 
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If punch generator is specified by the function r = r(z) 
then curvature radii are defined by the Equations 
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From Equation (11) it is follows, that contact pressure 
p is positive if 

2 1R R                       (14) 

If inequality (14) is not satisfied, then the tube is de-
parted from the punch profile, and curved free boundary 
of the tube is generated. Stress state of extended tube 
satisfies inequalities  > 0 and  < 0. Hence, the 
inequality (14) is defined by the tube stress state, values 
and signs of the punch profile radii R1 and R2. 

Tube stress state should satisfy equilibrium Equation 
in meridian direction to the middle surface, which for the 

case of variable wall thickness and Coulomb’s contact 
friction is written as follows: 
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Substitution Equations (10) and (11) into Equation (15) 
gives differential Equation for the meridian stress  , 
with specified distributions of the h and σs on the tube 
middle surface. 

If the punch profile is specified by the Equation r = r 
(z) with continues curvature radii defined by Equations 
(12) and (13), then integration of Equation (15) can be 
performed using z variable. In this case Equation (15) 
can be written in the form: 

 
1

d 1 d

d cos d

tg f h
f tg

z r R h z r
 



  


  
       

   
(16) 

where σθ and R1 are defined by Equations (10) and (12). 
If concave and convex punch profile segments are speci-
fied by circles radii r1 and r2 , then variable   is rea-

sonable for integration of Equation (15). Using relations 
dr = r1 sin d , dr = r2 sin d  and Equation (11), 

differential Equation (15) can be written in the forms as 
Equation (17) on the concave profile segment, and Equa-
tion (18) on the convex profile segment. 

If the punch profile is cone, conjugated with circles 
radii r1 and r2, then Equations (17) and (18) are used on 
the curved profiles, while the length l of cone generator, 
inclined at the angle α to the z axis, is used for integra-
tion of Equation (15), which takes the form: 
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Simulation of non-steady tube extension by rigid 
punch is performed by numerical integration of Equa-
tions (16)-(19) by second order Runge method with 
specified punch profile, and the tube front edge B mov-
ing from the point A to the point C (Figure 1). Integra-
tions are performed along the profile from the point B, 
where the boundary conditions are specified 
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and thickness hB is defined by Equation (7), to the point 
A , using distributions of the h, ep and σs known for pre-
vious position of the point B, which is coincided with the 
point A at the initial process stage. Effective plastic strain 
increments dep are calculated from Equations (3) and (5) 
with material points displacements to the neighbouring 
nodes of the tube segment AB. Summering of the effec-
tive plastic strain of material points and calculations of 
the σs and h from Equations (2), (6), define distributions 
of the σs and h for the next process stage. Calculations of 
non-steady stages are terminated when the point B is 
coincided with the point C, and steady-state tube exten-
sion begins. 

Displacement s of initial tube is related with the edge 
point B position and wall thickness distribution by inte-
gral incompressibility condition 
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Extension force P versus s is defined by maximum 
compression stress σA(s) = –  (s) at the point A , which 
is found by integration of Equations (16)-(19) when 
point B is moving from the point A to the point C. 
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FORTRAN programs are written for computer simula-
tion of the tube extension from initial radius r0 to the 
final radius R0 with three punch profiles specified on the 
length H0 of the z axis (Figure 1). 

 

 

Figure 1. Tube extension by the rigid curved punch. 

5. Punch Profiles 
 
Cosine profile is specified by the function 
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First and second derivatives of the function (23), 
which defines the tangent angle   and curvature radius 

R1 by Equation (12), are as follows 
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Equations (23)-(25) are used for numerical integration 
of Equation (16) with constant step dz =  0 –1H N , 
where N is number of nodes on the punch profile. 

Double circular profile is specified by circle radii r1 
on the concave and r2 on the convex segments with tan-
gent angle α at the bend point. The profile parameters r1, 
r2 and α satisfy the following relations 
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The angle α is found from Equations (26) and (27) in 
the form 
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If radius r1 is specified and satisfy the inequality 
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then radius r2 can be found from Equation (27), and vice 
versa. So, double circular punch profile is defined by the 
parameters H0, R0, r0 and r1 or r2. The profile 
co-ordinates are specified in parametric form versus tan-
gent angle   

 0 1 11 cos , sin ,0r r r z r             (30) 

On the concave segment, and 
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On the convex segment. Equations (30) and (31) are 
used for numerical integration of Equations (17) and (18) 
with constant step d = 1N  , where N is nodes num-
ber on the each circular profile. 

Cone profile with circular conjunctions is specified by 
radii r1 and r2 on the curved concave and convex seg-
ments, length L and angle α of the cone segment. The 
values r1, r2, L, α are related with H0, R0, r0 by the Equa-
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tions 
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If the angle α satisfy inequality 
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then L and radii sum are found from Equations (32) and 
(33) 
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So, cone punch profile with circular conjunctions is 
defined by H0, R0, r0, α and radius r1 or r2. Co-ordinates 
of the profile are specified in parametric form versus   
by Equations (30) and (31) on the curved segments, and 
versus l on the cone segment 

 0 1 11 cos sin , sin cos ,r r r l z r l          

0 l L                                  (37) 

Equations (30), (31) are used for numerical integration 
of Equations (17) and (18) with step d  and nodes 

number N1 on the each curved segment. Equations (37) 
are used for numerical integration of Equation (19) on 
the cone segment with step dl = 2L N , where N2 is nodes 

number on the cone profile segment. 

 
6. Numerical Results 
 
Numerical results are presented for the tube extension 
simulations from initial radius r0 = 30 mm with wall thick-
ness h0 = 1 mm to final radius R0 = 40 mm by three curved 
punch profiles on the length H0 = 25 mm. Tube material is 
low carbon steel with initial yield stress σ0 = 300 N/mm2 
and work hardening parameters C = 1.27, n = 0.672.  

Cosine punch profile, defined by Equation (23), has 
continues curvature variation with radii r1 = r2 = 12.67 
mm at the points z = 0 and z = H0 and tangent angle α = 
0.561 at the middle bend point. Double circular profile is 
specified by radii r1 = 15.0 mm, r2 = 21.25 mm and α = 
0.761 at the bend point. Cone profile with circular con-
jugations is specified by r1 = 12.0 mm, r2 = 14.22 mm, α = 
0.5 and L = 14.16 mm of cone segment. 

Force P versus displacement s relations are shown in 
Figure 2 for three punch profiles with a =1 and f = 0.1, 
up to the steady state tube extension onset. Relations P(s) 
are S-mode curves with Pmax values 28.06, 27.91, 27.83 
kN at the final s values l0 = 28.75, 30.33, 29.94 mm for 

(a) cosine, (b) double circular and (c) cone with circular 
conjunctions punch profiles. Close Pmax values are ex-
plained by equal length H0, extension ratio 0 0R r and 
close curvature radii of the curved punch profile seg-
ments. 

Distributions of accumulated effective plastic strain ep, 
meridian stress 0–   , contact pressure 0s  , wall 
thickness 0h h and yield stress 0 0R r along deformed 
tube generator at the final extension stage are shown in 
Figure 3 for (a) cosine, (b) double circular and (c) cone 
with circular conjunctions punch profiles. Values ep, h/h0, 

0s  and 0p  at the front tube edge z = H0, where 
 = 0, are defined by the final radius R0 for all punch 

profiles, with ep = 0.282, 0h h = 0.868, 0s  = 1.543 
and 0p  = 3.31·10–2. Distributions of ep, 0h h , 

0s  are constrained by specified initial and final val-
ues, and are close for three punch profiles considered. 

Contact pressure 0p  distributions are essentially 
 

 

Figure 2. Extension force P versus displacement s for (a) 
cosine; (b) double circular and (c) cone with circular con-
junctions punch profiles. 
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different for considered punch profiles. In the case of 
cosine profile (Figure 3(a)) radius R1 on meridian plane 
and pressure p  0  are continues. Minimal pressure 
value 2.68·10–2 is at the profile bend point with increase 
of the pressure to maximal value 6.18·10–2 at the point z 
= 0 on concave profile segment. In the case of double 
circular profile (Figure 3(b)) there is pressure discon-
tinues change from 1.23·10–2 to 4.19·10–2 at the profile 
bend point, as the result the value and sign discontinuity 
of radius R1 in Equation (11). In the case of cone with 
circular conjunctions profile (Figure 3(c)) radius R1 is 
discontinues at the points of cone conjunction with con- 
 

 

015 p 

0   

0   

015 p 

015 p   

 

Figure 3. Distributions of plastic strain ep, meridian stress 

0–   , wall thickness 0h h , yield stress 0s   and con-

tact pressure p  0 along the tube generator for (a) cosine, 

(b) double circular and (c) cone with circular conjunctions 
punch profiles. 

cave and convex profile segments, where minimal pres-
sures are 2.46·10–2 and 2.45·10–2. Pressure values are 
decreased on convex profile segments with small com-
pression stress   and decrease of circular stress σθ , 
as can see in Equation (11). But modules of negative 
radius R1 are large on convex profile segments, with the 
result of positive pressure p along all profiles without 
deviation of deformed tube from the punch contact 
boundaries. 

Distributions of compressive meridian stress 0   

along profiles are continues increased curves with 
maximal values 0.488, 0.485 and 0.484 at the point z = 0 
for profiles (a), (b) and (c) accordingly. Effect of differ-
ent pressure distributions on the   and other variables 
is negligible, because pressure and friction coefficient in 
Equations (15)-(19) are small. Increase of anisotropy 
coefficient a from 1 to 2 leads to increase of minimal 
wall thickness of the tube front edge, defined by Equa-
tion (8), at 4.2%; with decrease of maximal compression 
stress max  and tube extension force Pmax at 0.7% for 
considered punch profiles. 

Friction effect on maximal compression meridian stress 
  and extension force P values is given in Table 1 for 

isotropic tube extension to the final radius R0 and three 
punch profiles (a), (b) and (c) considered above. Increase 
of the friction coefficient f from 0 to 0.15 leads to increase 
of maximal   and P values at 42% for all punch pro-
files, with a small difference of the profiles lengths. 
 
7. Experiments 
 
Experimental verification of the thin-walled tube exten-
sion theory has been performed using device for sequen-
tial thin-walled rings extension by the punch with 
S-mode curved profile shown in Figure 4 [13]. First ring 
4 with initial dimensions L0, h0, d0 is fixed in support 3 
groove (left side in Figure 4). Punch 2 pushed by the rod 
1, and first ring is extended up to the middle of the punch 

Table 1. Friction and punch profile effects on maximal val-
ues of the meridian stress and extension force. 

 f 

 0. 0.05 0.1 0.15 

cosine profile 

–  0  0.382 0.434 0.488 0.543 

P, kN 21.95 24.98 28.06 31.19 

double circular profile 

–  0  0.377 0.431 0.485 0.541 

P, kN 21.67 24.77 27.91 31.11 

cone with circular conjunctions profile 

–  0  0.378 0.431 0.484 0.538 

P, kN 21.75  24.77 27.83 30.94 
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profile (right side in Figure 4). Second ring 5 is fixed in 
support 3. During second stroke of the punch ring 5 is 
extended to the middle of the punch profile, and ring 4 is 
extended to the upper end of the punch. Then ring 6 is 
fixed in support 3 followed by the punch third stroke, 
and first ring 4 is pushed from the punch with final di-
mensions L, h, d. 

Dimensions L0, h0, d0 of specimens for extension by 
the punch were obtained by the rings reduction through 
the matrix with S-mode profile shown in Figure 5 [14] 
and used for verification of the thin-walled tube reduc-
tion model [9]. First ring 4 with initial dimensions L0, h0, 
d0 is fixed in cylindrical part of the matrix with diameter 
d0 and pushed to the middle of the matrix profile by the 
punch 1. Second ring 5 is fixed in the matrix and pushed 
to the middle of the matrix by second stroke of the punch, 
while first ring is pushed to the end of the matrix profile. 
Finally, ring 6 is fixed in the matrix followed by its 
pushing to the middle of the matrix, ring 5 is pushed to 
the end of the matrix during third punch stroke, and first 
ring 4 is pushed out of the matrix with final dimensions L, 
h, d. 

Extension of reduced rings by the curved punch was 
used to increase plastic strain and properties of the rings. 
Samples for reduction and extension experiments with 
dimensions d0 = 39.9 mm, h0 = 1.98 mm, L 0 = 17.3 mm 

 
 

L 0
 

 

Figure 4. Device for sequential rings extension by curved 
punch. 1-push rod, 2-punch, 3-support, 4-6-extended rings. 

 

L 0
 

 

Figure 5. Device for sequential rings reduction by curved 
matrix. 1-punch, 2-matrix, 3-support, 4-6-reduced rings. 
 
(Figure 5) were turned from hot rolled tube of carbon 
steel St 3 (Russian metallurgy standard). Work hardening 
curve σs (ep) was found by compression tests of short 
ring specimens, turned from the tube, by lubricated 
smooth flat dies. Material parameters of the approxima-
tion (2) are σ0 = 320 2H mm , C = 1.8 and n = 0.4. Iso-
tropic material is assumed, with a = 1 in Equations 
(3)-(10). 

Cosine profiles (23) were used for the matrix and 
punch manufactured on machine tool with digital control 
program, followed by the heat treatment for specified 
hardness. Profile (23) parameters are R0 = 18 mm, r0 = 
13.74 mm, H0 = 30mm for the punch (Figure 4), and R0 
= 20 mm, r0 = 16 mm, H0 = 30 mm for the matrix (Fig-
ure 5). Reduction and extension experiments were per-
formed on standard hydraulic testing machine with 
bough the force and displacement control. Ring speci-
mens, punch and matrix profiles were lubricated by 
oil-graphite suspension. Coulomb’s friction coefficient f 
for the tool roughness with lubrication was assumed in 
the range 0.05-0.08. 

Comparison of predicted relations P(s) for the rings 
reduction by curved cosine matrix [9] with experimental 
data is shown in Figure 6. Non-steady and steady state 
experimental data are reasonable correlated with pre-
dicted relations in the range of possible Coulomb’s fric-
tion coefficient values. Predicted final ring dimensions 
after reduction [9,14] h = 2.26 mm, L = 19.5 mm are 
good correlated with measured dimensions h = 2.3 mm, 
L = 19.3 mm of the reduced rings. 

Device for the rings extension by the curved cosine 
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punch (Figure 4) has been manufactured several months  
later after rings reduction device with the result of re-
duced work hardening effect relaxation. Comparison of 
predicted relations P(s) for the reduced rings extension 
by the curved cosine punch of the present model with 
experimental data is shown in Figure 7. Non-steady ex-
perimental data are good correlated with the model in the 
range 0.05-0.08 of the friction coefficient f. First ring 
extension to the middle of the punch profile is close to 
predicted curve with f = 0.08, while further two rings 
extension to the end of the punch profile is close to pre-
dicted curve with f = 0.05. Predicted final ring dimen-
sions after extension h = 2 mm, L = 17.24 mm are good 
correlated with measured dimensions h = 1.95 mm, L = 
17.3 mm of the final rings. 
 
8. Conclusions 
 
Model of thin-walled tube extension by curved rigid  
punch based on membrane rigid-plastic theory are de-
veloped by numerical solution of differential Equations 
along specified curved punch generator with considera-
tion of material normal anisotropy, work hardening, 
contact friction and wall thickness variation, defined by 
generalized Mises flow rule. 
FORTRAN programs of the model predict extension 
force versus displacement and distributions of effective 
plastic strain, yield stress, meridian stress and contact 
pressure along the tube generator at specified punch or 
tube displacement up to steady state process beginning. 
Positive contact pressure, defined by specified S-mode 
punch profiles, is essential condition for the tube forming 
without deviation from contact boundary with the punch. 
  Numerical examples of mild steel tube extension by 
S-mode cosine, double circular and cone with circular 
conjunctions punch profiles for extension ratio 0 0R r = 
 

 

Figure 6. Predicted (solid lines) and experimental 
(●—non-steady, ○—steady state) relations P(s) for 
thin-walled rings reduction by curved cosine matrix. 

 
Figure 7. Predicted (solid lines) and experimental (●— 
non-steady, ○—steady state ) relations P(s) for thin-walled 
rings extension by curved cosine punch. 
 
1.3 with normal anisotropy variation from 1 to 2 show 
increase of minimal thickness of the tube front edge at 
4.2% with decrease of maximal extension force at 0.7%. 
Increase of the friction coefficient from 0 to 0.15 leads to 
drastic growth of extension force and maximal compres-
sion meridian stress, which can be constrained by the 
tube buckling. 

Models of thin-walled tube extension by curved punch 
and thin-walled tube reduction by curved matrix [9] are 
used in patents [13,14] for thin-walled rings plastic form-
ing. Predicted force-displacement relations and dimen-
sions of thin-walled carbon steel rings forming by lubri-
cated matrix and punch are reasonable correlated with 
experimental data. 
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10. Notation 
 
ro    minimal punch radius and initial tube inner radius (mm) 
Ro    maximal punch radius and final tube inner radius (mm) 
ho    initial thickness of the tube wall (mm) 
h    variable thickness of the tube wall (mm) 
s    tube displacement relative the fixed punch (mm) 
lo    final tube displacement at the end of non-steady process (mm) 
f    Coulomb’s friction coefficient 
r, z, θ   cylindrical co-ordinates 
Ho    length of curved punch profile along the z axis (mm) 
P    tube extension force (kN) 
R1    curvature radius of the tube middle surface on meridian plane (mm) 
R2    curvature radius of the tube middle surface on normal plane (mm) 
     tangent angle of the punch profile and tube middle surface with the z axis 
σ0    initial yield stress of the tube material ( 2H mm ) 
ep    accumulated effective plastic strain 
σs    yield stress of the tube material defined by ep (

2H mm ) 
a    normal anisotropy parameter—relation of the width to thickness plastic strains measured during  
    tension test of the sheet specimen 
σ1, σ2   membrane principal stresses 

     meridian stress of the tube middle surface element 
σθ    circular stress of the tube middle surface element 
p    normal pressure on the punch profile 
τ    friction stress on the punch profile 
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	Ho    length of curved punch profile along the z axis (mm)

