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Abstract

In this paper we propose a relaxation scheme for solving discrete HJB equations based on scheme
II [1] of Lions and Mercier. The convergence of the new scheme has been established. Numerical
example shows that the scheme is efficient.
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1. Introduction

Consider the following Hamilton-Jacobi-Bellman (HJB) equation:

max{l_‘u—f‘}=0 in Q,

1<i<k

u=0 on 0Q,

(1.1)

where Q is a bounded domain in RY, L',i=1,---,k, are elliptic operators of second order. Equation (1.1) is
arising in stochastic control problems. See [2] and the references therein.
Equation (1.1) can be discretized by finite difference method or finite element method. See [1] [3] and the
references therein. Then we obtain the following discrete HIB equation:
J I —
max {AlU ~F '} =0, (1.2)
where Al e R™ F!eR", j=1.--- k. Equation (1.2) is a system of nonsmooth nonlinear equations. Many nu-
merical algorithms for solving (1.2) have been proposed. See [4]-[12] and the references therein.
[1] has given two iterative algorithms for solving (1.2). At each iteration, a linear complementarity subprob-
lem or a linear equation system subproblem is solved. See also [4].
Scheme I.
Step 1: Given ¢>0,m:=1, forsome j we find U®* such that

How to cite this paper: Zou, Z.Y. (2014) A New Scheme for Discrete HIB Equations. Applied Mathematics, 5, 2643-2649.
http://dx.doi.org/10.4236/am.2014.517252



http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2014.517252
http://dx.doi.org/10.4236/am.2014.517252
http://www.scirp.org/
mailto:yong_china@126.com
http://creativecommons.org/licenses/by/4.0/

Z.Y.Zou

AU =FI,
Step 2: Let N =(m-1)k,U™®=U"* For j=1-k, wefind U"" such that
max { AIU N g N g NIt 2,

Step 3: If U™ -U N°|| <¢, thentheoutputis U™, otherwise m='m+1 and it goes to Step 2.
Assume Al =(al), Fl'=(F’). Let

A(Py P )= (a2 ). F (pyeepy) =(R™)- (1.3)

That is: the Ith row of matrix A(p,,---,p,) is the Ith row of matrix A™; the Ith component of vector
F(p.-,p,) is the Ith component of vector F™ . Now we formulate Scheme Il of Lions and Mercier in the
notation above.

Scheme I1.

Step1: m:=0, forsome j wefind U® such that

AlU® =F/, (1.4)
Step 2: For I=1---,n, wefind p" such that

p" :min{j e{l,-~-,k}:(Aij—Fi)l}:max{(Aij—Fj)l}. (L5)

1<j<k

Step 3: Compute U™ as the solution of
A(plml,prf]")uerl:F(plm,,p:]) (16)

Step 4: If U™ =U™ then the outputis U™, otherwise m='m+1 and it goes to Step 2.

In the last decade many numerical schemes have been given for solving (1.2). But the above schemes are still
playing a very important role. See [4]-[6] and the references therein.

In this paper we propose, based on Scheme Il above, a relaxation scheme with a parameter @, which for
w =1 is just Scheme Il. In our numerical example, the new scheme with © =0.8,0.9 is faster than Scheme II
(@ =1). The monotone convergence of the new scheme has been proved.

2. New Scheme and Convergence

We propose a new scheme which is an extension of Scheme 1.
New Scheme I1.
Step 1: Given £>0,mw ¢ (0,1] m:=0, forsome j find U® such that

AlU® =F1, (2.1)
Step 2: For I=1---,n, find p" such that
I = min{ j & {L-+-,k}:(AU" —Fi)l}:[?%{(Aij—Fj)l}. 2.2)
Step 3: Compute V™ as the solution of
A(RI - oy V™ =F(pl b)), (2.3)
Step 4: Compute
U™ =(1-@)U" +aV™. (2.4)

Step 5:If U™ —U™|<e& thenoutput U™ otherwise m=m+1 and go to Step 2.
In [13] we proposed the following conditions for (1.2).
Condition A" All the matrices A(p,---,p,),p =1---,m,I =1,---,n, are M-matrices.
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In [13] we have proved the following theorem.
Theorem 2.1 If Condition A" holds then (1.2) has a unique solution.
We have the following convergence theorem.

Theorem 2.2 Assume that Condition A" holds, and that U™,m=0,1,2,--- are produced by New Scheme

Il. Then U™ is monotonely decreasing and convergent to the solution of (1.2).

Proof Since all A(p,,--,p,),p, =1,k I=1---,n, are M-matrices, U",m=0,1,--- in New Scheme II

are well defined.
First, we prove U™ is decreasing monotonically, i.e.,

~<yU™<ym<.<Ut<Ul,
By (2.3) we have
A(pY, o )VE=F (. pr),
which combining with (2.1) and (2.2) yields
AP, pR)U° = F (-, pp) 2 AIU® —F1 =0
= A(P], PR VE=F (0P,
Since A(pf p,?) are M-matrices, (2.7) means
vi<u®.
By (2.4) we obtain
U'=(1-0)U’+aV.

By we(0,1], (2.8) and (2.9) we know

ut<u®,
and
Vi <U?,
which and (2.10) implies
vi<ut<u®.

Similarly, by (2.3) we derive
A(pL oy )VE=F(pisph)s
which combining with (2.2) and (2.6) implies
A(PL Py VI =F (P Py ) = A(RD - e VE = F (PP pn)
= A(pLe Py )VE=F(pies ph).
Hence we have
V2 <Vt
By (2.4), we have
U?=(1-0)U'+aV?
By (2.12), (2.13) and w < (0,1], we know
U?<(l-o)U'+aV,

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)
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which combining with @ €(0,1] and (2.11) we derive

U2 <ut (2.15)
By (2.11), (2.12) and (2.13) ,we get
VZ<Uu?,
which combining with (2.15) implies
VZ<U?<Ut
It is easy to derive by induction that
V™ <u™<uU™ m=0,1,---, (2.16)
and
V™ <v™ m=0,1, . (2.17)

It follows that (2.5) holds.
It follows from (2.2) and (2.3) that

max{AV™ —Ff = A(p",-oo, p7 V" = F (B, 7)) (2.18)
= A(plm,..., p:‘)(vm_vmﬂ)’ m=01-.

Since the set {(p1 pn): p =Lk =1,~-«,n} is a finite set there exist positive integers q and m
with g >k such that

(pf.pd)=(pl 0Pl

Therefore, we have

Then by (2.2) we obtain

VEESRVLES
which and (2.17) results in
VOt Zyve =L oy ™2 oy (2.19)
From (2.4), (2.16) and (2.19) we have
Uit =u=...=u™? =ym, (2.20)

It follows from (2.18), (2.19) and (2.20) that
max {AlU™ —F1} =0,

1<j<k

which means U™ is a solution of (1.2). The existence of solution has been proved.
Finally, we prove the uniqueness of solution. Assume U and U” are solutions of (1.2), i.e.,

Lrpjegf{A"U ~Fl} =0, (2.21)
E%{Aiu* ~-Fl}=o0. (2.22)
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Itis easy to see from (2.21) and (2.22) that there exist (p,,---,p,) and (p;,--- p;) such that
A(Py Py )U =F (P, py ) =0, (2.23)
A

(
Al
(

Py b )U = F (pr.e pp) =0, (2.24)
pI’...’p;)U_F(p;...7p:)§0’ (225)

A(py P U =F (P, P, ) <O. (2.26)
(2.23) and (2.26) implie U" <U . But (2.24) and (2.25) implies U">U . Hence U =U . The proof is
complete. O

3. Numerical Example

We use example 2 in [4], i.e., k=n=2,Q=(0,1)x(0,1).

rlgiaS)z({Liu— f‘}zO in Q,

(3.1)
u=0 on 092,

where Q:{(x,y):0<x,y<l},

o o° 2 07

Lt :_(X+6)ZW_(X+6)(y+2)5X6y -(y+2) ¥

0 0
+[O.5(x+6)—4]&+0.5(y+2)5+1,

2 2 07 o° 2 &°
L* =—(x+6) a7—0.8(x+6)(y+2)axay—0.75(y+2) Fva

0 0
+[(x+6)—2]&+(y+2)5+4,
u=x(1-x)y(1-y),
fl=1f2 =max(L1u,L2u).

The discretization of the above second order derivatives are:

S P N

673 h zDh,th,x' Wz h 2Dh,th,y’
L P o
vy th [DMDM + DMDM],

where Dy ,,D;, denote the forward and backward difference respectively in x and y, h=1/10, h=1/20.
We use New Scheme Il to solve the discrete problem. Take ¢=10"°, »=0.1,0.5,0.8,0.9,1.0 and 1.1, 1.3, 1.5,
1.8, 1.9 respectively.

Table 1 and Table 2 show the co-norm of the residual R = p%{AiU "_F j} when iteration terminates.
<j<

Weseethat R~0 for w<1 and R ishigfor we(1,2).

Table 3 shows the relation between iteration number m and relaxation number (a) € (0,1]). Table 4 and
Table 5 show the value of U™ at (x,y)" =(0.5,0.5)" for h=1/10 and h=1/20 respectively.

We can see from Table 3 that the algorithm for © =0.8,0.9 is faster than that for » =1. Table 4 and Table

5 display the monotonicity of the algorithm.
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Table 1. co-norm of the residual R.

« 0.1 0.5 0.8 0.9 1.0
IR,
h=1/10 3.419e-004 2.099e-011 9.464e-012 6.861e-012 6.651e-012
h=1/20 6.630e-003 1.784e-008 6.653e-011 6.062e-011 8.169e-006

Table 2. co-norm of the residual R.

(2] 11 13 15 1.8 1.9
IRI.
h=1/10 3.440e-000 2.314e+001 4.670e+001 8.421e+001 9.730e-000
h=1/20 1.667e-003 4.323e+001 1.754e+002 4.323e+001 2.089e+002

Table 3. Iteration number m.

« 0.1 0.5 0.8 0.9 1.0
m
h=1/10 200 198 107 90 124
h=1/20 600 495 282 258 400

Table 4. The value of U™ at (X, y)T = (0.5,0.5)T .

o 01 05 08 09 1.0
h=1/10
m=1 1.091409800 1.086033962 1.082002083 1.080658123 1.079314164
m=2 1.089751377 1.080022728 1.074891194 1.073533844 1.076283661
m=3 1.088256293 1.075449958 1.072050161 1.071072814 1.073086733
m=4 1.086758364 1.073060086 1.069451302 1.068586924 1.072407806
Last m 1.065963994 1.065887109 1.065887109 1.065887109 1.065887109

Table 5. The value of U™ at (X, y)T = (0.5,0.5)T .

® 01 05 08 0.9 1.0
h=1/20

m=1 1.077654026 1.073664734 1.070672766 1.069675443 1.068678121

m=2 1.076493553 1.069008305 1.065427282 1.065027950 1.068036835

m=3 1.075236529 1.065915940 1.063091196 1.062134520 1.066011200

m=4 1.073996351 1.063479656 1.060857772 1.060476760 1.065563176

Last m 1.054467308 1.054409847 1.054409847 1.054409847 1.054409847
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