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Abstract 
 
Changes in land use and land cover (LULC) in the drainage basin of Lake Malawi over the period 1982 - 
2005 were estimated from satellite imagery, and possible relationships were evaluated among the four major 
land-cover classes: cropland, forest, water, and savanna/shrub/woodland. AVHRR and MODIS sensors gave 
different values of areal extent of the four classes, limiting the feasibility of establishing consistent temporal 
trends over the entire period of the study, but forest land showed the least change among three land cover 
types, and extent of water bodies remained virtually unaltered over the period. AVHRR results show that 
cropland was mainly derived from savanna/shrub/woodland, which declined by almost 90% over the period 
1982-1995. 
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1. Introduction 
 
Deforestation and agricultural production in the drainage 
basin of Lake Malawi have the potential to cause water 
quality deterioration that could impact the lake’s rich 
biodiversity. Runoff from agricultural lands may increase 
loadings of suspended solids and nutrients to the lake, 
and rises in lake levels may be caused by reductions in 
interception and evapotranspiration when forests are con- 
verted to cropland. Forests intercept a large proportion of 
the rainfall, much of which is lost to the atmosphere 
through evapotranspiration. Forests transpire more water 
than crops, and these processes thus reduce surface run-
off in forest environments. 

According to Malawi’s National Environmental Ac-
tion Plan (NEAP) of 1994, rapid expansion of agricul-
tural production from the mid-1970s to late 1980s re-
sulted in extensive deforestation [1]. The rate of defores-
tation was 3.5% per annum during that period, but it de-
clined to 1.6% by 1994 because little forested land was 
left. Additional deforestation was caused by use of wood 
fuel for tobacco curing, cooking, and domestic heating. 
Deforestation in the drainage basin of Lake Malawi may 
be similar to the national picture presented by the NEAP 
because the basin covers more than half of the country’s 

total area. Detailed studies have not been reported on 
which land-cover class(es) contributed to the creation of 
cropland nor to confirm that depletion of forests led to 
increased cropland area.  

The primary objectives of this study were to assess 
land-use and land-cover change (LULC) in the Lake 
Malawi drainage basin over the period 1982 - 2005 and 
to evaluate the source of new cropland. We used a com-
bination of AVHRR and MODIS satellite imagery be-
cause the more sophisticated MODIS data were not 
available for much of the timeframe of interest. A sec-
ondary objective was to assess the comparability of LU- 
LC results obtained from the two imagery sources. 
 
2. Lake Malawi Drainage Basin 
 
Lake Malawi is the third largest lake in Africa, and is 
located at the border between Malawi, Mozambique and 
Tanzania (Figure 1). Figure 1 shows the areal extent of 
the Lake Malawi Basin, depicted by the satellite imagery, 
with the lake’s tributaries shown as solid lines and the 
boundary of the basin marked by dashed lines. The dia-
mond dots represent ground observation points recorded 
during the field research aimed at verifying land use and 
land cover classes noted during the classification process.  
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Figure 1. Map of Lake Malawi and its drainage basin with 
location of ground observation points shown as black dia-
monds. 
 
These points appear as red dots on the satellite imagery.  

The northern two-thirds of the Lake Malawi drainage 
basin are a mixture of evergreen (Braschystegia) wood-
lands and agriculture [2]. The southern third is woodland 
in Mozambique but almost completely cultivated in Ma-
lawi. The drainage basin has a higher population density 
(100 km−2) than that of Lake Tanganyika (33 km−2) but 
lower than that of Lake Victoria (up to 1200 km−2) [3]. 
The rapidly growing population in the Lake Malawi ba-
sin is sustained by small-scale agriculture, which causes 
increasing stress on the land, as increasingly marginal 
lands with steep slopes are brought into production [3,4]. 

Water levels of Lake Malawi have varied widely over 
the period of continuous record [5]. The lake reached its 
lowest level, 469.94 m above mean sea level (MSL), in 
1915, and outflow to the Shire River ceased until 1935. 
High lake levels occurred during 1979 - 1984, and a re-
cord rise (1.83 m) during 1978 - 1979 caused serious 

flooding of coastal areas and the Lower Shire Valley. 
Calder et al. [6] concluded from model simulations that 
rainfall variations alone were responsible for water level 
fluctuations from 1896 to 1967 but that a 13% depletion 
of forest-cover in the basin during 1967 - 1990 led to an 
increase in lake level. They concluded that if forest de-
pletion not had occurred, the lake’s water level would 
have been 1 m lower. In this respect, removal of forests 
from the basin saved the country from experiencing se-
rious consequences from the 1991/92 drought.  

During periods of heavy storms, rising lake levels trig- 
ger flooding in coastal areas and the Lower Shire Valley 
compounding the severity of flooding in the Zambezi 
River in Mozambique, downstream of the Shire River 
confluence [5,7]. The lake level also has implications for 
sustainability of hydropower plants in the Shire River, 
which generate ~284 MW. They were developed after a 
flow-control structure was constructed in 1965 at Li-
wonde (the Kamuzu Barrage) to maintain the lake at 
473.2 - 475.32 m MSL and maintain a river flow of  
~170 m3/s [5]. Higher flows and levels could damage the 
structure. 
 
3. LULC Classification Using Satellite  

Imagery 
 
The procedure for determining changes in LULC using 
satellite imagery begins with selecting the phenomenon 
to represent change [8]. The following steps are then 
used to analyze the phenomenon: image acquisition, im-
age preparation, selection of a change detection algo-
rithm, and production of change detection results. Image 
preparation includes selecting images and eliminating 
interferences in them. Change detection involves either 
bi-temporal or trend analysis [8]. The former compares 
images from two discrete times, and the latter evaluates 
change based on data for multiple dates from a time se-
ries of images. Normally, anniversary dates are used for 
bi-temporal change detection to minimize effects of 
phenological cycles and sun angle.  

Coppin et al. [9] grouped change-detection algorithms 
into eleven categories, and Coppin and Bauer [10] con-
cluded that image differencing, PCA, and the mul-
ti-temporal Kauth-Thomas methods perform better than 
other approaches. As stressed by Jensen [11], the major 
assumption in change detection is that a difference exists 
in the spectral characteristics of a pixel on two dates if 
biophysical conditions in the pixel field changed between 
dates.  

Vegetation indices often are used as empirical meas-
ures of vegetation status [12]. Many studies have dem-
onstrated relationships between red and near-infrared 
(NIR) reflected energy and the amount and type of vege-
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tation on the ground [13]. According to Huete et al. [12], 
reflected red energy decreases with plant development 
because of absorption by chlorophyll in actively photo-
synthetic leaves, and reflected NIR energy increases 
through scattering processes in healthy leaves. A com-
mon vegetation index is the NDVI (normalized differ-
ence vegetation index): 

tral matching techniques (SMTs), followed by class iden- 
tification and merging using ground observations, Goo- 
gle Earth imagery, and other secondary data to produce 
maps of LULC classes for each year of data [14,15]. 
Areal coverage by LULC class was used to measure 
changes over the period 1982-2005. Two SMT variations 
were used to classify LULC change—spectral correlation 
similarity (SCS) and spectral similarity value (SSV). 
Thenkabail et al. [16] showed that both are useful in 
classifying LULC types. 

 
 

NDVI nir red

nir red
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             (1) 

SCS is based on Pearson’s correlation coefficient (r) 
applied to an NDVI time series [14]: The NDVI may range in value from −1.0 to +1.0. A 

value of +1 indicates healthy vegetation; values close to 
zero indicate poor vegetation. Tropical forests show little 
intra-annual variation in NDVI, but rain-fed crops ex-
hibit strong seasonality. Temporal signatures of NDVI 
vary according to vegetation type, and this is used to 
identify land-cover type (e.g., distinguish between forest 
and crop land). 
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where ti = NDVI time series of the target class; μt = mean 
of the NDVI time series of the target class; hi = NDVI 
time series of any other class; μh = mean of the NDVI 
time series of any class; σt = standard deviation of target 
class NDVI time series; and σh = standard deviation of 
NDVI time series of other class. Although r can range 
from −1.0 to +1.0, negative values are not meaningful 
here [14]. The higher the value of r, the greater the simi-
larity of the spectral or temporal NDVI profile between 
the historical and recent time series land-use and land- 
-cover class [15].  

 
4. Methods 
 
The following datasets were used to conduct the analysis 
of LULC change: 8-km resolution AVHRR-NDVI data 
for 1982 - 2000 and MODIS 7-Band Reflectance Data 
for 2000 - 2005, converted to NDVI (Table 1). In addi-
tion, we used Lake Malawi water level data from the 
Malawi Ministry of Irrigation and Water Development, 
Hydrology Section Data Archive, for the period 1982 - 
2005 and ground observations for major land use and 
land-cover classes for the Lake Malawi basin, as well as 
Google Earth imagery, existing land use and land cover 
maps, and topographic maps. 

SSV was defined by Homayouni and Roux [16] as: 

 22SSV EDS 1 r              (3) 

LULC analysis was done using the method of Thenk-
abail et al., which involves class development byspec- 

where EDS is the Euclidian distance between the histori-
cal LULC class and a recent LULC class in spectral  

 
Table 1. Datasets used for LULC change in Lake Malawi drainage basin. 

Satellite Sensor and Band Wavelength (µm) Data Format Range 

AVHHR (8 km)    

Band 1 (B1) 0.58 - 0.68 Reflectance at ground, 8-bit 0 - 100% 

Band 2 (B2) 0.73 - 1.10 Reflectance at ground, 8-bit 0 - 100% 

Band 4 (B4) 10.3 - 11.3 
Brightness temperature 

(top of atmosphere) 
160 - 340 

Band 5 (B5) 11.5 - 12.5 
Brightness temperature 

(top of atmosphere) 
160 - 340 

NDVI (B2 – B1)/(B2 + B1) No units, 8-bit scaled NDVI –1 to +1 

MODIS/Terra    

7-Band-500 m reflectance data 
processed to NDVI 

(B2 – B1)/(B2 + B1) No units; 16-bit scaled NDVI –1 to +1 
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space [15]. SSV was used to match both the shape and 
magnitude of the classes. The Euclidian distance EDS is 
given by: 

 2

1

EDS
n

i i
i

t r


                (4) 

The typical range of SSV is 0 - 1.415; smaller values 
indicate greater similarity. 

Monthly data on the maximum-value composite NDVI 
for AVHRR were downloaded for the Lake Malawi ba-
sin from the International Water Management Institute 
Data Support Pathway (IWMI DSP) archive for 1982 - 
1995; and maximum composite NDVI values for MOD-
IS/Terra were calculated for the Lake Malawi basin from 
7-Band Reflectance Data of bands 1 and 2 for 2000 - 2005 
using ERDAS Imagine and ER Mapper computer pack-
ages. The cloud removal algorithm of Thenkabail et al. 
[14] was not used because we assumed that the compos-
ite NDVI values eliminated cloud interference by making 
use of at least one cloud-free day in computing the data 
series.  

Unsupervised land cover classification was carried out 
on the NDVI series by the ISODATA routine in ERDAS 
Imagine, which calculates class means evenly distributed 
in the data space and clusters the remaining pixels itera-
tively using a minimum distance technique. Initially, 50 
classes were defined, from which NDVI was plotted 
versus month for the period 1982 - 2000. Spectral 
matching by SCS then was used to group signatures rep-
resenting similar classes. The process started by group-
ing classes with r2 > 0.96, followed by 0.92 < r2 < 0.96, 
0.90 < r2 < 0.92, 0.85 < r2 < 0.90, and finally r2 < 0.85. 
The choice of r2 ranges was made based on previous ex-
perience with LULC classification. In each range, signa-
tures were classified further into smaller groups depend-
ing on similarity of the NDVI signatures. After merging, 
further grouping was done with the assistance of ground 
observation photos, Google Earth, the USGS 
land-use/land- cover map, Global Land Cover (GLC) 
2000 land-use/ land-cover map, and the Malawi Depart-
ment of Surveys draft LULC map. A single class was 
assigned to each 8 km  8 km pixel in AVHRR images 
and each 0.5 km  0.5 km pixel in MODIS images after 
examining the accessory information. Finally, four 
classes were obtained: water bodies, cropland, evergreen 
forests, and savanna/ shrubs/woodland (SSW).  

For both AVHRR and MODIS images, verification of 
the identified classes was done using geo-linked land- 
use/land-cover maps (USGS, GLC), Landsat and Google 
Earth imagery, and ground observation photos. Pixels 
falling in the “wrong” category were cropped out of the 
image and placed in the appropriate class. For example, 
several pixels falling in the cropland, SSW, or forest 

categories found in Lake Malawi in the analyses of 
MODIS images were cropped out and placed under “wa-
ter bodies.” 

Ground observations were made for the LULC classes 
at specific locations in the Lake Malawi basin, shown in 
Figure 1 as diamond dots and red dots on the satellite 
imagery. A Garmin GPS unit was used to locate the 
ground observation points. Collection of ground-based 
calibration data for the LULC classification focused on 
dominant classes, namely: evergreen forests; patches of 
natural woodlands (including Miombo); grassland; shrub 
and scrub land; “dambos” (i.e., wetlands in the plateau 
area); and farmland, including home gardens. Collection 
of calibration data involved travel to basin areas where 
these classes were thought to occur. This approach dif-
fers from the common approach to collect ground obser-
vation data—sampling on a uniform length scale (e.g., 
every 10 km of road travel), which would not have been 
useful because most of the land in the basin falls in the 
cropland class. 
 
5. Results and Discussion 
 
A wide variety of patterns occurred in monthly values of 
NDVI calculated from 2001 MODIS data among the 
50-unsupervised LULC classes extracted by ERDAS 
ISODATA. The variations of NDVI of the 50 classes 
with time in months are shown in Figure 2(a); but many 
classes of LULC did exhibit substantial similarity. For 
example, classes 17, 19, and 26 shown in Figure 2(b) 
were merged into one group because their correlation 
coefficient was greater than 0.96, i.e., SCS of r2 > 0.96. 
Figures 2(a) and 2(b) illustrate transitional results ob-
tained in the classification process before the four final 
LULC classes were identified, namely: water bodies, 
cropland, evergreen forests, and savanna/shrubs/wood- 
land (SSW).  

Spatial distributions of the final four LULC classes 
over the study period are shown in Figure 3 (8-km reso-
lution AVHRR-NDVI data for 1982, 1985, 1990, and 
1995) and Figure 4 (0.5 km resolution MODIS-NDVI 
data for 2001 and 2005). Inspection of the areal extent 
data for each LULC class over the six years (Table 2) 
shows that the two sensors yielded discordant results 
regarding areal extents of the classes and changes in 
LULC in the Lake Malawi basin over the period of anal-
ysis. Consequently, it is more instructive to consider the 
two image sources separately.  

For AVHRR, forest area decreased by ~25% initially 
(1980 to 1985) and then increased gradually during the 
period 1985 - 1995 such that the extent of forest in 1995 
was within 91% of the initial value. The area of cropland 
nearly doubled between 1982 and 1985 but then re-  
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Figure 2. (a) NDVI versus month for 50 classes produced by unsupervised classification for 2001 MODIS data; (b) plots for 
three of the classes with SCS R2 > 0.96. 
 
mained relatively constant. In contrast, the area of sa-
vanna/shrub/woodland (SSW) decreased dramatically, 
especially between 1982 and 1985, and by 1990 the ex-
tent of SSW was only 13% of the 1982 value. The results 
indicate that cropland area increased primarily at the 
expense of SSW. The area of surface water remained 
fairly constant over the period of AVHRR data, although 
it increased by ~9% between 1990 and 1995. For MOD-
IS, forested and water areas were fairly constant between 
the two years of data, but cropland decreased and SSW 
increased by similar amounts. Thus cropland and SSW 

again appear to be interchangeable. 
Analysis of LULC data from the two sensors yielded 

moderate differences in areal extent for forested land, 
with the MODIS imagery yielding about a third more 
forest than the AVHRR imagery. The two sensors 
yielded even larger differences in extent for cropland and 
SSW, but they did agree on the areal extent of surface 
water, which essentially represents Lake Malawi. The 
differences in areal coverage for the three land classes 
likely can be attributed to differences in spatial resolu-
tion of the sensors. Much more class-averaging occurs  
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Figure 3. Distribution of the four LULC classes in Lake 
Malawi basin from AVHRR imagery for (a) 1982, (b) 1985, 
(c) 1990, and (d) 1995. 
 

 

Figure 4. Distribution of the four LULC classes in Lake 
Malawi basin from MODIS imagery for (a) 2001 and (b) 
2005. 
 
with the AVHRR data, given its low (8 km) resolution, 
than with the MODIS data. Hence, small differences 
between classes are more likely to be distinguishable 
using MODIS than AVHRR data. Because surface water 
in the basin occurs mostly in one large water body, av-
eraging of within-pixel spectral characteristics is much 
less an issue for this class than for spatially heterogene-
ous land classes. 

The temporal changes in LULC areal coverage (Table 
2) show no obvious relationship between forest depletion 
and lake level rise. From the AVHRR data, it appears 
that there was a small net decrease in forests between 
1982 and 1995 (<9%), but the lake level decreased by 
2.4 m. The MODIS data show a small (3%) decease in 
the extent of forests from 2001 to 2005, but the lake level 
rose by 0.3 m. The differences in areal coverage of forest 
between the two sensors preclude combining the data to 
examine relationships between water level and forest 
over the entire study period.  

The results in Table 2 indicate that SSW lands rather 
than forests have suffered the most serious depletion in 
the Lake Malawi basin as cropland has expanded and 
agricultural production has increased. These findings 
contrast the results of Calder et al. [6], who concluded 
that forest depletion in the basin of Lake Malawi caused 
an increase in lake level. Although evapotranspiration 
may not be as high in SSW as in forests, because rainfall 
interception by broad leaves of the evergreen forests is 
generally high and thus associated evaporation losses are 
also high and accentuated by eddies generated by wind 
blowing over the forest stand, the increase in surface 
runoff that likely results from converting SSW to crop-
land nonetheless has the potential to increase the lake 
level.  

Most of the Lake Malawi Basin is covered by SSW 
hence it is not surprising that cropland is mainly from 
this LULC class. The other reason for this scenario is 
that areas where forests occur in the Lake Malawi Basin 
are sparsely populated. Thus, there is very little effect on 
forest cover with the encroachment of human activities 
such as agricultural production. But this situation is be-
ing to change in future as more people in Malawi move 
into forest areas in search of prime land for settlement 
and agricultural production, especially tobacco and ma-
ize production. 

The differences between the AVHRR and MODIS da-
ta for areal extent of the LULC classes were unexpected, 
but upon reflection the differences do make sense  

 
Table 2. Areal extent of LULC classes (in km2), and lake level (m above sea level) in Lake Malawi drainage basin. 

Year Imagery Forest Cropland Water Bodies SSW1 Lake Level 

1982 AVHRR 26 741 45 738 29 040 43 681 476.05 

1985 AVHRR 20 086 86 273 28 193 10 648 475.17 

1990 AVHRR 22 264 87 846 29 403 5 687 475.42 

1995 AVHRR 24 442 83 490 31 944 5 324 473.66 

2001 MODIS 33 800 46 408 29 707 20 091 474.51 

2005 MODIS 32 739 40 545 29 799 26 921 474.83 

1SSW = savanna/shrub/woodlands. 
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given the large difference in spatial resolution between 
the two sensors and the patchy nature of land cover in 
Malawi. Because of the short temporal extent (2001 - 
2005) of MODIS data, our analysis of temporal trends is 
based primarily on the AVHRR data. If we had been able 
to use 1-km AVHRR-NDVI data instead of 8-km resolu-
tion data, the inferred LULC distributions may have been 
more compatible with the MODIS results, but such data 
were not available. 
 
6. Conclusions 
 
Because of differences in spatial resolutions, AVHRR 
and MODIS sensors gave different values for areal ex-
tent of the forest, cropland and SSW land classes over 
the period of analysis. The extent of surface water re-
mained virtually unchanged over the period 1982 - 2005. 
Both the AVHRR and the MODIS data show that crop-
land was mainly derived from SSW.  
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