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Abstract 
The existence of rogue (or freak) waves is now universally recognized and material proofs on the 
extent of damage caused by these ocean’s phenomena are available. Marine observations as well 
as laboratory experiments show exactly that rogue waves occur in deep and shallow water. To 
study the behavior of freak waves in terms of their space and time evolution, that is, their motion 
and also in terms of mechanical transformations that these systems may suffer in their dealings 
with other systems, we derive a modified nonlinear Schrödinger equation modeling the propaga-
tion of rogue waves in deep water in order to seek analytic solutions of this nonlinear partial dif-
ferential equation by using generalized extended G'/G-expansion method with the aid of mathema-
tica. Particular attentions have been paid to the behavior of rogue wave’s amplitude which high-
lights rogue wave’s destructive power. 
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1. Introduction 
During many centuries, rogue waves, unexpectedly high wave, strongly localized in space-time, have been 
widely reported all over the world. For a long time, they were thought to be a part of marine folklore, but with 
the development of instrumental measurements their existence has become evident and has been scientifically 
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proven [1]-[4]. An important milestone in the understanding of rogue wave dynamics occurred in 2001, when 
two European Space Agency satellites detected more than 10 individual giant waves over 25 m high during only 
three weeks of monitoring of the world’s ocean [5] [6]. This evidence demonstrated that rogue events are not 
unique and highly improbable but occur regularly in the random wave field. Such extreme events are believed to 
have caused a number of marine accidents with subsequent pollution of large coastal areas, ship damage and 
human casualties [7] [8]. 

The understanding of extreme and rogue waves have significantly advanced recently. A number of extreme 
and rogue wave studies have been conducted theoretically, numerically, experimentally based on field data [9]- 
[22]. It has been demonstrated that the contribution of high order nonlinear mechanisms such as the modulation-
al instability of uniform wave packets [23] [24] may give rise to substantially higher waves than that predicted 
by common second order wave models [25] [26]. 

Some authors [27] [28] are attempting to discover the probability of their appearances as well as studying the 
mechanism of their formation. Others have found exact solutions of nonlinear evolution equation (NLEEs) and 
have explained rogue waves phenomenon [29]-[32].  

Recently, Wang et al. [33] introduced an expansion technique called the (G'/G)-expansion method and dem-
onstrated that it was a powerful technique for seeking analytic solutions of nonlinear partial differential equa-
tions. Bekir [34] and Zedan [35] applied this method to obtain travelling wave solutions of various equations. A 
generalization of the method was given by Zhang et al. [36]. Also, Zhang et al. [37] made a further extension of 
the method for the evolution equations with variable coefficients. 

The main aim of this paper is to seek exact solutions of modified nonlinear Schrodinger equation modeling 
the propagation of rogue waves in deep water with extended G'/G-expansion method. The rest of the paper is 
organized as follows. In Section 2, we describe the extended (G'/G)-expansion method to seek travelling wave 
solutions of nonlinear evolution equations and give the main steps of the method. In Section 3, we illustrate the 
method in detail with the modified non-linear Schrodinger equation in deep water. In Section 4, some conclu-
sions are given. 

2. Description of the Extended (G'/G)-Expansion Method 
In this section, we describe the main steps of the extended (G'/G)-expansion method for finding travelling wave 
solutions of nonlinear evolution equations.  

Suppose that we have a nonlinear partial differential equation for ( ),u x t  in the form: 

( ), , , , 0,x xx xt ttP u u u u u =                                       (1) 

where P  is a polynomial in its arguments. The essence of this approach can be formulated as follows: 
Step 1. Find travelling wave solutions of Equation (1) by taking ( ) ( ), ,u x t U x ctξ ξ= = −  and transform 

Equation (1) to the ordinary differential equation: 

( ), , , 0,Q U U U′ ′′ =                                        (2) 

where prime denotes the derivative with respect to ξ . 
Step 2. If possible, integrate Equation (2) term by term one or more times. This yields constant(s) of integra-

tion. For simplicity, the integration constant(s) can be set to zero. 
Step 3. Introduce the solution ( )U ξ  of Equation (2) in the finite series form: 

( ) ( )
( )

,
i

N

i
i N

G
U a

G
ξ

ξ
ξ=−

′ 
=   

 
∑                                      (3) 

where ia  are real constants with 0Na ≠  to be determine, N  is a positive integer to be determined. The 
function ( )G ξ  is the solution of auxiliary linear ordinary differential equation: 

( ) ( ) ( ) 0,G G Gξ λ ξ µ ξ′′ ′+ + =                                  (4) 

where λ  and µ  are real constants to be determined. 
Step 4. Determine N . This, usually, can be accomplished by balancing the linear term(s) of highest order 

with the highest order nonlinear term(s) in Equation (2). 
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Step 5. Substitute (3) together with (4) into Equation (2) yields an algebraic set equation involving powers of 
( )G G′ . Equating the coefficients of each power of ( )G G′  to zero gives a system of algebraic equations for 

ia , λ , µ  and c . Then, we solve the system with the aid Mathematica to determine the constants. On the 
other hand, depending on the sign of the discriminant 2 4λ µ∆ = − , the solutions of Equation (4) are well 
known for us. So, we can obtain exact solutions of Equation (1). 

3. Application 
Deep-water irrotational gravity waves propagating at the surface of an inviscid incompressible fluid are go-
verned at third order in amplitude, by an equation first derived by Zakharov [38]: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )*, , , , , , , , d d d ,ti b K t K b K t T k p q r b p t b q t b r t k p q r p q rω δ∂ = + + − −∫           (5) 

where ( ) ( )
1
2K g Kω = , and ( ), , ,T k p q r  is Krasitskii’s kernel [39]. 

The modified nonlinear Schrodinger equation [40] obtained from Equation (5) is given by:  
2 22 *

1 2 3 4 ,t zz zzz z zia Pa Q a a ir a ir a a ir a a r a+ + = + − +                       (6) 

where the different coefficient are given by: 

( )( )2
0 08 3cos 2 ,P kω α= − +                                  (7) 

2
0 0 2,Q kω= −                                       (8) 

( ) ( )( )3 2
1 0 0cos 16 5cos 6 ,r kω α α= − −                             (9) 

( )2 0 0 cos 4,r kω α=                                   (10) 

3 0 03 2,r kω=                                      (11) 
2

4 0 0 ,zzr k a ==                                     (12) 

and 

( ) ( )0

0

cos sin .
2

t
z x y

k
ω

α α
 

= − + 
 

                             (13) 

0ω  and 0k  are respectively the frequency and the wave number of the carrier wave. Since ( ),a z t  is a com-
plex function, it can be taken as: 

( ) ( ) ( ), , , ,a z t u z t iv z t= +                                 (14) 

an introduce a new variable : 

1 2 .z tη η η= +                                       (15) 

Replacing Equation (14) into Equation (6), separating the real and imaginary part and using the relation (15) 
leads to a system of equations: 

( ) ( )( )2 2 2 3 2 2
2 1 1 1 2 1 2 3 12u Pv Q u v v r u r uvv r r u v uη ηη ηηη η ηη η η η η+ + + = − + − +            (16) 

( ) ( )( )2 2 2 3 2 2
2 1 1 1 2 1 2 3 1 42v Pu Q u v u r v r uvu r r u v v r uη ηη ηηη η ηη η η η η+ − + = − − − + −         (17) 

Now we make an ansatz (3) for the solution of Equations (16) and (17). By balancing the terms uηηη  and 
2u v , vηηη  and 2v u  in Equations (16) and (17) yields the leading order 1N = . Therefore, we can write the 

solution of Equation (16) and Equation (17) in an extended symmetric form: 

( ) 1
1 0 1 ,u f fη α α α−
−= + +                                (18) 

( ) 1
1 0 1 ,v f fη β β β−
−= + +                                (19) 
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where ( ) ( )f G Gη η′=  and ( )G η  satisfies the second-order ordinary differential Equation (4). By using 
Equation (4), Equation (18) and Equation (19), we derive: 

2
1 1 ,u f f fα α−′ ′ ′= − +                                   (20) 

( )2 2 3 2 1
1 1 1 1 1

3 2
1 1 1 1

3 2 2

2 2 2 ,

u f f f

f f f

λα λµα µ α λ α µα

α λα µα λα

− − −
− − − − −

−

′′ = + + + +

+ + + −
                  (21) 

( ) ( )( )
( )( )
( )

2 2 2 1
1 1 1 1 1 1

2 2 2 2 2 3
1 1 1 1 1

3 4 3 2 2
1 1 1 1 1

2 2 6 2

6 6 2 12

6 10 4 8 6 ,

u f

f f

f f f f

λ α µα µ α λµα λ λ α µα

λ µα µ α µ λ α µα λµ α

µ α λα λ α µα λµα

−
− − − − −

− −
− − − − −

−
−

′′′ = + − + + +

+ + + + +

+ − + − − −

               (22) 

2
1 1 ,v f f fβ β−
−′ ′ ′= − +                                   (23) 

( )2 2 3 2 1
1 1 1 1 1

3 2
1 1 1 1

3 2 2

2 2 2 ,

v f f f

f f f

λβ λµβ µ β λ β µβ

β λβ µβ λβ

− − −
− − − − −

−

′′ = + + + +

+ + + −
                     (24) 

( ) ( )( )
( )( )
( )

2 2 2 1
1 1 1 1 1 1

2 2 2 2 2 3
1 1 1 1 1

3 4 3 2 2
1 1 1 1 1

2 2 6 2

6 6 2 12

6 10 4 8 6 ,

v f

f f

f f f f

λ β µβ µ β λµβ λ λ β µβ

λ µβ µ β µ λ β µβ λµ β

µ β λβ λ β µβ λµβ

−
− − − − −

− −
− − − − −

−
−

′′′ = + − + + +

+ + + + +

+ − + − − −

                 (25) 

Substituting these expressions into Equations (16) and (17), we collect and setting all terms of the same power 
of ( ) ( )G Gη η′  to zero, and then solve the resulting system we obtain: 

0 0 0, , ,α β λ λ µ µ= = = =                             (26) 

( ) ( )

1 12 2
2 22 2
1 12 2

1 1 2 3 1 1 2 3

2 2
, ,

3 3
r r

r r r r r r
α β

η η

− −
   

= =      − −   
                    (27) 

( ) ( )

1 12 2
2 22 2
1 12 2 2 2

1 1 2 3 1 1 2 3

2 2
, .

3 3
r r

r r r r r r
α β

µ η µ η

− −

− −

   
= =      − +   

                 (28) 

The ODE Equation (4) may then be solved exactly and admits the following solutions: 

( ) 1 2 2
1 1 2e e , when 4 0,x xG c cη ηη λ µ= + −                       (29) 

( ) ( ) ( )( )4 2
2 1 3 2 3e cos sin , when 4 0,xG c x c xηη η η λ µ= + −                 (30) 

( ) ( ) 4 2
3 1 2 e , when 4 0.xG c c ηη η λ µ= + − =                      (31) 

With: 

2

1
4

2
x

λ λ µ− − −
= , 

2

2
4

2
x

λ λ µ− + −
= , 

2

3
4

2
x

µ λ−
=  and 4 2

x λ−
=         (32) 

where 1C  and 2C  are arbitrary constants, we therefore obtain three categories of travelling wave solutions that 
propagate in deep water [41]:  

First type. Hyperbolic functions travelling wave solutions. 
a) if 2 4 0λ µ−   and 1 2* 0c c  , we have: 

2
2

1

4 1thanh ln
2 2

cf
c

λ µ
η

  −
 = +  
   

                          (33) 
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Then: 

( )
1 2

2
21 2

11 2
2 1

2 2

1

4
1 sech ln

24 11 sech ln
2 2

cu
cc

c

λ µα
η α η

λ µ
η

−
   −  = + − +  
           − − +  

     

      (34) 

( )
1 2

2
21 2

11 2
2 1

2 2

1

4
1 sech ln

24 11 sech ln
2 2

cv
cc

c

λ µβ
η β η

λ µ
η

−
   −  = + − +  
           − − +  

     

      (35) 

If 1 0α− =  Equations (34) and (35) can be expressed in the well-known solitary wave solution of the KdV 
equation as follows: 

( )
2

2 2
1 1

1

4
sech ln

2
Cu
C

λ µ
η α ς η

  −
 = + +  
   

                        (36) 

( )
2

2 2
1 1

1

4
sech ln

2
Cv
C

λ µ
η β ξ η

  −
 = + +  
   

                        (37) 

b) if 2 4 0λ µ−   and 1 2* 0c c  , we have: 
2

2

1

4 1cothanh ln
2 2

cf
c

λ µ
η

  − −
 = +  
   

                           (38) 

( )
2

1 2
1

2 12

1

4
cothanh ln

24 1cothanh ln
2 2

cu
cc

c

λ µα
η α η

λ µ
η

−
  − −
 = + +  

     − −  +  
   

          (39) 

( )
2

1 2
1

2 12

1

4
cotanh ln

24 1cothanh ln
2 2

cv
cc

c

λ µβ
η β η

λ µ
η

−
  − −
 = + +  

     − −  +  
   

           (40) 

Second type. Trigonometric functions travelling wave solutions.  
c) if 2 4 0λ µ−   and 1 2* 0c c  , we have: 

2
2

4 3
1

4
tan arctan

2
cf x x
c

µ λ
η

  −
 = + −  
   

                         (41) 

Then: 

( )
2

1 2
1 4 3

2 12
4 3

1

4
tan arctan

24
tan arctan

2

cu x x
ccx x

c

µ λα
η α η

µ λ
η

−
   −  = + + −        −   + −  

   

       (42) 

( )
2

1 2
1 4 3

2 12
4 3

1

4
tan arctan

24
tan arctan

2

cv x x
ccx x

c

µ λβ
η β η

µ λ
η

−
   −  = + + −        −   + −  

   

       (43) 
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d) if 2 4 0λ µ−   and 1 2* 0c c  , we have: 
2

1
4 3

2

4
cotg arctan

2
cf x x
c

µ λ
η

  −
 = + +  
   

                        (44) 

Then: 

( )
2

1 1
1 4 3

2 21
4 3

2

4
cotg arctan

24
cotg arctan

2

Cu x x
CCx x

C

µ λα
η α η

µ λ
η

−
   −  = + + −        −   + −  

   

  (45) 

( )
2

1 1
1 4 3

2 21
4 3

2

4
cotg arctan

24
cotg arctan

2

Cv x x
CCx x

C

µ λβ
η β η

µ λ
η

−
   −  = + + −        −   + −  

   

  (46) 

Third type. Rational functions travelling wave solutions. 
e) if 2 4 0λ µ− = , we have: 

2
4

1 2

cf x
c c η

= +
+

                                  (47) 

Then:  

( ) ( )
( )
1 1 2 2

1 4
2 1 2 4 1 2

c c cu x
c c c x c c
α η

η α
η η

− +  
= + + + + + 

                      (48) 

( ) ( )
( )
1 1 2 2

1 4
2 1 2 4 1 2

c c cv x
c c c x c c
β η

η β
η η

− +  
= + + + + + 

                      (49) 

Hyperbolic and trigonometric solutions can also be express in the form [42]-[46]: 

1 2

2 1

cosh sinh
2 2

*
2 2

cosh sinh
2 2

K z K z
f

K z K z

λ

   ∆ ∆
+   

∆    = − +
   ∆ ∆

+   
   

                   (50) 

with 2 4λ µ∆ = −  

1 2

2 1

cos sin
2 2

*
2 2

cos sin
2 2

K z K z
f

K z K z

λ

   ∆ ∆′ ′+   
∆    = − +

   ∆ ∆′ ′+   
   

                    (51) 

with 24µ λ∆ = −  
We are on deep water, the behavior of the ocean cant not be determine exactly. We don’t know the form that 

wave will takes. All cases are possible. The Figures 1-3 show the behavior of the exact solution of the modified 
nonlinear Schrödinger equation modeling the propagation of rogue waves in deep water for certain values of the 
system parameters. The squared modulus of the amplitude of the wave 2a  is plots versus the coordinates x  
ad y  for a given value of time. 

The snapshot of Figure 1 is a typical representation of one pulse-type solutions [47], proof that the solutions 
thus obtained are general and take into account the solutions already existing in the open literature. When the 
system parameters vary, there is a sudden variation in the amplitude of wave Figure 2 and Figure 3. These re-
sults allow us to confirm the fact that the amplitudes of waves may vary in exceptional cases by simply changing 
a parameter of the system, take us with amplitude of one to over one hundred without any trial. These results re- 
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Figure 1. One pulse with low amplitude. 1λ = , 1µ = , 

1 0.01K = − , 2 0.002K = , π 8α = , 0 2.5ω = , 0 0.4k = .  
 

 
Figure 2. One pulse with large amplitude presented like 
a barrier. 1λ = , 1µ = , 1 0.01K = − , 2 0.002K = ,      

π 4α = , 0 2.5ω = , 0 0.4k = .                       
 

 
Figure 3. One pulse with large amplitude presented like a 
giant saw. 1λ = , 1µ = , 1 0.01K = − , 2 0.002K = ,      

π 3α = , 0 2.5ω = , 0 0.4k = .                       



A. A. N. Stéphane et al. 
 

 
253 

flect very well the situation encountered by sailors in ocean: the free surface of a body of deep water just move 
from a situation of absolute calm to the appearance of a gigantic wall of water [48]. Figure 2 and Figure 3 are 
as gigantic barrier 2 have a regular summit while 3 has a peak saw tooth which allow us to conclude that in most 
cases, the tops of the waves is not regular. When these kinds of waves propagate at high speed and collided with 
a tanker or striking an oil platform, these structures will be send to the mat with frightening speed and efficiency. 
Freaks waves arise abruptly, when one of the form 2 or 3 surprises ships from below, it behaves like a giant saw, 
cutting steel look like a knife on the butter or breaks it in two because the cumulative effects of their considera-
ble height and wavelength literally raised the ship from both ends. It central part is then in vacuum, or at least 
less driven by water and would then be subjected to enormous stresses. 

4. Conclusion 
In this paper, generalized extended (G'/G)-expansion method is used to obtain the exact solutions of modified 
nonlinear Schrödinger equation in deep water. Particular attentions have been paid to the amplitude of the found 
solutions and to the relationship between dynamics of these solutions and some characteristics of extreme ab-
normal sea wave with abnormal shape. The solutions are expressed in the form of hyperbolic functions, trigo-
nometric functions and rational solutions from which some special solutions including the known solitary wave 
solution are derived by setting appropriate values for the parameter. Compared with other methodologies men-
tioned in introduction, this method is direct, concise, elementary and it can be implemented in more complicated 
nonlinear equations by using symbolic computations. One pulse with large amplitude presented like a barrier or 
like a giant saw are very dangerous for sailors, offshore oil platforms and coastal structures. The representation 
on this paper give partially the reasons of the damage caused on the hulls of super tankers when they collide 
with this crazy waves like that in Figure 4 and Figure 5. 

 

 
Figure 4. Profile view of damage caused on energy 
endurance [49].                                 

 

 
Figure 5. The WILSTAR Norvegian cargo boat hit by a 
rogue waves [49].                                    
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