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Abstract 
QRS detection is very important in cardiovascular disease diagnosis and ECG (electrocardiogram) 
monitor, because it is the precondition of the calculation of correlative parameters and diagnosis. 
This paper presents a non-parametric derivative-based method for R wave detection in ECG signal. 
This method firstly uses a digital filter to cut out noises from ECG signals, utilizes local polynomial 
fitting that is a non-parametric derivative-based method to estimate the derivative values, and 
then selects appropriate thresholds by the difference, and the algorithm adaptively adjusts the 
size of thresholds periodically according to the different needs. Afterwards, the position of R wave 
is detected by the estimation of the first-order derivative values with nonparametric local poly-
nomial statistical model. In addition, in order to improve the accuracy of detection, the method of 
redundant detection and missing detection are applied in this paper. The clinical experimental 
data are used to evaluate the effectiveness of the algorithm. Experimental results show that the 
method in the process of the detection of R wave is much smoother, compared with differential 
threshold algorithm and it can detect the R wave in the ECG signals accurately. 
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1. Introduction 
QRS wave is the most visible part of the changes in the ECG (electrocardiogram) and the synthetic performance 
of the multi-myocardial cells. So detecting QRS wave accurately not only provides important basis for the di-
agnosis of arrhythmia, but also makes it possible to count the heart rate and the variability of heart rate in this 
base. By doing so, it can lay the foundation for further detecting and analyzing other detailed information. So the 
key is to detect reliable QRS wave in the analysis of ECG signals accurately. 
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However QRS waves are difficult to be detected; not only are there the physiological variability of the QRS 
waves but also several various types of noises that would present in ECG signals. The main several noises 
sources include muscle noises, artifacts due to electrode motion, 50 Hz power frequency interference, and base-
line wander. Therefore we use a digital filter to cut out noises from the original ECG signals before detecting R 
wave in this paper, and select appropriate thresholds by the difference to deal with the data smoothly. Thus we 
can obtain more stable signals to prepare for the further R wave detection. 

The QRS waves detection of ECG signals have been researched for many years. There have been mainly sev-
eral investigations dealing with the QRS wave detection for ECG signals [1]-[5]. For instance, difference thre-
sholds method [6]-[10] can effectively reduce low frequency interference and it is easier to be implemented. 
Wavelet transform method [11]-[16] has good time frequency localization characteristics and high adaptability 
to time-varying signals. But it computes tediously and costs long time and it is not conducive to the timely 
processing. Filter bank method [17]-[19] is based on wavelet transform, while its implementation is more flexi-
ble and has higher accuracy than wavelet transform. Geometrical matching approach [20]-[21] has strong anti- 
interference but computes a lot of time. Neural network approach [22]-[25] has a strong adaptability and good 
discriminant results, but the training takes a long time. The algorithm of mathematical morphology [26]-[29] can 
effectively protrude the peaks and valleys of the signal by using the local characteristics of signal. The QRS 
waves can be eliminated by a series of morphological operations. Then the start points and the end points of P2 
wave and T2 wave can be decided and the waves of ECG are separated qualitatively and quantitatively. The 
above approaches have advantages and disadvantages. Meanwhile they have their own ranges of adaption. Be-
cause the adaptive difference threshold algorithm is easy to be implemented, this paper still uses difference thre-
shold algorithm to select thresholds and self-learning strategies are used to compute thresholds. A non-parametric 
derivative-based method was proposed for the detection of R wave in ECG with local polynomial regression 
which is used in many fields [30]-[39]. Finally, clinical experimental data is used to evaluate the effectiveness of 
the algorithm. Experimental results show that the method in the process of the detection of R wave is much 
smoother, comparing with difference threshold algorithm, and it can detect the R wave in the ECG accurately. 

The rest of the paper is organized following. R wave detection with local polynomial regression and its deriv-
ative’s estimation is depicted in Section 2. Experiments results and discussions are given in Section 3. Conclu-
sions are obtained in Section 4. 

2. R Wave Detection with Local Polynomial Nonparametric Regression 
After the original ECG signal data is preprocessed, we use the local polynomial nonparametric statistical regres-
sion to fit these data and compute its values of first-order derivative which can be applied in the algorithm of R- 
wave detector in ECG signal. In view of these values of first-order derivative, we find they have relatively large 
changes; there is a fixed position relationship with the steep waveform R wave. Firstly, we set three initial thre-
sholds, comparing with derivative values based on the local polynomial nonparametric estimation. Then through 
the adaptive learning to adjust the size of thresholds, thus derivative values that can meet the threshold condi-
tions are able to determine the location of R wave roughly. Last setting different RR intervals to discuss redun-
dancies and lacks of R wave and fix. 

2.1. Preprocessing Data and ECG Signal De-Noise 
Since it is difficult to detect QRS wave complexes. Not only because of the physiological variability of the QRS 
complexes, but also the various types of noises that can present in ECG signals. The main several noises sources 
include artifacts due to electrode motion, power-line interference, baseline wander. Therefore the first thing is to 
preprocess data and signals filtering before detecting ECG signals in this paper. The work is divided into the 
following three steps to complete: 

1) Because the data most front excess zeros is meaningless, we process the data in front of extra zeroes 
method is using a threshold to judge. The method is that from the first point that its absolute value is greater than 
this threshold to start account, the following data as the signals data to be processed. 

2) Data judgment: first, expand the amplitude of the signals up to 100 times of the original (For convenience 
of signal-detection, the amplitude does not have to be expanded.). Take the first two seconds signals data to 
identify the position of one of the largest difference, there must be a QRS wave before or after the largest dif-
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ference value. Finding the maximum pre-max and minimum pre-min value within the interval [−fs/8 fs/8] before 
and after the origin (fs is sample rate). Meanwhile based on the interval value ranking, we choose its mean value 
pre-mid. According to distance between the maximum, minimum and mean value to judge whether the signals 
data is positive or negative and adjust signals. 

3) In the process of ECG signals acquisition, amplification and transformation, it can cause all kinds of inter-
ference. The main interference is 50 Hz power frequency interference and baseline wander. We use a multi 
band-pass digital filter to smooth signals after A/D converted. The filter is a 280-order FIR digital filter design 
with rectangular window. Based on difference of sampling rate, the choice of band-pass has lightly changes. 
When sampling frequency fs = 5000, the band-pass W = [5.5 40 60 90 110 140 160 190]/fs*2, other smaller fs, 
W = [5.5 48 52 98 102 148 152 198]/fs*2. It is verified that this multi band-pass rectangular window can filter 
most of 50 Hz and some harmonic power frequency interference and baseline wander. 

The original ECG signal is plotted in Figure 1. Figure 1 shows the original ECG heart rate is relatively stable. 
That is, the interference is so small that we can use multi band-pass digital filter to cut out noises from the orig-
inal ECG signals easily. 

2.2. Thresholds Setting and RR Interval 
After the original ECG signal data is preprocessed, the first 500 samples would be divided equally. Then we 
make T = round (1.1*RR) and calculate the difference maximum of the first five T. After removing a maximum 
and a minimum, the remaining values are taken arithmetic average to obtain threshold benchmark 0m∆ . We set  

three constants 0 0 0 0
11 180 , 2 150 , 3 160

10m m m mC C C= ×∆ = ×∆ + ×∆ = ×∆  through 0m∆ , and use initial bench-

mark determine [ ]0 0 0 0 0335 200 ,180 ,347m m m mσ = ×∆ + ×∆ ×∆ ×∆ , which is the threshold for preparing R de- 
tection, according to three cycles to adjust thresholds in the adaptive phase. We also need obtain benchmark R 
wave amplitude HR and benchmark R wave interval RR: first taking the first 12 seconds signals preprocess to 
find the maximum difference, next using the maximum difference of 0.65 times as the threshold, we could ob-
tain a general RR interval that we set h. Then we compute the maximum difference and the maximum amplitude 
value and its corresponding position. We obtain RR interval and space HR. 

2.3. Local Polynomial Nonparametric Regression of ECG Data 

1) Local polynomial fitting 
 

 
Figure 1. The original signals.                                        



L. Su et al. 
 

 
29 

For data set ( ), , 1, ,500i it Y i =   in each period, where iY  is the response and it  is time variable. One may 
fit a regression curve m  through the data to establish the relationship between the response and time variable. 
Discrepancies between the regression curve and the data are usually treated as noise. Therefore, we have the 
model: 

( ) ( ) ,i i i iY m t tσ ε= +                                     (1) 

where ( ) ( )2 .i i it Var Y t tσ = =  Often one can assume that ( ) ( )0, 1i i i iE t Var tε ε= = , it  and iε  are mutually 

independent. Let ( ) ( )vm t  be the v -th derivative of the regression function defined in (1). The local polynomi-

al technique is very convenient to use for estimating ( ) ( )vm t , including the regression function itself 

( ) ( ) ( )0m t m t=  and its the first-order derivative functions ( ) ( )1m t . Since the form of the function ( )m ⋅  is  
not specified, a remote data point from 0t  provides very little information about ( )0m t . Hence, we can only 
use the local data points around 0t . Assume that ( )m t  has the (p + 1) derivative at the point 0t . By Taylor 
expansion, for t  in the local neighborhood of 0t , we have:  

( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( )( ){ }11 0

0 0 0 0 0 .
!

p
p pm t

m t m t m t t t t t o t t
p

+= + − + + − + −            (2) 

In terms of statistical modeling, locally around 0t , we model ( )m t  as 

( ) ( )0
0

.
p

j
j

j
m t t tβ

=

≈ −∑                                   (3) 

The parameters { }jβ  depend on 0t  and are called local parameters. Clearly, the local parameter 
( ) ( )0 !.v

v m t vβ =  
Fitting the local model (3) using the local data, one minimizes 

( ) ( )
2

1 0
,

pN j
n j i n h i n

n j
y x x K x xβ

= =

 
− − − 

 
∑ ∑                              (4) 

where h  is a bandwidth controlling the size of the local neighborhood and ( )hK ⋅  is a kernel function. In this 
paper, after many experiments that we choose the bandwidth 0.005h = , kernel function is 
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Then the problem of weighted least squares estimation can be written as follows:  

( ) ( )Tmin ,y t W y t
β

β β− −                                  (6) 

where ( )T
0 pβ β β=  . The i-th element of W is ( )0h iK t t− , its solution vector is: 

( ) 1T Tˆ ,t Wt t Wyβ
−

=                                    (7) 

where ( ) ( ) ( )0
0

ˆˆ ˆm t m t β= = , ( ) ( )1
1̂m̂ t β= . 
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For the nonparametric local polynomial estimator, there are three important problems which have significant 
influence to the estimation accuracy and computational complexity. 

First of all, there is the choice of the bandwidth, which plays a rather crucial role. The most important thing is 
to find the bandwidth. In theory, there exists a optimal bandwidth opth  in the meaning of mean integrated 
square error (MISE), fulfilling the equality  

( ) ( )( )2ˆarg min d .opt T T Th
h f X f X X= −∫                         (8) 

However, the theoretical bandwidth opth  in Formula (8) can not be directly calculated. Here, we apply a 
search method to select the bandwidth: Compare values of the objective function as the bandwidth h  from 
small to large, and then find out the optimal bandwidth which minimizes the objective function. 

Suppose that min ,l lh K h=  where minh  is the minimum, K  is coefficient of expansion. We search a band-
width h  to minimize the objective function in the interval [ ],min maxh h , where the objective function refers to 
the prediction mean square error (MSE), denoted by ( )MSE h . 

Firstly, we assume minh h= , then increase h  by efficient of expansion K  and calculate value of objective 
function for each h . Stop down when maxh h> , and choose a bandwidth h  which minimizes ( )MSE h  as the  

approximate optimal bandwidth. ( )MSE h  can be taken place by a estimation ( )2

1

1 ˆ .
n

MS i i
i

e Y Y
n =

= −∑  

In this paper, we choose 

min max
2

, ,
2

m mh h
h h

n
= =                                   (9) 

where max , 1.1.m i jh X X K= − =  Compared with other methods, this method is more convenient. 
In order to closer to the ideal optimal bandwidth, we search once again by narrowing the interval on the basis 

of the above searching process. Supposing j  is the bandwidth which make min
jK h  optimal in the above sear-  

ching process. Now, divide the small interval 1 1
min min,j jK h K h− +    into n  equal intervals. Supposing 

( )1 2
min 1 1 1, , 1,j

i
ih h K K i n
n

−  = + − = − 
 

                     (10) 

among these 1n −  bandwidths, the approximate optimal bandwidth is the one that makes MSe  minimize. Ob-
viously, this search method can quickly select the right bandwidth. 

Another issue in multivariate local polynomial fitting is the choice of the order of the polynomial. For a given 
bandwidth h , a large value of p  would expectedly reduce the modeling bias, but would cause a large variance 
and a considerable computational cost. Since the bandwidth is used to control the modeling complexity, and due 
to the sparsity of local data in multi-dimensional space, a higher-order polynomial is rarely used. So we apply 
the local quadratic regression to fit the model (that is to say, 2p = ). 

The third issue is the selection of the kernel function. In this paper, we choose the spherical Epanechnikov 
kernel as kernel function 

( ) ( ) ( ){ }( )21 23 1 2 4π 1 ,K x x
+

= Γ −                        (11) 

where ( )Γ ⋅  represents Γ  function. This is the optimal kernel function. 
500 data are contained in a cycle in Figure 2. The samples number of data which is used in local polynomial 

nonparametric statistical method is 500. This is as same as original data. Compared with original signals, the 
first-order derivatives which we estimate have fixed position with it. There must be R peak between the maxi-
mum and minimum of the first-order derivative. Thus we can choose appropriate thresholds to limit first-order 
derivative values range so that the position of R wave can be determined approximately. 

2) Algorithm of R wave detection 
We put ( ) ( )1

1 ˆV m t= , any of the three estimated values in each period are ( )1V k , ( )1 1V k + , ( )1 2V k + , if 

( ) ( )
( ) ( )

1 01 1 02

1 1 03

, 1 ,

2 0 and 2 ,

V k V k

V k V k

σ σ

σ

> + >

+ < + >
                       (12) 

we can determine ( )1 1V k +  is an R wave. The Figure 3 is generally detection of R wave flow chart, which 
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Figure 2. Results of fitting with local polynomial nonparametric re-
gression.                                                   

 

 
Figure 3. R wave detection flowchart.                                  
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give the detailed description for the R detection of ECG signal. Firstly, the local polynomial nonparametric 
regression is applied to fitting and estimate the ECG signal. Then, the initial thresholds are given. Finally, 
iterations steps are conducted for the R wave detection. 

2.4. Check and Correction for R Wave in ECG Signal 
Firstly, we need to judge whether it is a real QRS wave when an R wave is detected. We determine the redun-
dant detection occurs according to whether the current RR interval is larger than 0.8*RR or not. Then we decide 
the missing detection occurs according to whether the RR is more than 3.1*RR or not. If redundant detection or 
missing detection occurs, we need detect the sample paragraph again before the current sample paragraph be 
detected and increase range in order to detect the R wave conveniently. 

It is possible that the judgment includes redundant detection or missing detection though we have done above. 
Therefore we also need further determine whether RR is in the interval between 1.66*RR and 2.5*RR. If it is in 
this interval, it shows that it is possible to be a missing R wave. 

From Figure 4, our solution is as follows: we should judge whether the signal in [0.5*HR, 1.5*HR] lies in 
[0.7*RR, 1.2*RR]. If it occurs, we can draw a conclusion that an R wave is missed. Then we supplement it to 
the sequence of the R wave position. If it can not occur, we should check whether an invert R wave exists. If it 
exists, we should supplement it to above sequence. If the testing program runs to the last data and finds that the 
distance between the position of the last R wave and the end of the data exceeds 1.66*RR, we detect the last part 
of the signals once more. 

From Figure 5, the algorithm is summarized as follows: 
 

 
Figure 4. Fix check detection redundancies.      

 

 
Figure 5. Fix detection lacks.                             
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Step 1: Using the given threshold to removal the data most front excess zeros, and the finding difference of 
maximum and minimum values to judge the data. 

Step 2: Choosing a multi band-pass digital filter to filter and smooth signals after A/D converted. 
Step 3: Calculating thresholds and obtaining the RR intervals by the difference method. 
Step 4: Using local polynomial fitting to process data and obtain the values of its first-order derivative. 
Step 5: By fourth step calculated first-order derivative values, combined with thresholds, we can detect the a- 

pproximate location of R wave by satisfying the three conditions (Formula 7). 
Step 6: Setting different RR intervals and discussing redundancies and missing R wave and correcting it. 

3. Experiment Results and Discussions 
The purpose of by using local polynomial nonparametric fitting modeling process in R wave detection of ECG 
signal is to obtain the values of its first-order derivative of the original ECG data in each point. For smaller cal-
culation of the proposed approach, we determine the order 2p =  for the local polynomial in the fitting process. 
In addition, there are two parameters of the model which must be selected in some sense of optimization. The 
one is the size of the bandwidth h , the other is choice of kernel function in local polynomial nonparametric es-
timation process. In this paper, we choose the bandwidth h  is 0.005, by according to the optimal in mean 
square. Also because ECG data values are small, we should estimate all observations in a cycle. The difference 
between the observed values is 0.001. If the bandwidth is less than 0.005, it would result in under smooth, obtain 
noisy estimates, where if a bandwidth is too large, it would cause over smooth, and create excessive modeling 
bias. The bandwidth can be chosen subjectively by users by visually inspecting resulting estimates or chosen 
automatically by data by minimizing a depicted former theoretical approach. The order p  has been identified. 
The kernel function has been selected according to the optimal theory. 

3.1. Feasibility Test 
We choose ECG signals randomly to test the algorithm. We also choose 500 data in accordance with the above 
steps to detect the R wave in ECG signal. The Figure 6 is some results. 

Figure 6 shows that the algorithm is feasible for R wave detection in regular ECG signals. The symbol ∗ 
represents R peaks which have been detected. We can find easily R waves are detected exactly and wave peaks 
are marked. Thus we can judge whether this period of R intervals are equal consistent so that it can provide 
reference for the clinical ECG diagnosis. 

3.2. R-Wave Detection with Local Polynomial Nonparametric Regression 
In experiments we select 500 samples in a cycle as the optimal number of samples. Then we fit the original data 
using local polynomial nonparametric method in a period. The fitted data are all the same as data of the original 
data. So we can locate R wave position with its first derivative accurately. We adjust the size of the thresholds 
by the use of adaptive learning in order to complete the redundant detection and missing detection of the R wave 
successfully. 

Experiments show that the method of local polynomial fitting can also smooth the original data during the 
progress of real-time detecting R wave. The method can detect R wave more accurately and stably, comparing 
with the difference threshold method. 

The Figure 7 are the parts of the figures of the experimental result and the corresponding instantaneous heart 
rate chart that we get when we detect the R wave by using local polynomial fitting. 

Because the QRS waves we detect are stable normal heart rate and we fit the original data by using local po-
lynomial estimation, the instantaneous heart rate detection is almost in a straight line. The result shows that it is 
stable. We can also conclude that the algorithm detection is more accurate. 

3.3. Comparing with the Differential Threshold Algorithm 
Compared with the difference threshold algorithm, for our investigated nonparametric local polynomial method, 
the main difference is data preprocessing. The differential threshold algorithm is that ECG waveform amplitude 
which is calculated directly by the differential relative to the variation rate of time compared with the set thre-
shold to meet the threshold condition is considered to be an R wave. The Figure 8 is the chart for the compari-
son. 



L. Su et al. 
 

 
34 

 
Figure 6. The results of feasibility test.                      

 

 
Figure 7. Corresponding instantaneous heart rate chart.         

 

 
Figure 8. Comparison of local polynomial fitting and differen-
tial threshold method.                                    
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It can be seen from Figure 8 in the signals amplitude of ECG after preprocessing. The effect of using local- 
polynomial fitting is smoother than the difference threshold method. Signals data obtained by the first method is 
better to maintain variations of the original signals data, especially in some of the inflection points at the 
fluctuation which are more accurate than the effect of the difference method. So in the use of adaptive threshold 
detection of R wave process, the data of using local polynomial fitting is even easier to detect the R wave 
accurately. 

3.4. The Discussion of Redundant Detection and Missing Detection 
When we obtain the position of the R wave, it is also necessary to discuss redundant detection and missing de-
tection in ECG signal. The reason is that in the process of automatically updating thresholds, not all thresholds 
could satisfy rang of R wave peak. It is possible for some signals judged as R wave peak incorrectly in ECG 
signal so that we could not detect R wave accurately and efficiently. Therefore we could detect R wave and give 
corresponding correction accurately through researching redundant detection and missing detection. 

From Figure 9 and Figure 10, the symbol ∗ represents R wave peaks which have been detected. Obviously 
some not-R wave peaks also have been detected wrongly. It is not enough to depend on the size of thresholds to  

 

 
Figure 9. The diagram before redundant detecting.                 

 

 
Figure 10. The diagram after correcting.                         
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define range of R wave without making discussion of redundant detection. While after dealing with situation, 
some camouflage signals are detected. Then we set different RR intervals so that getting rid of these unneces-
sary signals. By doing so, the accuracy is improved greatly. 

3.5. The Discussion of Redundant Detection and Missing Detection 
When we obtain the position of the R wave, it is also necessary to discuss redundant detection and missing de-
tection in ECG signal. The reason is that in the process of automatically updating thresholds, not all thresholds 
could satisfy rang of R wave peak. It is possible for some signals judged as R wave peak incorrectly in ECG 
signal so that we could not detect R wave accurately and efficiently. Therefore we could detect R wave and give 
corresponding correction accurately through researching redundant detection and missing detection. 

4. Conclusion 
In this paper we propose a non-parametric derivative-based method for R wave detection in ECG signal. After 
using a digital filter to cut out noises from noisy ECG signals, we utilize local polynomial nonparametric statis-
tical regression to estimate the original signal and its derivative values, and then select appropriate thresholds by 
the difference. The algorithm automatically adjusts the size of thresholds periodically according to the different 
needs. Then the position of R wave is detected by the estimation of the values of the first-order derivatives 
which are obtained by using local polynomial nonparametric statistical fitting technique. In addition, the me-
thods of redundant detection and missing detection are applied in this paper in order to improve the accuracy of 
detection. The clinical experimental data are used to evaluate the effectiveness of the algorithm based on deriva-
tives of nonparametric statistical model. The results of the experiment show that using local polynomial fitting 
of original data in the algorithm can suppress some noises effectively and smooth the original data. At the same 
time, we can detect out the R wave timely and accurately. This is further improvement comparing with the for-
mer difference threshold method. However, heart rate variability can not be researched in this paper; it needs 
study further. 

Acknowledgments 
Project was supported by Natural Science Foundation Project of China (Grant No. 11471060), Fundamental and 
Advanced Research Project of CQ CSTC of China (Grant No. cstc2014jcyjA40003), and Natural Science Foun- 
dation Project of CQ CSTC of China (Grant No. CSTC2012jjA00037). 

References 
[1] Bellout, H., Neustupa, J. and Penel, P. (2004) On the Navier-Stokes Equation with Boundary Conditions Based on 

Vorticity. Mathematische Nachrichten, 269, 59-72. 
[2] Girault, V. and Raviart, P.A. (1979) Finite Element Approximation of the Navier-Stokes Equations. Lecture Notes in 

Mathematics, Springer Verlag, Berlin, 749. 
[3] Hopf, E. (1951) Uber die Anfangswertaufgabe für die Hydrodynamischen Grundgleichungen. Mathematische Nach-

richten, 4, 213-231. http://dx.doi.org/10.1002/mana.3210040121 

[4] He, P., Kong, G., Su. Z. and Kato, T. (1972) Non-Stationary Flows of Viscous and Ideal Fluids in 
3 . Journal of 

Functional Analysis, 9, 296-305. http://dx.doi.org/10.1016/0022-1236(72)90003-1 
[5] Serrin, J. (1962) On the Interior Regularity of Weak Solutions of the Navier-Stokes Equations. Archive for Rational 

Mechanics and Analysis, 9, 187-195. http://dx.doi.org/10.1007/BF00253344 
[6] Su, L., Zhao, G.L. and Li, D.M. (2005) Study of Algorithms of QRS Complexes Detection in Electrocardiogram Sig-

nalse. Journal of Harbin Engineering University, 26, 513-517. 
[7] Zhang, S., Wu, Z.G. and Li, Z. (2008) An Adaptive Detection of ECGs R-Wave. Journal of Sichuan University (Natu-

ral Science Edition), 45, 498-502. 
[8] Tian, Y.Q., Sun, X.J., Hao, D.M., et al. (2001) Research on Automatic Diagnosis System of Electrocardiogram. Chi-

nese Journal of Medical Instrumentation, 25, 204-206. 
[9] Friesen, G.M., Jannett, T.C., Jadallah, M.A., Yates, S.L., Quint, S.R. and Nagle, H.T. (1990) A Comparison of the 

Noises Sensitivity of Nine QRS Detection Algorithms. IEEE Transactions on Biomedical Engineering, 37, 85-98.  

http://dx.doi.org/10.1002/mana.3210040121
http://dx.doi.org/10.1016/0022-1236(72)90003-1
http://dx.doi.org/10.1007/BF00253344


L. Su et al. 
 

 
37 

http://dx.doi.org/10.1109/10.43620 
[10] Su, L.Y., Kong, T., et al. (2010) R-Wave Detection of ECG Signals Submerged in Fractal Noises. Journal of Chongq-

ing University of Technology (Natural Science), 24, 86-90. 
[11] Saxena, S.C., Kumar, V. and Hamde, S.T. (2002) QRS Detection Using New Wavelets. Journal of Medical Engineer-

ing & Technology, 26, 7-15. http://dx.doi.org/10.1080/03091900110096038 
[12] Legarreta, I.R., Addison, P.S., Grubb, N., et al. (2003) R-Wave Detection Using Continuous Wavelet Modulus Max-

ima. IEEE international Conference on Computers in Cardiology, 30, 565-568. 
[13] Mourad, T., Akram, A., Lotfi, S. and Adnane, C. (2011) New Method of R-Wave Detection by Continuous Wavelet 

Transform. Signal Processing: An International Journal, 5, 165-173.  
[14] Li, C.W., Zheng, C.X. and Tai, C.F. (1995) Detection of ECG Characteristic Points Using Wavelet Transforms. IEEE 

Transactions on Biomedical Engineering, 42, 21-28. http://dx.doi.org/10.1109/10.362922 
[15] Xu, X.M. and Liu, Y. (2006) Adaptive Threshold for QRS Complex Detection Based on Wavelet Transform. IEEE 

Engineering in Medicine and Biology Society, 7, 7281-7284.  
[16] Mallat, S. (1989) A Theory of Multiresolution Signals Decomposition: The Wavelet Transform. IEEE Transactions on 

Pattern Analysis and Machine Intelligence, 11, 674-693. http://dx.doi.org/10.1109/34.192463 
[17] Afonso, V.X., Tompkins, W.J., Nguyen, T.Q. and Luo, S. (1999) ECG Beat Detection Using Filter Banks. IEEE 

Transactions on Biomedical Engineering, 46, 192-202. http://dx.doi.org/10.1109/10.740882 
[18] Chen, H.C. and Chen, S.W. (2003) A Moving Average Based Filtering System with Its Application to Real-Time QRS 

Detection. Computers in Cardiology, 30, 585-588.  
[19] Li, X.Y., Wang, T., Feng, H.Q. and Zhan, C.G. (2000) Removal of ECG Baseline Drift Using Adaptive Filter Based on 

Wavelet Transform. Journal of China University of Science and Technology, 30, 450-454.  
[20] Chen, Y.Q., Li, G., Ye, W.Y., et al. (2002) An Improved Algorithm of Adaptive Coherent Model in the Application of 

Electrocardiogram. Signal Processing, 18, 244-248.  
[21] Chen, X.M., Lin, J.S. and Zhang, Z.G. (1999) An Improved Template Matching Method for High Resolution ECG. 

Chinese Journal of Biomedical Engineering, 18, 89-96.  
[22] Ng, F., Mora, F., Wong, S., et al. (1997) Comparison between Neural-Network-Based Adaptive Filtering and Wavelet 

Transform for ECG Characteristic Points Detection. IEEE Engineering in Medicine and Biology Society, 1, 272-274. 
[23] Xie, Q.Z., Hu, Y.H. and Tompkins, W.J. (1992) Neural Network Based Adaptive Matched Filtering of QRS Detection. 

IEEE Transactions on Biomedical Engineering, 39, 317-329. http://dx.doi.org/10.1109/10.126604 
[24] Hudson, D.L., Cohen, M.E. and Anderson, M.F. (1991) Use of Neural Network Techniques in a Medical Expert Sys-

tem. International Journal of Intelligent Systems, 6, 213-223. http://dx.doi.org/10.1002/int.4550060208 
[25] Zhang, J.Z., Zhang, L.X., Wei, D.X. and Zhang, G.L. (2008) Research on ECG Automatic Classification Used Neural 

Network K. Beijing Biomedical Engineering, 27, 41-43.  
[26] Gao, Y. and Hu, Y. (2001) An ECG Waves Separation Technique Based on Mathematical Morphology. Journal of 

Biomedical Engineering, 18, 55-59.  
[27] Trahanias, P.E. (1993) An Approach to QRS Complex Detection Using Mathematical Morphology. IEEE Transactions 

on Biomedical Engineering, 40, 201-205. 
[28] Chen, Y.L. and Duan, H.L. (2007) The QRS Wave Detection Based on Mathematical Morphology and Extraction of 

Signals Envelope. Chinese Journal of Biomedical Engineering, 26, 332-335.  
[29] Tian, X.Z., Yang, J. and Huang, L.Y. (2012) Morphological Filter to Remove Power-Line Interference and Baseline 

Wander in Electrocardiogram. Computer Engineering & Applications, 48, 124-126.  
[30] Fan, J.Q. and Yao, Q.W. (2003) Nonlinear Time Series: Nonparametric and Parametric Methods. Springer, New York.  
[31] Su, L.Y. (2010) Prediction of Multivariate Chaotic Time Series with Local Polynomial Fitting. Computers & Mathe-

matics with Applications, 59, 737-744. http://dx.doi.org/10.1016/j.camwa.2009.10.019 
[32] Jackson, R.H., Wu, A.C.F. and Verboncoeur, J.P. (2012) Numerical Solution of the Cylindrical Poisson Equation Us-

ing the Local Taylor Polynomial Technique. Journal of Computational Physics, 231, 5421-5442.  
[33] Su, L.Y., Zhao, Y.Y., Yan, T.S. and Li, F.L. (2012) Local Polynomial Estimation of Heteroscedasticity in a Multiva-

riate Linear Regression Model and Its Applications in Economics. PLoS ONE, 7, e43719.  
http://dx.doi.org/10.1371/journal.pone.0043719 

[34] Su, L.Y., Zhao, Y.Y. and Yan, T.T. (2012) Two-Stage Method Based on Local Polynomial Fitting for a Linear Hete-
roscedastic Regression Model and Its Application in Economics. Discrete Dynamics in Nature and Society, 2012, Ar-
ticle ID: 696927.  

http://dx.doi.org/10.1109/10.43620
http://dx.doi.org/10.1080/03091900110096038
http://dx.doi.org/10.1109/10.362922
http://dx.doi.org/10.1109/34.192463
http://dx.doi.org/10.1109/10.740882
http://dx.doi.org/10.1109/10.126604
http://dx.doi.org/10.1002/int.4550060208
http://dx.doi.org/10.1016/j.camwa.2009.10.019
http://dx.doi.org/10.1371/journal.pone.0043719


L. Su et al. 
 

 
38 

[35] Martins-Filho, C. and Saraiva, P. (2012) On Asymptotic Normality of the Local Polynomial Regression Estimator with 
Stochastic Bandwidths. Communications in Statistics-Theory and Methods, 41, 1052-1068.  
http://dx.doi.org/10.1080/03610926.2010.535632 

[36] Su, L.Y., Ma, Y.J. and Li, J.J. (2010) Application of Local Polynomial Estimation in Suppressing Strong Chaotic 
Noise. Chinese Physics B, 21, Article ID: 020508. http://dx.doi.org/10.1088/1674-1056/21/2/020508 

[37] Su, L.Y. and Li, F.L. (2010) Deconvolution of Defocused Image with Multivariate Local Polynomial Regression and 
Iterative Wiener Filtering in DWT Domain. Mathematical Problems in Engineering, 2010, Article ID: 605241.  

[38] Su, L.Y., Yan, T.S., Zhao, Y.Y. and Li, F.L. (2012) Local Polynomial Regression Solution for Partial Differential Eq-
uations with Initial and Boundary Values. Discrete Dynamics in Nature and Society, 2012, Article ID: 201678.  

[39] Su, L.Y. (2011) Multivariate Local Polynomial Regression with Application to Shenzhen Component Index. Discrete 
Dynamics in Nature and Society, 2011, Article ID: 930958.  

 

http://dx.doi.org/10.1080/03610926.2010.535632
http://dx.doi.org/10.1088/1674-1056/21/2/020508


http://www.scirp.org/
http://www.scirp.org/
http://papersubmission.scirp.org/paper/showAddPaper?journalID=478&utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ABB/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AM/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJPS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJAC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/CE/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ENG/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/FNS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/Health/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCT/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JEP/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JMP/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ME/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/NS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/PSYCH/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
mailto:submit@scirp.org

	A Nonparametric Derivative-Based Method for R Wave Detection in ECG
	Abstract
	Keywords
	1. Introduction
	2. R Wave Detection with Local Polynomial Nonparametric Regression
	2.1. Preprocessing Data and ECG Signal De-Noise
	2.2. Thresholds Setting and RR Interval
	2.3. Local Polynomial Nonparametric Regression of ECG Data
	2.4. Check and Correction for R Wave in ECG Signal

	3. Experiment Results and Discussions
	3.1. Feasibility Test
	3.2. R-Wave Detection with Local Polynomial Nonparametric Regression
	3.3. Comparing with the Differential Threshold Algorithm
	3.4. The Discussion of Redundant Detection and Missing Detection
	3.5. The Discussion of Redundant Detection and Missing Detection

	4. Conclusion
	Acknowledgments
	References

