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Abstract 
In this paper, we present an algorithm to solve the inequality constrained multi-objective pro-
gramming (MP) by using a penalty function with objective parameters and constraint penalty pa-
rameter. First, the penalty function with objective parameters and constraint penalty parameter 
for MP and the corresponding unconstraint penalty optimization problem (UPOP) is defined. Un-
der some conditions, a Pareto efficient solution (or a weakly-efficient solution) to UPOP is proved 
to be a Pareto efficient solution (or a weakly-efficient solution) to MP. The penalty function is 
proved to be exact under a stable condition. Then, we design an algorithm to solve MP and prove 
its convergence. Finally, numerical examples show that the algorithm may help decision makers to 
find a satisfactory solution to MP. 
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1. Introduction 
Multi-objective programming is an important model in solving vector optimization problems. Many methods 
had been given to find solutions to multiobjective programming [1]. It is well-known that the penalty function is 
one of efficient methods in studying multiobjective programming. For example, in 1984, White [2] presented an 
exact penalty function for multiobjective programming. Sunaga, Mazeed and Kondo [3] applied penalty function 
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formulation to interactive multiobjective programming problems. Ruan and Huang [4] studied weak calmness 
and weak stability of exact penalty functions for multiobjective programming. By penalty function, Liu [5] 
derived necessary and sufficient conditions without a constraint qualification for e-Pareto optimality of multi- 
objective programming, and the generalized e-saddle point for Pareto optimality of the vector Lagrangian. 
Huang and Yang [6] gave nonlinear Lagrangian for multiobjective optimization to duality and exact penalization. 
Chang and Lin [7] solved interval goal programming by using S-shaped penalty function. Antczak [8] studied 
the vector exact 1l  penalty method for nondifferentiable convex multiobjective programming problems. Huang, 
Teo and Yang [9] discussed calmness of exact penalization in vector optimization with cone constraints. Huang 
[10] proved calmness of exact penalization in constrained scalar set-valued optimization. Meng, Shen and Jiang 
[11] defined an objective penalty function based on objective weight for multiobjective optimization problem 
and presented an interactive algorithm. This paper defines a penalty function with objective parameters and 
constraint penalty parameter which differs from an objective penalty function in [11]. 

Because it is almost not possible for decision makers (DMs) to obtain all efficient solutions to MP, it is 
significant to present an efficient algorithm of MP so that DMs finds an easy and satisfactory solution to the MP. 
Luque, Ruiz and Steuer pointed out that an efficient algorithms not only help decision makers learn more about 
efficient solutions, but also navigate to a final solution as quickly as possible [12]. This paper presents an 
algorithm by modifying every objective parameter of penalty function so that a final solution is easily and 
quickly obtained. In Section 2, we introduce a penalty function with the objective parameters and constraint 
penalty parameter, and its algorithm. In Section 3, we give numerical results to show that the proposed 
algorithm is efficient. 

2. Penalty Function with Objective Parameters and Constraint Penalty Parameter 
In this paper we consider the following inequality constrained multi-objective programming:  

( ) ( ) ( ) ( ) ( )( )
( )

1 2MP min , , ,

s.t. 0, 1, 2, , ,
q

i

f x f x f x f x

g x i m

=

≤ =





                         (1) 

where { } { }1 1: , :n n
j if R R g R R→ +∞ → +∞  , for { } { }1, 2, , , 1, 2, ,j J q i I m∈ = ∈ =  . 

We denote the feasible set of MP (1) by ( ){ }0,n
iX x R g x i I= ∈ ≤ ∈ . As usual, x X∈  is called a Pareto  

weakly-efficient solution if there is no x X∈  such that ( ) ( )j jf x f x<  for all Jj∈ , i.e. ( ) ( )f x f x< .  

x X∈  is called a Pareto efficient solution if there is no x X∈  such that ( ) ( )j jf x f x≤  for all j J∈  and  

( ) ( )j jf x f x<  for at least one j J∈ , i.e. ( ) ( )f x f x . 

Let functions { }:Q R R→ +∞  and { }:P R R→ +∞  satisfy  

( )
( )
( ) ( )2 1 2 1

0 if and only if 0

0 if and only if 0

if and only if 0

Q t t

Q t t

Q t Q t t t

= ≤


> >
 > > >

 

where ( )lim 0
t

Q t
→−∞

=  and  

( )
( )
( ) ( )2 1 2 1

0 if and only if 0,

0 if and only if 0

if and only if 0.

P t t

P t t

P t P t t t

= ≤


> >
 > > >

 

Let 

( ) ( )( ) ( )( ), , , 1, 2, , ,j j j j i
i I

F x M Q f x M P g x j qρ ρ
∈

= − + =∑   

where ( )1, 2, ,jM j q=   is an objective parameter and 0ρ >  is the constraint penalty parameter. Let  

( )1 2, , , qM M M=M   and the penalty function of (1) be defined as:  
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( ) ( ) ( ) ( )( )1 1 2 2, , , , , , , , , , , .q qx F x M F x M F x Mρ ρ ρ ρ=F M   

Consider the following unconstraint penalty optimization problem:  

( ) ( )MP , min , , , . . .nx s t x Rρ ρ ∈M F M  

For nx R∈ , let index set  

( ) ( ){ }0 , , , , 0, for ,j jJ x j J F x M j Jρ ρ= ∈ = ∈M  

( ) ( ){ }, , , , 0, for .j jJ x j J F x M j Jρ ρ+ = ∈ > ∈M  

We have ( ) ( )0 , , , ,J J x J xρ ρ+= M M . 

Theorem 1. Suppose that for given ( ),ρM , *
Mx  is a Pareto weakly-efficient solution to ( )MP ,ρM .  

Then the following three assertions hold: 
1) If ( )0 * , ,MJ x ρ ≠ ∅M , then *

Mx  is a feasible solution to (MP), ( )*
j M jf x M≤  for all ( )0 * , ,Mj J x ρ∈ M   

and ( )*
j M jf x M>  for all ( )* , ,Mj J x ρ+∈ M . 

2) If ( )0 * , ,MJ x ρ = ∅M  ( i.e. ( )* , , 0Mx ρ >F M ), then there is no x X∈  such that ( ) ( )*
Mf x f x< . 

3) If ( )* , , 0Mx ρ >F M  and *
Mx  is a feasible solution to (MP), then *

Mx  is a Pareto weakly-efficient  

solution to (MP).  
Proof. 1) The conclusion is obvious from the definitions of P  and Q . 
2) Suppose that there be an x X∈  such that ( ) ( )*

Mf x f x< . When ( )*
j M jf x M≤  for some j J∈ , we  

have  

( )( ) ( )( ) ( )( ) ( )( )* * *

1
.

m

j j j M j j M j i M
i

Q f x M Q f x M Q f x M P g xρ
=

− = − < − + ∑  

When ( )*
j M jf x M>  for some j J∈ , we have  

( )( ) ( )( ) ( )( ) ( )( )* * *

1
.

m

j j j M j j M j i M
i

Q f x M Q f x M Q f x M P g xρ
=

− < − ≤ − + ∑  

Hence, ( ) ( )*, , , ,Mx xρ ρ<F M F M , then *
Mx  is not a Pareto weakly-efficient solution to ( )MP ,ρM . 

3) According to 2), the conclusion holds.  
Theorem 2. Suppose that for a given ( ),ρM , *

Mx  is a Pareto efficient solution to ( )MP ,ρM . Then the  
following three assertions hold: 

1) If ( )0 * , ,MJ x ρ ≠ ∅M , then *
Mx  is a feasible solution to (MP), ( )*

j M jf x M≤  for all ( )0 * , ,Mj J x ρ∈ M   

and ( )*
j M jf x M>  for all ( )* , ,Mj J x ρ+∈ M . 

2) If ( )0 * , ,MJ x ρ ≠ ∅M  ( i.e. ( )* , , 0Mx ρ >F M ), then there is no x X∈  such that ( ) ( )*
Mf x f x . 

3) If ( )* , , 0Mx ρ >F M  and *
Mx  is a feasible solution to (MP), then *

Mx  is a Pareto efficient solution to  

(MP).  
Proof. 1) The conclusion is obvious from the definitions of P  and Q . 
2) Suppose that there be an x X∈  such that ( ) ( )*

Mf x f x . When ( )*
j M jf x M≤  for some j J∈ , we  

have  

( )( ) ( )( ) ( )( ) ( )( )* * *

1
.

m

j j j M j j M j i M
i

Q f x M Q f x M Q f x M P g xρ
=

− = − < − + ∑  

When ( )*
j M jf x M>  for some j J∈ , we have  
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( )( ) ( )( ) ( )( ) ( )( )* * *

1
.

m

j j j M j j M j i M
i

Q f x M Q f x M Q f x M P g xρ
=

− − − + ∑   

Hence, ( ) ( )*, , , ,Mx xρ ρF M F M , then *
Mx  is not a Pareto efficient solution to ( )MP ,ρM . 

3) According to 2), the conclusion holds.  
Based on Theorem 1, we develop an algorithm to compute an efficient solution to (MP). The algorithm solves 

the problem ( )MP ,ρM  sequentially, and is called Multiobjective Penalty Function Algorithm (MPFA for 
short). 

MPFA Algorithm: 
Step 1: Choose 0x X∈ , 1 0ρ > , 1N >  and ( )* minj jx X

M f x
∈

<  for each j J∈ . Let 1k = , and  

( )
( )

* 0
1

2
j j

j

M f x
M j J

+
= ∈ .  

Step 2: Solve ( )min , ,
n

k
k

x R
x ρ

∈
F M , where ( )1 2, , ,k k k k

qM M M=M  . Let kx  be a Pareto weakly-efficient 

solution.  

Step 3: If ( )0 , ,k k
kJ x ρ ≠ ∅M , for each j J∈ , let 

*
1

2

k
j jk

j

M M
M + +

= , 1 , 1:k kN k kρ ρ+ = + =  and go to 

Step 2. Otherwise, ( ), , > 0k
k kx ρF M , go to Step 4.  

Step 4: If kx  is not feasible to (MP), for each Jj∈ , let 
*

1

2

k
j jk

j

M M
M + +

= , 1 , 1:k kN k kρ ρ+ = + =  and go 

to Step 2. Otherwise, stop and kx  is a Pareto weakly-efficient solution to (MP). 
In the MPFA algorithm, it is assumed that for each Jj∈  ( )* minj jx X

M f x
∈

<  can always be obtained . 

The convergence of the MPFA algorithm is proved in the following theorem. For some j J∈ , let  

( ) ( )( ){ }, , 1, 2, ,k k k
j j jS L f x L Q f x M k= ≥ − = 

 

which is called a Q-level set. ( ), jS L f  is bounded if, for any given 0L >  and a convergent sequence  
*k

j jM M→ , ( ), jS L f  is bounded. 

Theorem 3. Suppose that Q , ( )jf j J∈  and ( )ig i I∈  are continuous on nR , and the Q-level set  

( ), jS L f  is bounded for all j J∈ . Let { }kx  be the sequence generated by the MPFA algorithm. 

1) If { } ( )1,2, ,kx k k=   is a finite sequence (i.e., the MPFA algorithm stops at the k -th iteration), then  
kx  is a Pareto weakly-efficient solution to (MP). 
2) If { }kx  is an infinite sequence, then { }kx  is bounded and any limit point of it is a Pareto weakly- 

efficient solution to (MP).  
Proof. For all j J∈ , it is clear that the sequence { }k

jM  decreases with  

*
1 * ,  1, 2, .

2

k
j jk

j j

M M
M M k+ −

− = =                             (2) 

Therefore, { }k
jM  converges to *

jM  for all j J∈ . 

1) If the MPFA algorithm terminates at the thk  iteration and the second situation of Step 4 occurs, by 
Theorem 1, kx  is a Pareto weakly-efficient solution to (MP). 

2) We first show that the sequence { }kx  is bounded. From the MPFA algorithm, we have ( )*
j jM f x<  for  

all x X∈ . Since { }k
jM  converges to *

jM  for all j J∈ , there is a k ′  such that ( )k
j jM f x<  for all  

x X∈  and all k k ′> . If kx X∈  for each k k ′> , we have ( )( ) 0k k
j jQ f x M− >  for all j J∈ . Hence, we  
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have ( ), , 0k
k kx ρ >F M  for all k k ′> . By Theorem 1, there is a j J∈  such that  

( ) ( )0 , 1, 2, .k
j jf x f x k k k′ ′≤ = + +   

So, 

( )( ) ( )( )0 , 1, 2, .k k k
j j j jQ f x M Q f x M k k k′ ′− ≤ − = + +   

Therefore, there is an 0L >  such that  

( )( ) ( )( )0 , 1, 2, .k k k
j j j jQ f x M Q f x M L k− ≤ − < =   

Since ( ), jS L f  is bounded, the sequence { }kx  is bounded. Without loss of generality, we assume  
*kx x→ . Since kx  is a Pareto weakly-efficient solution to ( )MP ,k

kρM , for some j , there are infinite  

k k ′>  such that  

( )( ) ( )( ) ( )( )0

1
.

m
k k k k

j j k i j j
i

Q f x M P g x Q f x Mρ
=

− + ≤ −∑  

We have  

( )( ) ( )( ) ( )( )0

1

1 .
m

k k k k
i j j j j

i k

P g x Q f x M Q f x M
ρ=

 ≤ − − − ∑  

When kρ → +∞ , we have ( )( )*

1
0

m

i
i

P g x
=

=∑ . Hence, *x X∈ . If *x  is not a Pareto weakly-efficient  

solution to (MP), there is an x X∈  such that ( ) ( )*f x f x< . Let ( ) ( ){ }*min 1,2, ,j jf x f x j qδ = − =  . 

From *kx x→ , there is some k  such that  

( ) ( ) ( ) ( )* * , 1, 2, , .k
j j j jf x f x f x f x j qδ− < ≤ − =   

So, we have ( ) ( )kf x f x< , which by Theorem 1 is a contradiction. Hence, *x  is a Pareto weakly-efficient  

solution to (MP). 
Theorem 3 means that the MPFA algorithm is convergent in theory. Now, we discuss the exactness of the 

penalty function for (MP). If there are an qR′∈M  and ρ′  such that a Pareto weakly-efficient solution *x  to  
(MP) is also a Pareto weakly-efficient solution to ( )( )P ,ρM  for ′∀ <M M  and ρ ρ′∀ > , then  

( ), ,x ρF M  is called an exact penalty function. 
Let (MP(s)) be a perturbed problem of (MP) given by  

( )( ) ( ) ( ) ( ) ( )( )
( )

1 2MP min , , ,

s.t. , 1, 2, , ,
q

i i

s f x f x f x f x

g x s i m

=

≤ =





                  (3) 

where ( )1 2, , , ms s s s=  . Similar to that for a constrained penalty function in [12], we define stability. 
Definition 1. Let x  be any feasible solution to (MP) and sx  any feasible solution to (MP(s)) for each 

ms R∈ . If there is an ′M  such that for j J∀ ∈   

( )( ) ( )( )
, andj j j s j

P

Q f x M Q f x M
s ρ ρ

ρ

− − −
′ ′≤ ∀ < ∀ >M M  

where ( )
1

m

iP
i

s P s
=

= ∑ , then (MP) is stable. 

We have an exact result of the penalty function. 
Theorem 4. Let *x  be an optimal solution to (MP). If (MP) is stable, ( ), ,x ρF M  is an exact penalty  

function.  
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Proof. Suppose that ( ), ,x ρF M  is not an exact penalty function. Let *
sx  a Pareto weakly-efficient solution  

to (MP(s)). According to the definition of stability, we obtain that there is an 1′M  satisfying  

( )( ) ( )( )
1, andj j j s j

P

Q f x M Q f x M
s ρ ρ

ρ

− − −
′ ′≤ ∀ < ∀ >M M                (4) 

This implies that there is some 1′ ′<M M  such that ( )*
j jf x M ′>  for j J∀ ∈ . Then, there always exists  

some ′<M M  such that *x  is not a Pareto weakly-efficient solution to (MP(M)), i.e. there is some x′  such 
that  

( ) ( ) ( )( )* *, , , , , .j j j j j jF x M F x M Q f x M j Jρ ρ′ < = − ∀ ∈  

Thus,  

( )( ) ( )( ) ( )( )* , .j j i j j
i I

Q f x M P g x Q f x M j Jρ
∈

′ ′− + < − ∀ ∈∑  

Suppose that x′  is a feasible solution to (MP). If ( )*
j jf x M<  for j J∈ , we have ( ) ( )* *

j j jf x M f x′< < .  

Otherwise if ( )*
j jf x M≥  for j J∈ , from ( )( ) ( )( )*

j j j jQ f x M Q f x M′ − < − , ( ) ( )*
j jf x f x′ < , which  

shows that *x  is not a Pareto weakly-efficient solution to (MP). A contradiction occurs. Hence, x′  is not a  
feasible solution to (MP) and ( )( ) 0i

i I
P f x

∈

′ >∑ . 

Let ( )1 2, , , ms s s s Τ′ ′ ′ ′=   with ( )i is g x′ ′= , 1, 2, ,i m=  , and *
sx  be a Pareto weakly-efficient solution to  

(P(s')). Then, there is some j  such that ( ) ( )*
j s jf x f x′≤  and ( ) ( )*

j s j j jf x M f x M′− ≤ − . Thus,  

( )( ) ( )( )* .j s j j jQ f x M Q f x M′− ≤ −  

Therefore,  

( )( ) ( ) ( )( ) ( )

( ) ( )( )

*

*, , ,

j s j i j j i
i I i I

j j j j

Q f x M P s Q f x M P s

F x M Q f x M

ρ ρ

ρ
∈ ∈

′ ′ ′− + ≤ − +

′= < −

∑ ∑
 

which shows that  

( )( ) ( )( )* * ,j j j s j PQ f x M Q f x M sρ ′− − − >  

where ( )iP
i I

s P s
∈

′ ′= ∑ . This inequality contradicts to (4). Hence, (MP) is stable which yields a contradiction  

with the assumption and proves that ( ), ,x ρF M  is an exact penalty function.  

3. Numerical Examples 

In the MPFA algorithm, it is not easy to solve multiobjective problem ( )min , , .
n

k
k

x R
x ρ

∈
F M  Let  

( ) ( ) ( ) ( )1 1 2 2, , , , , , , , .q qx F x M F x M F x Mρ ρ ρ ρ= + + +F M   

It is easily known that an optimal solution to the problem ( )min , ,
n

k
k

x R
x ρ

∈
F M  is a Pareto weakly-efficient  

solutions to the problem ( )min , , .
n

k
k

x R
x ρ

∈
F M  Hence, we replace the problem ( )min , ,

n

k
k

x R
x ρ

∈
F M  in the Step 2  

of the MPFA algorithm with the problem ( )min , ,
n

k
k

x R
x ρ

∈
F M . Let ( ) 0Q t′ >  for 0t > . When ( )j jM f x< ,  

we have  
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( ) ( )
( )( )

, ,, ,
0.j j

j j
j j

F x Mx
Q f x M

M M

ρρ ∂∂
′= = − − <

∂ ∂
F M

 

Hence, when jM  decreases, the j-th objective ( ), ,j jF x M ρ  will decrease too. For fixed  

( )( )( ), , eachix M i J i jρ ∈ ≠ ,  

( )
( )

, ,
lim 0.

, ,j

i i

M
j j

F x M
F x M

ρ

ρ→−∞
=  

So, we may obtain different Pareto weakly-efficient solutions at given different ( )1 2, , , qM M M . By  

controlling jM , we can control the j-th objective value ( ), ,j jF x M ρ . 

We have applied the MPFA algorithm to several examples programmed by Matlab 6.5. The aim of numerical 
examples is to check the convergence of the algorithm and to control changes in objectives. 

Example 1. Consider the following problem:  

( ) ( ) { }4 4 4 4
1 2 1 2 1 2

1 2 1 2

1 min , 2 , 4

s.t. 2 3 6, 0, 0.

P f x x x x x x

x x x x

= − − +

+ ≤ − ≤ − ≤
 

Let penalty function  

( ) { } { }
{ } { } { }

2 24 4 4 4
1 2 1 1 2 2

2 2 2
1 2 1 2

, , max 2 ,0 max 4 ,0

max 2 3 6,0 max ,0 max ,0 .

x x x M x x M

x x x x

ρ

ρ ρ ρ

= − − − + + −

+ + − + − + −

F M
 

Let the starting point ( ) ( )0 0
1 1, 0,0x x = , 1000ρ = , 100N =  and constraint error  

( ) { } { } { }1 2 1 2max 2 3 6,0 max ,0 max ,0 .e x x x x x= + − + − + −  

Clearly, if ( ) 0e x = , x  is a feasible solution. We take different parameters ( )* *
1 2,M M  in the MPFA  

algorithm, the results are shown in Table 1. 
In Table 1, when 1M  or 2M  decreases, the first objective value ( )1 1 2,f x x  or ( )2 1 2,f x x  decrease too.  

Objective parameter can control change of each objective function. It helps decision makers learn about the 
change of each objective function and choose a satisfactory solution as quickly as possible. 

Example 2. Consider the problem:  

( ) ( ) { }1 2 1 2 1 2 1 2

4 3 2
2 1 1 1

4 3 2
2 1 1 1 1

1

2

2 min , 2 , 2 ,

s.t. 2 8 8 2

4 32 88 96 36
0 3
0 4

P f x x x x x x x x

x x x x

x x x x x
x
x

= − − + − −

≤ − + +

≤ − + − +
≤ ≤
≤ ≤

 

We want to find a solution that three objectives are as small as possible with the first and second objective 
value less than −2 and the third objective value less than −5. 

Let penalty function  

( ) { } { } { }

{ } { }

{ } { } { }

22 2
1 2 1 1 2 2 1 2 3

2 24 3 2
2 1 1 1 1

2 2 2
2 1 2

, , max 2 ,0 max 2 ,0 max ,0

max 2 8 8 2,0 max 3,0

max 4,0 max ,0 max ,0 .

x x x M x x M x x M

x x x x x

x x x

ρ

ρ ρ

ρ ρ ρ

= − − + − + − + − − −

+ − + − − + −

+ − + − + −

F M

 

Let the starting point ( ) ( )0 0
1 1, 0,0x x = , 1000ρ = , 100N =  and constraint error  
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Table 1. Numerical results with different objective parameters.                                                    

k  ( )* *
1 2,M M  ( )ke x  ( )1 2,k kx x  ( ) ( )( )1 1 2 2 1 2, , ,k k k kf x x f x x  

5 (−4000.000000, −40.000000) 0.000000 (2.955488, 0.027052) (−152.597224, 76.298614) 

3 (−40.000000, −4000.000000) 0.000000 (0.004439, 0.004726) (−0.000000, 0.000000) 

2 (−400.000000, −400.000000) 0.000000 (2.514867, 0.000009) (−80.000006, 40.000003) 

 
Table 2. Numerical results with different objective parameters.                                                    

k  ( )* * *
1 2 3, ,M M M  ( )ke x  ( )1 2,k kx x  ( ) ( ) ( )( )1 1 2 2 1 2 3 1 2, , , , ,k k k k k kf x x f x x f x x  

5 (−10.000000, −10.000000, −10.000000) 0.000000 (2.329518, 3.178479) (−4.027439, −1.480558, −5.507997) 

5 (−10.000000, −20.000000, −10.000000) 0.000000 (2.534721, 2.039602) (−1.544482, −3.029841, −4.574323) 

5 (−11.000000, −20.000000, −10.000000) 0.000000 (2.489790, 2.311039) (−2.132288, −2.668541, −4.800829) 

5 (−12.000000, −20.000000, −10.000000) 0.000000 (2.444095, 2.577823) (−2.711552, −2.310366, −5.021918) 

 
( ) { } { } { } { } { }4 3 2

2 1 1 1 1 2 1 2max 2 8 8 2,0 max 3,0 max 4,0 max ,0 max ,0 .e x x x x x x x x x= − + − − + − + − + − + −  

We take different parameters ( )* * *
1 2 3, ,M M M  in the MPFA algorithm and get the results shown in Table 2. 

In Table 2, we find a satisfactory solution ( ) ( )1 2, 2.444095,2.577823x x =  when taking different  

( )* * *
1 2 3, ,M M M . 

4. Conclusion 
In this paper, we define a penalty function with objective parameters and constraint penalty parameter for MP 
and the corresponding unconstraint penalty optimization problem. Under some conditions, we prove that a 
Pareto efficient solution (or a weakly-efficient solution) to UPOP is a Pareto efficient solution (or a weakly- 
efficient solution) to MP, and the penalty function is exact under a stable condition. We present the MPFA 
algorithm to solve the multi-objective programming with inequality constraints by using the nonlinear penalty 
function with objective parameters. With this algorithm, we may find a satisfactory solution.  
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