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Abstract 
In this paper we propose a relaxation scheme for solving discrete HJB equations based on scheme 
II [1] of Lions and Mercier. The convergence of the new scheme has been established. Numerical 
example shows that the scheme is efficient. 

 
Keywords 
Iterative Algorithm, Relaxation Scheme, HJB Equation, Convergence, Existence 

 
 

1. Introduction 
Consider the following Hamilton-Jacobi-Bellman (HJB) equation: 

{ }
1
max 0 in ,

0 on ,

i i

i k
Lu f

u
≤ ≤

− = Ω

= ∂Ω
                            (1.1) 

where Ω  is a bounded domain in ,  , 1, , ,d iR L i k=   are elliptic operators of second order. Equation (1.1) is 
arising in stochastic control problems. See [2] and the references therein. 

Equation (1.1) can be discretized by finite difference method or finite element method. See [1] [3] and the 
references therein. Then we obtain the following discrete HJB equation: 

{ }
1
max 0,j j

i k
A U F

≤ ≤
− =                               (1.2) 

where , , 1, ,j n n j nA R F R j k×∈ ∈ =  . Equation (1.2) is a system of nonsmooth nonlinear equations. Many nu-
merical algorithms for solving (1.2) have been proposed. See [4]-[12] and the references therein. 

[1] has given two iterative algorithms for solving (1.2). At each iteration, a linear complementarity subprob-
lem or a linear equation system subproblem is solved. See also [4]. 

Scheme I. 
Step 1: Given 0, : 1,mε > =  for some j  we find 0,kU  such that 
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0, .j k jA U F=  

Step 2: Let ( ) ,0 ,1 , .N N kN m k U U= − =  For 1, , ,j k=   we find ,N j jU +  such that 

{ }, , 1, 1max , 0.j N j j j N j j N j jA U F U U+ + + − −− − =  

Step 3: If , ,0 ,mk k NU U ε− <  then the output is , ,mk kU  otherwise : 1m m= +  and it goes to Step 2. 
Assume ( ) ( ), .j j j j

ls lA a F F= =  Let 

( ) ( ) ( ) ( )1 1, , , , , .l lp p
n ls n lA p p a F p p F= = 

                       (1.3) 

That is: the lth row of matrix ( )1, , nA p p  is the lth row of matrix lpA ; the lth component of vector 
( )1, , nF p p  is the lth component of vector lpF . Now we formulate Scheme II of Lions and Mercier in the 

notation above. 
Scheme II. 
Step 1: : 0,m =  for some j  we find 0U  such that 

0 .j jA U F=                                   (1.4) 

Step 2: For 1, , ,l n=   we find m
lp  such that 

{ } ( ){ } ( ){ }
1

min 1, , : max .m j m j j m j
l l lj k

p j k A U F A U F
≤ ≤

= ∈ − = −             (1.5) 

Step 3: Compute 1mU +  as the solution of 

( ) ( )1
1 1, , , , .m m m m m

n nA p p U F p p+ =                       (1.6) 

Step 4: If 1m mU U+ =  then the output is mU , otherwise : 1m m= +  and it goes to Step 2. 
In the last decade many numerical schemes have been given for solving (1.2). But the above schemes are still 

playing a very important role. See [4]-[6] and the references therein. 
In this paper we propose, based on Scheme II above, a relaxation scheme with a parameter ω , which for 

1ω =  is just Scheme II. In our numerical example, the new scheme with 0.8,0.9ω =  is faster than Scheme II
( )1ω = . The monotone convergence of the new scheme has been proved. 

2. New Scheme and Convergence 
We propose a new scheme which is an extension of Scheme II. 

New Scheme II. 
Step 1: Given ( ]0, 0,1ε ω> ∈  : 0,m =  for some j  find 0U  such that 

0 .j jA U F=                                   (2.1) 

Step 2: For 1, , ,l n=   find m
lp  such that 

{ } ( ){ } ( ){ }
1

min 1, , : max .m j m j j m j
l l lj k

p j k A U F A U F
≤ ≤

= ∈ − = −            (2.2) 

Step 3: Compute 1mV +  as the solution of 

( ) ( )1
1 1, , , , .m m m m m

n nA p p V F p p+ =                       (2.3) 

Step 4: Compute 

( )1 11 .m m mU U Vω ω+ += − +                          (2.4) 

Step 5: If 1m mU U ε+ − <  then output mU  otherwise : 1m m= +  and go to Step 2. 
In [13] we proposed the following conditions for (1.2). 
Condition A∗  All the matrices ( )1, , , 1, , , 1, , ,n lA p p p m l n= =    are M-matrices. 
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In [13] we have proved the following theorem. 
Theorem 2.1 If Condition A∗  holds then (1.2) has a unique solution. 
We have the following convergence theorem. 
Theorem 2.2 Assume that Condition A∗  holds, and that , 0,1, 2,mU m =   are produced by New Scheme 

II. Then mU  is monotonely decreasing and convergent to the solution of (1.2). 
Proof Since all ( )1, , , 1, , , 1, , ,n lA p p p k l n= =    are M-matrices, , 0,1,mU m =   in New Scheme II 

are well defined. 
First, we prove mU  is decreasing monotonically, i.e., 

1 1 0 .m mU U U U+≤ ≤ ≤ ≤ ≤                              (2.5) 

By (2.3) we have 

( ) ( )0 0 1 0 0
1 1, , , , ,n nA p p V F p p=                             (2.6) 

which combining with (2.1) and (2.2) yields 

( ) ( )
( ) ( )

0 0 0 0 0 0
1 1

0 0 1 0 0
1 1

, , , , 0

, , , , .

j j
n n

n n

A p p U F p p A U F

A p p V F p p

− ≥ − =

= −

 

 

             (2.7) 

Since ( )0 0
1 , , nA p p  are M-matrices, (2.7) means 

1 0 .V U≤                                       (2.8) 

By (2.4) we obtain 

( )1 0 11 .U U Vω ω= − +                                 (2.9) 

By ( ]0,1ω∈ , (2.8) and (2.9) we know 
1 0 ,U U≤                                      (2.10) 

and 
1 1,V U≤                                      (2.11) 

which and (2.10) implies 
1 1 0 .V U U≤ ≤  

Similarly, by (2.3) we derive 

( ) ( )1 1 2 1 1
1 1, , , , ,n nA p p V F p p=   

which combining with (2.2) and (2.6) implies 

( ) ( ) ( ) ( )
( ) ( )

1 1 1 1 1 0 0 1 0 0
1 1 1 1

1 1 2 1 1
1 1

, , , , , , , ,

, , , , .

n n n n

n n

A p p V F p p A p p V F p p

A p p V F p p

− ≥ −

= −

   

 

 

Hence we have 
2 1.V V≤                                      (2.12) 

By (2.4), we have 

( )2 1 21 .U U Vω ω= − +                                (2.13) 

By (2.12), (2.13) and ( ]0,1ω∈ , we know 

( )2 1 11 ,U U Vω ω≤ − +                                (2.14) 
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which combining with ( ]0,1ω∈  and (2.11) we derive 
2 1.U U≤                                      (2.15) 

By (2.11), (2.12) and (2.13) ,we get 
2 2 ,V U≤  

which combining with (2.15) implies 
2 2 1.V U U≤ ≤  

It is easy to derive by induction that 
1 1 , 0,1, ,m m mV U U m+ +≤ ≤ =                             (2.16) 

and 
1 , 0,1, .m mV V m+ ≤ =                                 (2.17) 

It follows that (2.5) holds. 
It follows from (2.2) and (2.3) that 

{ } ( ) ( )
( )( )

1 11

1
1

max , , , ,

, , , 0,1, .

j m j m m m m m
n nj k

m m m m
n

A V F A p p V F p p

A p p V V m
≤ ≤

+

− = −

= − =

 

 

              (2.18) 

Since the set ( ){ }1, , : 1, , , 1, ,n lp p p k l n= =    is a finite set there exist positive integers q  and m  
with q k>  such that 

( ) ( )1 1, , , , .q q m m
n np p p p=   

Therefore, we have 

( ) ( )1 1, , , , ,q q m m
n nA p p A p p=   

( ) ( )1 1, , , , .q q m m
n nF p p F p p=   

Then by (2.2) we obtain 
1 1,q mV V+ +=  

which and (2.17) results in 
1 2 1.q q m mV V V V+ + += = = =                             (2.19) 

From (2.4), (2.16) and (2.19) we have 
1 2 1.q q m mU U U U+ + += = = =                            (2.20) 

It follows from (2.18), (2.19) and (2.20) that 

{ }1

1
max 0,j m j

j k
A U F+

≤ ≤
− =  

which means 1mU +  is a solution of (1.2). The existence of solution has been proved. 
Finally, we prove the uniqueness of solution. Assume U  and *U  are solutions of (1.2), i.e., 

{ }
1
max 0,j j

j k
A U F

≤ ≤
− =                                 (2.21) 

{ }*

1
max 0.j j

j k
A U F

≤ ≤
− =                                (2.22) 
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It is easy to see from (2.21) and (2.22) that there exist ( )1, , np p  and ( )* *
1 , , np p  such that 

( ) ( )1 1, , , , 0,n nA p p U F p p− =                           (2.23) 

( ) ( )* * * * *
1 1, , , , 0,n nA p p U F p p− =                          (2.24) 

( ) ( )* * * *
1 1, , , , 0,n nA p p U F p p− ≤                          (2.25) 

( ) ( )*
1 1, , , , 0.n nA p p U F p p− ≤                          (2.26) 

(2.23) and (2.26) implie *U U≤ . But (2.24) and (2.25) implies *U U≥ . Hence *U U= . The proof is 
complete.  

3. Numerical Example 
We use example 2 in [4], i.e., ( ) ( )2, 0,1 0,1 .k n= = Ω = ×  

{ }
1 2
max 0 in ,

0 on ,

i i

i
Lu f

u
≤ ≤

− = Ω

= ∂Ω
                            (3.1) 

where ( ){ }, : 0 , 1 ,x y x yΩ = < <  

( ) ( )( ) ( )

( ) ( )

2 2 2
2 21

2 26 6 2 2

0.5 6 4 0.5 2 1,

L x x y y
x yx y

x y
x y

∂ ∂ ∂
= − + − + + − +

∂ ∂∂ ∂

∂ ∂
+ + − + + +   ∂ ∂

 

( ) ( )( ) ( )

( ) ( )

2 2 2
2 22

2 26 0.8 6 2 0.75 2

6 2 2 4,

L x x y y
x yx y

x y
x y

∂ ∂ ∂
= − + − + + − +

∂ ∂∂ ∂
∂ ∂

+ + − + + +   ∂ ∂

 

( ) ( )1 1 ,u x x y y= − −  

( )1 2 1 2max , .f f L u L u= =  

The discretization of the above second order derivatives are: 
2 2

2 2
, , , ,2 2, ,h x h x h y h yh D D h D D

x y
− + − − + −∂ ∂

≈ ≈
∂ ∂

 

2
2

, , , ,
1 ,
2 h x h y h x h yh D D D D

x y
− + + − −∂  ≈ + ∂ ∂

 

where , ,,h x h yD D± ±  denote the forward and backward difference respectively in x  and y , 1 10h = , 1 20h = . 
We use New Scheme II to solve the discrete problem. Take 510ε −= , 0.1,0.5,0.8,0.9,1.0ω =  and 1.1, 1.3, 1.5, 
1.8, 1.9 respectively. 

Table 1 and Table 2 show the ∞-norm of the residual { }
1
max j m j

j k
R A U F

≤ ≤
= −  when iteration terminates. 

We see that 0R ≈  for 1ω ≤  and R  is big for ( )1,2ω∈ . 
Table 3 shows the relation between iteration number m  and relaxation number ( ]( )0,1ω ω∈ . Table 4 and 

Table 5 show the value of mU  at ( ) ( )T T, 0.5,0.5x y =  for 1 10h =  and 1 20h =  respectively. 
We can see from Table 3 that the algorithm for 0.8,0.9ω =  is faster than that for 1ω = . Table 4 and Table 

5 display the monotonicity of the algorithm. 
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Table 1. ∞-norm of the residual R. 

ω  0.1 0.5 0.8 0.9 1.0 

R
∞

      

1 10h =  3.419e–004 2.099e–011 9.464e–012 6.861e–012 6.651e–012 

1 20h =  6.630e–003 1.784e–008 6.653e–011 6.062e–011 8.169e–006 

 
Table 2. ∞-norm of the residual R. 

ω  1.1 1.3 1.5 1.8 1.9 

R
∞

      

1 10h =  3.440e–000 2.314e+001 4.670e+001 8.421e+001 9.730e–000 

1 20h =  1.667e–003 4.323e+001 1.754e+002 4.323e+001 2.089e+002 

 
Table 3. Iteration number m. 

ω  0.1 0.5 0.8 0.9 1.0 

m       

1 10h =  200 198 107 90 124 

1 20h =  600 495 282 258 400 

 
Table 4. The value of mU  at ( ) ( )T T, 0.5,0.5x y = . 

ω  0.1 0.5 0.8 0.9 1.0 

1 10h =    

1m =  1.091409800 1.086033962 1.082002083 1.080658123 1.079314164 

2m =  1.089751377 1.080022728 1.074891194 1.073533844 1.076283661 

3m =  1.088256293 1.075449958 1.072050161 1.071072814 1.073086733 

4m =  1.086758364 1.073060086 1.069451302 1.068586924 1.072407806 

Last m  1.065963994 1.065887109 1.065887109 1.065887109 1.065887109 

 
Table 5. The value of mU  at ( ) ( )T T, 0.5,0.5x y = . 

ω  0.1 0.5 0.8 0.9 1.0 

1 20h =    

1m =  1.077654026 1.073664734 1.070672766 1.069675443 1.068678121 

2m =  1.076493553 1.069008305 1.065427282 1.065027950 1.068036835 

3m =  1.075236529 1.065915940 1.063091196 1.062134520 1.066011200 

4m =  1.073996351 1.063479656 1.060857772 1.060476760 1.065563176 

Last m  1.054467308 1.054409847 1.054409847 1.054409847 1.054409847 

Funding 
This work was supported by Educational Commission of Guangdong Province, China (No. 2012LYM-0066) 



Z. Y. Zou 
 

 
2649 

and the National Social Science Foundation of China (No. 14CJL016). 

References 
[1] Lions, P.L. and Mercier, B. (1980) Approximation numerique des equations de Hamilton-Jacobi-Bellman. RAIRO Nu-

merical Analysis, 14, 369-393. 
[2] Bensoussan, A. and Lions, J.L. (1982) Applications of Variational Inequalities in Stochastic Control. North-Holland, 

Amsterdam.  
[3] Boulbrachene, M. and Haiour, M. (2001) The Finite Element Approximation of Hamilton-Jacobi-Bellman Equations. 

Computers & Mathematics with Applications, 14, 993-1007. http://dx.doi.org/10.1016/S0898-1221(00)00334-5 
[4] Hoppe, R.H.W. (1986) Multigrid Methods for Hamilton-Jacobi-Belman Equations. Numerische Mathematik, 49, 239- 

254. http://dx.doi.org/10.1007/BF01389627 
[5] Huang, C.S., Wang, S. and Teo, K.S. (2004) On Application of an Alternating Direction Method to HJB Equations. 

Journal of Computational and Applied Mathematics, 166, 153-166. http://dx.doi.org/10.1016/j.cam.2003.09.031 
[6] Sun, M. (1993) Domain Decomposition Method for Solving HJB Equations. Numerical Functional Analysis and Opti-

mization, 14, 145-166. http://dx.doi.org/10.1080/01630569308816513 
[7] Sun, M. (1996) Alternating Direction Algorithms for Solving HJB Equations. Applied Mathematics and Optimization, 

34, 267-277. http://dx.doi.org/10.1007/BF01182626 
[8] Young, D. (1971) Iterative Solution of Large Linear Systems. AP, New York. 
[9] Zhou, S.Z. and Chen, G.H. (2005) A Monotone Iterative Algorithm for a Discrete HJB Equation. Mathematica Appli-

cata, 18, 639-643. (in Chinese) 
[10] Zhou, S.Z. and Zhan, W.P. (2003) A New Domain Decomposition Method for an HJB Equation. Journal of Computa-

tional and Applied Mathematics, 159, 195-204. http://dx.doi.org/10.1016/S0377-0427(03)00554-5 
[11] Zhou, S.Z. and Zou, Z.Y. (2008) An Itetative Algorithm for a Quasivariational Inequality System Related to HJB Equ-

ation. Journal of Computational and Applied Mathematics, 219, 1-8. http://dx.doi.org/10.1016/j.cam.2007.07.013 
[12] Zhou, S.Z. and Zou, Z.Y. (2008) A New Iterative Method for Discrete HJB Equations. Numerische Mathematik, 111, 

159-167. http://dx.doi.org/10.1007/s00211-008-0166-6 
[13] Zhou, S.Z. and Zou, Z.Y. (2007) A Relaxation Scheme for Hamilton-Jacobi-Bellman Equations. Applied Mathematics 

and Computation, 186, 806-813. http://dx.doi.org/10.1016/j.amc.2006.08.025 

http://dx.doi.org/10.1016/S0898-1221(00)00334-5
http://dx.doi.org/10.1007/BF01389627
http://dx.doi.org/10.1016/j.cam.2003.09.031
http://dx.doi.org/10.1080/01630569308816513
http://dx.doi.org/10.1007/BF01182626
http://dx.doi.org/10.1016/S0377-0427(03)00554-5
http://dx.doi.org/10.1016/j.cam.2007.07.013
http://dx.doi.org/10.1007/s00211-008-0166-6
http://dx.doi.org/10.1016/j.amc.2006.08.025


http://www.scirp.org/
http://www.scirp.org/
http://papersubmission.scirp.org/paper/showAddPaper?journalID=478&utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ABB/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AM/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJPS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJAC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/CE/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ENG/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/FNS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/Health/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCT/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JEP/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JMP/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ME/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/NS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/PSYCH/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
mailto:submit@scirp.org

	A New Scheme for Discrete HJB Equations
	Abstract
	Keywords
	1. Introduction
	2. New Scheme and Convergence
	3. Numerical Example
	Funding
	References

