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Abstract

In this paper, we introduce the concept of dual quermassintegral differences. Further, we give the
dual Brunn-Minkowski inequality and dual Minkowski inequality for dual quermassintegral dif-
ferences for mixed intersection bodies.
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1. Introduction

The projection body was introduced in 1934 by Minkowski [1]. The research on the projection body has at-
tracted much attention. The intersection operator and the class of intersection bodies were introduced in 1988 by
Lutwak [2], who found a close connection between those bodies and famous Busemann-Petty problem (See
[31-[6]).

In [2], Lutwak presented the mysterious duality between projection and intersection bodies.

For convex bodies Kand L, let TIK and Hl(K, L) denote the projection body of K and mixed projection
body of K and L, respectively. In [7], Lutwak established the following Brunn-Minkowski inequality for pro-
jection body and Minkowski inequality for mixed projection body:

Theorem A. Let Kand L be convex bodiesin R". Then

1 1 1
V(I(K +L))r0-8) >V (IIK )a(r-2) +V (TIL )a(n-1) (1.1)

with equality if and only if Kand L are homothetic.
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Theorem B. Let Kand L be convex bodiesin R". Then
V (I, (K, L))" 2V (TIK )™V (TIL), (12)

with equality if and only if Kand L are homothetic.

In [8], Theorem A and Theorem B were extended to volume differences:

Theorem C. Suppose that K, L, and D, are convex bodiesin R",and D,c K, D,cL, D, isahomo-
thetic copy of D,. Then

1

[V (IT(K +L))-V (I1(D, + D, )) Jov-D

i ) (1.3)
>[V (MK )=V (TID, ) |(v-3) +[V (TTL) -V (TID, ) Jo(-3),

with equality if and only if K and L are homothetic and (V (K),V (D,))=u(V (L),V(D,)), where 4 isa
constant.

Theorem D. Suppose that K, L, and D, are convex bodiesin R",and D,cK, D,cL, D, isa ho-
mothetic copy of D,. Then

[V (11, (K, L))~V (11,(D,,D,))]" 2 [V (ITK) -V (ITD,) [V (L) -V (11D, ) ], (1.4)

with equality if and only if K and L are homothetic.

For star bodies K and L, let IK and Il(K, L) denote the intersection body of K and mixed intersection
body of K and L, respectively. In [9], Zhao et al. established the following dual Brunn-Minkowski inequality
for intersection body and dual Minkowski inequality for mixed intersection body:

Theorem E. Let Kand L be star bodiesin R". Then

1 1 1
V(I(KF L))o <V (IK a3 +V (IL)a0r-) (1.5)
with equality if and only if L is a dilatate of K.
Theorem F. Let Kand L be star bodies in R". Then
V(1 (K, L))" <V (1K) v (IL), (L6)

with equality if and only if L is a dilatate of K.

In this paper, we shall prove the dual forms of inequalities (1.3) and (1.4) for mixed intersection body. In this
work new contributions that illustrate this mysterious duality will be presented. Our main results can be stated as
follows:

Theorem 1.1. Let K,L and D, are star bodiesin R" and K< D,,LcD,, D, isa dilatation of D,.
Then

1

[V(1(D,#D,))-V (1(KFL)) D w
z[v(lDl)—v(lK)]ﬁ +[V(|D2)—v(||_)]ﬁ,

with equality if and only if L is a dilatate of K and (V (IK),V (ID;))=2(V (IL).V(ID,)), where 1 is a

constant.
Theorem 1.2. Let K,L and D, are star bodiesin R" and K< D,,LcD,, D, isa dilatation of D,.
Then

[V (1,(D,.D,))-V (1, (K.L) ] 2 [V (1D,) -V (1K) [V (ID,) -V (IL)], (1.8)

with equality if and only if L is a dilatate of K.
Please see the next section for related definitions and notations.
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2. Definitions and Notations

In this section, we will recall some basic results for dual quermassintegrals of star bodies. The reader is referred
to Gardner [10], Lutwak [2] [11] and Thompson [12] for the Brunn-Minkowski theory with its dual theory.

As usual, let B, denote the unit ball in Euclidean n-space, R". While its boundary is S"* and its vo-
lume is denoted by k. For a compact subset K of R", with o e K, star-shaped with respect to o, the radial
function p(K,:):S"* >R, is defined by

p(K,u)=p, (u)=max{1:iueK}. (2.1)

If p(K,~) is continuous and positive, K will be called a star body.

Two star bodies K,L are said to be dilatate (of each other) if p(K,u)/p(L,u) is independent of
uesS"t.

The radial sum of two star bodies K;,K, is defined as the star body K satisfying p, = p + py, - This op-
eration will be denoted by +,i.e., K=K, +K,. ~

For star bodies K,,---,K, , the dual mixed volume V (Kl,---, Kn) is defined by (see e.g. [11])

. 1
V(Klv"'vKn):H.[SnflpKl (u)pKn (u)du (22)
If K,=-=K_ =K,and K, ==K =B, then the dual mixed volume V (K,n—i;B,,i) is called
dual i -quermassintegral of K, and denoted by Wi(K) and allow ieR . It is easily seen that
W, (K)=V (K).

Let M and K be star bodiesin R".If K < M, then the dual i -quermassintegral difference function of
M and K, DW (M,K) (ieR;i=n),canbe defined by

DW, (M, K)=W, (M)-W, (K). (2.3)
If i=0 in(2.3), then we get the volume difference of star bodies M and K:
Dv(M,K)=V(M)-V (K).

(See [13] for the concept of the volume difference of two compact domains).
The intersection body of a star body K, 1K, is the centrally symmetric body whose radial function on S"™*
is given by [2]

p(IK,u)=v(KNu"), (2.4)

where v is (n-1)-dimensional volume.
Let K,,---,K,, be star bodies in R". The mixed intersection body I(K,,---,K,,) of star bodies
K.+, K, isdefined by

- 1
Pk Kns) (u)= V(Kl Nut Koy N UL) o1 _1LHQULPK1 (V)"'pKH (v)dA, 5 (v), (2.5)
where vV is (n-1)-dimensional dual mixed volume.
If K=-=K_,=K, K_=-=K_=L, then I(K,---,K ;) will be denoted as I (K,L). If
K =B,,then I;(B,,L) iscalled the intersection body of order i of L; it will often be writtenas I,L . Spe-
cially, 1. _,L=IL. Thisterm was introduced by Zhang [14].

3. Inequalities for Dual Quermassintegral Differences

In this section, we will establish two inequalities for dual quermassintegral differences of star bodies, which are
generalizations of Theorem 1.1 and Theorem 1.2 presented in introduction.

Theorem 3.1. Suppose that K,L and D, are star bodiesin R", D, isadilatateof D,.If 0<i<n-1,
KcD,LcD,,then

1 1 1

DW, (1(D, +D,), 1 (K #L))0-0n-3) > DW, (1D, IK )(a-i)(n-2) + DW, (1D, IL)(n-i)(n-2) ,

&)
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with equality if and only if L is a dilatate of K and (W, (1K),W, (1D,))= (W, (IL),W, (ID,)), where x is
a constant.

Obviously, the case i=0 in Theorem 3.1 is just Theorem 1.1. Furthermore, taking D, and D, to be two
closed balls with radii r, and r, inTheorem 1.1, we infer

Corollary 3.2. Let R(K) and R(L) be the circumradii of star bodies Kand L. If r, >R(K), r, >R(L),
then

1 1

1 1
() ki = (KL [0 > [, =V (1K) [0 [0k, =V (1) 100,

with equality if and only if L is a dilatate of K.and V (IK)/V (IL)=(r,/r, )”(”’l) .
Theorem 3.3. Suppose that K,L and D, are star bodies in R", D, is a dilatate of D;. If K< D,,L<cD,,
and 0<i,j<n-1.Then

D¥ (1, (D,.D ). 1, (K. L))" = Dw (1, 1K) Dw (1D, 1L)’,

with equality if and only if L is a dilatate of K and (W, (1K),W, (1D,))= (W, (IL),W, (ID,)), where x is
a constant.

Obviously, the case i=0, j=1 inTheorem 3.3 is just Theorem 1.2.

We will require some additional notations and two analytic inequalities to prove Theorem 3.1 and Theorem
3.3. Firstly, we define a function @ (x) by

1
(Dp(x):(xip_znzlxip]p XeR,,

where R = {x = (X, % )| % = 0,%° > inp} for p> 0. Note that @} is an indefinite form of its variables.
i=2

Lemma3.4.If p>1, x,yeR ,then x+yeR ,and
O, (x+y)2@, (x)+D,(y), (3.1)

with equality holds if and only if the coordinates of x,y are proportional.

A proof of Lemma 3.4 can be found in [15]. The inequality (3.1) was first proved by Bellman [16] and is
known as Bellman’s inequality.

Lemma3.5.If a,b,c,d >0, O0<a<10<pB<1 and a+pB=1.Let a>b and c>d,then

a“c’ -b“d” = (a-b)" (c—d)ﬂ,

with equality if and only if a/b=c/d .
Proof. Consider the following function

f(x):x“cﬂ—(x—b)“(c—d)ﬂ,x>0.
Let
f'(x)=ac’x** —a(c-d)’ (x-b)*" =0.
We get x=hc/d .
On the other hand, if Xe(o,%j,then f'(x)<0;if XE(%,+OOJ, then f'(x)>0,and it follows that

min f (x) = f(%j:b“dﬂ.

x>0

This completes the proof.
Lemma 3.6. [15] Let K,L bestarbodiesin R".If 0<i<n,1< j<n-1,then

)
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1 1 1

W, (1(K F L)) <W, (1K )= +W, (1IL) (=)o), (3.2)
and
W (1 (K, L)) < W (1K) (1L), (3.3)

with equality if and only if L isa dilatate of K.
Proof of Theorem 3.1. For star bodies K, L, applying inequality (3.2), we have
_ oy 1 _ 1
W, (1(K F L)) <W, (1K) o=i)n2) +W, (IL)n=i)-1) (34)
with equality if and only if L isa dilatate of K.

1 1 1

W, (1(D, % D, ))n-n-)) =W, (1D, )(n-(n-9 +W, (1D, ){n-i)(n-3) . (3.5)

Since K< D,,Lc D,, we get

=
=
A
=
O
=
Z
A
=
O

Then by Lemma 3.4, we get

Di, (1(D,7D,).1 (K L)) 03 (36)

1

1
> (W, (1D,) =W, (1K )03 + (W, (1D, ) =W (1L ) )=
Note that the equality holds in (3.4) if and only if L is a dilatate of K. By Lemma 3.4 we know that the equality
holds in (3.6) if and only if L is a dilatate of K. and (Wi (1IK),W, (IDl)) is proportional to (Wi (IL),W, (IDZ)).
This completes the proof.
Proof of Theorem 3.3. Applying inequality (3.3), we have
W (1 (K, L)) < W (1K) (1L),
with equality if and only if L isa dilatate of K.
- n-1 - i1, ~ i
W, (1,(D,D,))" =W, (ID,)" "W, (ID,)".
Hence, by Lemma 3.5, we obtain that

DW (1;(D;,D,),1;(K,L))

W,(ID,) nt W, (1D, )t W, (1K) o3 W, (IL)o's

\%

n-j-1

2(Wi (IDl)_Wi (IK)) "

(W,(1D,) -V (1L) 7.

The proof is complete.

&)
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