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Abstract 
We consider LM tests for spatial correlations in the spatial error model (SEM) and spatial autore-
gressive model (SAM) with randomly missing data in the dependent variable. We derive the for-
mulas of the LM test statistics and provide finite sample performance of the LM tests through 
Monte Carlo experiments. 
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1. Introduction 
Spatial models have a long history in regional science and geography (see [1], for example). Recently, many 
economic processes that concern spatial correlations have been drawn more and more attention. Examples in-
clude housing decision, technology adoption, tax competition, welfare participation, and price decision. There-
fore, spatial correlations are of much interest in the study of urban, environmental, labor, and developmental 
economics among others. Various spatial econometric models are currently being applied, among which the 
most popular ones are the spatial error model (SEM) and spatial autoregressive model (SAM). Before setting up 
a spatial econometric model and doing estimation, people tend to test the existence of the spatial correlations 
first. The LM tests for spatial correlations have already been developed by [2] and [1] for the SEM and the SAM. 
However, these tests are designed for models with fully observed data. 

In practice, missing data are a common problem that researchers face. When there are missing data, the spatial 
econometric models will be difficult to handle due to the interdependence among the components of the error 
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term/dependent variable vector (see [3], for example). Therefore, the LM tests proposed by [2] and [1] will be 
no longer valid when missing data problem occurs. In this paper, we consider a case in which observations are 
randomly missing only from the dependent variable and study the LM tests for spatial correlations in this situa-
tion. This situation could be very common in regional studies, where exogenous variables may be available from 
different sources rather than from data available on a local government web site, but the dependent variable may 
have missing data. LeSage and Pace [4] and [3] [5] have considered this situation and study the estimations of 
the spatial econometric models1. In this study, we focus on the tests of spatial correlations in both SEM and 
SAM. 

The rest of the paper is organized as follows. Section 2 provides the SEM model specification with missing 
data in the dependent variable and LM test for the spatial correlation. We derive the formula of the LM test sta-
tistic, which is asymptotically ( )2 1χ . In Section 3, we study the SAM model and provide the LM test. Some 
Monte Carlo experiments are carried out in Section 4, and Section 5 concludes the paper. 

2. LM Test for Spatial Correlation in the SEM 
The Spatial Error Model is: 

0

0 ,
n n n

n n n n

Y X
W u
β ε

ε λ ε
= +

= +
                                  (1) 

where nY  is an 1n×  vector of outcomes of n cross sectional units; nX  is an n k×  matrix of exogenous va-
riables representing the n units’ exogenous characters; nu  is an 1n×  vector of i.i.d. disturbances with zero 
mean and a finite variance 2

0σ ; nW  is an n n×  spatial weights matrix of known constants with a zero di-
agonal; and 0λ  is the spatial effect coefficient that measures the spatial autocorrelation on nε . 

If the data are fully observed, we may test 
0 0: 0H λ =  

for spatial autocorrelation. Burridge [2] and [1] derived the LM test statistic as 

( )
2T

T

1 ,n
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ne W e
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e etr W W
 

=  
 

 

where Ts
n n nW W W= +  and e is the OLS residual of model (1), i.e., n ne M Y=  with ( )T T

n n n n n nM I X X X X= − .  

However, if there are missing observations on nY , the above test statistic could not be computed. 
We consider the case where some of the observations in the outcome vector are unavailable. Without loss of 

generality, we assume that the outcomes of the last n1 units are missing, where 0 < n1 < n. Therefore, we can 
write 

( )

( )
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o
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 
 

 

where ( )o
nY  is the n2 × 1 subvector of observed outcomes, where 2 1n n n= − , and ( )u

nY  is the remaining n1 × 1  
subvector of unobserved (missing) outcomes. So the (population) system under consideration is 

( )

( ) 0
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n n n
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n
u
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Y
X
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ε λ ε

 
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                                  (2) 

Note that ( )u
n n nY J Y= , where 

1 2 1 1
0 ,n n n n nJ I× × =    is a selection matrix which picks the unobserved elements  

from the whole vector nY . Similarly, ( ) ( )o o
n n nY J Y=  where 

2 2 2 1
,0n n n n nJ I × × =   . To simplify some of the nota- 

tions, denote 0n n nS I Wλ= − . Then we can write ( )o
nY  as 

 

 

1LeSage and Pace [4] consider an example of housing prices, where the unsold properties have known characteristics. Examples of Wang 
and Lee [3] [5] include censuses that provide regional demographic data, which can be aggregated to regional-level data. 
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( ) ( ) ( ) ( ) ( )
0 0

1
n n n n n

o o o o
n n

o
n nnJ X J J X J S uY β βε −+ = += .                        (3) 

The maximum likelihood (ML) approach can be based on the above equation. Let ( ) 1
n n

o
n nv SJ u−= , then  

( ) 2
0 ,n v nVar v σ= Σ , where T

,v n n nB BΣ =  with ( ) 1o
n n nB J S −= . Let ( )TT 2, ,θ λ β σ= , with 0θ  being the true pa- 

rameter value. Under normality, the log likelihood function is 
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where ( ) ( )T
,v n n nB Bλ λΣ =  with ( ) ( ) ( ) 1o

n n n nB J I Wλ λ −= − . The expressions for the elements of the score  
vector are: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){
( ) ( ) ( ) ( ) ( ) ( )( )}

1
, ,

1 1T T T T T

1T

T ( ) ( )
2

T

2

2 T

lnln 1 1

,

2 2
1

2

o ov n v n

n n

n o o
n n n n

n n n n n n n n

n n n n

n n

n n

v B B B G G B B B

L
Y J X

v

B B B B G G

Y J X

tr

λ λ
β β

β λ λ λ λ λ λ λ λ β

λ λ λ λ

θ
λ λ λσ

σ

λ λσ

−

− −

−

∂ ∂∂  = − − − − 
Σ Σ

  

     +     



∂ ∂ ∂

=

  − + 

  (4) 

( ) ( ) ( ) ( ) ( ){ }1T T 2
22 4

ln 1 ,
2 n n n n

n v
L

B B v nβ λ
θ

σ σ
λ β σ

−
  −= 

∂

∂                    (5) 

and 
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where ( ) ( ) ( )o
n

o
n nnv J XY ββ = − , and ( ) ( ) 1

n n n nG W I Wλ λ −= − . The second order derivatives are, for the rele- 
vant combinations of parameters, Equations (A.1)-(A.6) in the Appendix. Thus the elements of the information 
matrix are, 
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To perform the LM test, expressions (4)-(6) and (7)-(9) need to be evaluated under constrained estimation,  
i.e., with the parameter values included in the null hypothesis set to zero (namely, ˆ 0Rλ = ), and with the other  

parameters set to their ordinary-least-squares estimates, i.e., ( ) ( )( ) ( ) ( )1T TT T ,ˆ o o o o
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=  and 
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Note that ( ) ( ) ( )0 , 0o
n n n nB J G W= =  and 
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because nW  has a zero diagonal. Thus we have the score vector as follows 
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where ( ) ( )o o
n ne M Y=  is the ordinary-least-squares residual of model (3). And the estimated information matrix is 
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Therefore, the LM test statistic is 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )T

T T

T 2T1
2

T

ˆ ˆln ln 1ˆ ,ˆ ˆ

o
n R n R n n

o

o o
n

R o os
R R n n n n n n

L L n e J W J e
LM I

e etr J J W J J W

θ θ
θ

θ θ

−   ∂ ∂      = =         ∂ ∂      

 

with ( ) ( ) ( ) ( ) ( )( ) ( ) ( )
2

1T TT To o o o o o o
n n n n n n n n n n n ne M Y I J X X J J X X J Y

− = = − 
 

 and Ts
n n nW W W= + . 

Under the null, we have ( )2 1LM χ→ . 

3. LM Test for Spatial Correlation in the SAM 
The Spatial Autoregressive Model is: 

0 0n n n n nY W Y Xλ β ε= +                                  (10) 

where all the notations have same meanings as those in the previous section, except that nε  now is an 1n×  
vector of i.i.d. disturbances with zero mean and a finite variance 2

0σ . We can see that in this model, the spatial 
correlations exist among the components of nY  instead of nε , compared with SEM.  

We consider testing the spatial lag dependence of the model, namely testing the null hypothesis 

0 0: 0.H λ =  

If the data are fully observed, by using the likelihood function [1], derived the LM test statistic explicitly as 
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where e is the OLS residual of model (10) under the null, and 
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We consider the case where some of the observations in the outcome vector are unavailable. By adopting the 
same notations as those in the previous section, the (population) system under consideration can be written as 
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The reduced form Equation of (11) for write ( )o
nY  is 
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n n nn n n nS X JY J Sβ ε− −+=                               (12) 

and therefore, the ML approach based on this reduced form equation can be applied. Under normality, the log 
likelihood function is 
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The expressions for the elements of the score vector are  
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where ( ) ( ) ( )o
n n nnv XY B βθ λ= − . The second order derivatives are, for the relevant combinations of para- 

meters, Equations (A.7)-(A.12) in the Appendix. Thus the elements of the information matrix are, 
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To perform the LM test, expressions (13)-(15) and (16)-(20) need to be evaluated under constrained esti- 
mation, i.e., with the parameter values included in the null hypothesis set to zero (namely, ˆ 0Rλ = ), and with  

the other parameters set to their ordinary-least-squares estimates, i.e., ( )( ) ( ) ( )1T TT ( ) T ,ˆ o o oo
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where ( ) ( )o o
n ne M Y=  is the ordinary-least-squares residual of model (12) with ˆ 0Rλ = . And the estimated infor- 
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Using the formula of the inverse of a partitioned matrix, we have 
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Under the null, we have ( )2 1LM χ→ . 

4. Monte Carlo Experiments 
To investigate the finite sample performance of the LM tests, we conduct Monte Carlo experiments, designed as 
follows. 

4.1. LM Tests in SEM 

The model has two regressors 1ix  and 2ix . The ( 1 2,i ix x )'s are independent for all i. The true slope parameters  
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are 10 1β =  and 20 1β = . The iu ’s are independently drawn from ( )0,1N  and are independent of 1ix  and  

2ix . 1ix  and 2ix  are generated from ( )0,1N . 
For weights matrix nW , we follow the design of [6] and [3], which is referred to as the “circular world ma-

trix.” The weights matrix is designed as follows. For the n n×  weights matrix, the first n/3 rows (except for the 
first row) have zeroes everywhere, except for the elements in positions (i, i + 1) and (i, i ‒ 1). In the first row, the 
non-zero elements are in positions (1, 2) and (1, n) so that it relates to a circular world. The nonzero elements in 
the first n/3 rows are all random draws from ( )0,1U ; i.e., we allow the neighbors to asymmetrically affect one 
another2. Then, these rows are row normalized, so that the sum of each row is equal to 1. The next n/3 rows (say, 

3 1, , 2 3j n n= +  ) have zeroes everywhere, except in positions (j, j ± r), where 1,2, ,5r =  . The nonzero 
elements are designed in the same fashion as those in the first n/3 rows. The last n/3 rows are defined in a simi-
lar manner to the first n/3 rows. Specifically, the nonzero elements in rows 2 3 1, , 1j n n= + −  are in posi-
tions (j, j+1) and (j, j‒1); in the last row, the nonzero elements are in positions (n, 1) and (n, n ‒ 1). The nonzero 
elements in these rows are also designed in the same fashion as those in the first 2n/3 rows. The weights matrix 
is a sparse weights matrix, with each individual having only several “neighbors.” The number of neighbors dif-
fers for each individual, depending on its position. 

For sample sizes, we set n from “small”, n = 60 and “moderate”, n = 180, to “large”, n = 540. For missing 
observations, the iy ’s of the first α  percent of the n individuals are unobserved for each sample size n, where 
α  is set as 10, 25, and 50. 

For each n and α  (percentage of missing) combination, we report the percentages of rejecting the null hy-
pothesis in all the 1000 Monte Carlo replications, for different nominal sizes 1%, 5% and 10%. The first row 
shows the results for the 0 0λ =  case, and the second and third row show those for 0 0.2λ =  and 0.5, respec-
tively. 

Tables 1-3 below show the finite performance of the LM test in the SEM. The empirical levels (first row) of 
the LM test are close to the theoretical ones. But for the powers (second and third row), they depend on the 
sample sizes and the value of 0λ . For small value of 0λ , the powers are poor, especially for small n. For larger 

0λ , the powers are good, except for small n.  
 
Table 1. SEM: 10% missing data.                                                                           

n 60 180 540 
Nominal sizes 1% 5% 10% 1% 5% 10% 1% 5% 10% 

0 0λ =  0.6 3.7 8.1 1.3 4.9 9.5 1.2 4.6 10.1 

0 0.2λ =  9.8 24.1 33.9 37.5 61.7 73.0 91.5 96.5 97.9 

0 0.5λ =  78.7 91.4 95.9 99.9 100 100 100 100 100 

 
Table 2. SEM: 25% missing data.                                                                           

n 60 180 540 
Nominal sizes 1% 5% 10% 1% 5% 10% 1% 5% 10% 

0 0λ =  0.8 5.2 9.4 1.6 4.8 10.1 0.8 5.2 9.9 

0 0.2λ =  6.4 18.9 28.0 28.9 49.7 62.0 81.6 94.3 97.4 

0 0.5λ =  64.1 82.1 87.4 99.9 99.9 99.9 100 100 100 

 
Table 3. SEM: 50% missing data.                                                                           

n 60 180 540 
Nominal sizes 1% 5% 10% 1% 5% 10% 1% 5% 10% 

0 0λ =  1.3 4.5 8.3 1.3 6.4 10.9 0.8 5.0 9.9 

0 0.2λ =  4.3 14.1 21.5 19.2 39.9 54.2 66.6 84.2 90.8 

0 0.5λ =  45.2 68.3 76.8 97.1 99.1 99.6 100 100 100 

 

 

2Wang and Lee [3] generate the symmetric settings in [6] to allow for asymmetry. 
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Table 4. SAM: 10% missing data.                                                                           

n 60 180 540 
Nominal sizes 1% 5% 10% 1% 5% 10% 1% 5% 10% 

0 0λ =  1.1 4.9 10.3 0.8 5.0 10.0 0.5 5.5 11.4 

0 0.2λ =  26.8 47.7 58.7 77.6 91.3 95.3 100 100 100 

0 0.5λ =  98.2 99.5 99.7 100 100 100 100 100 100 

 
Table 5. SAM: 25% missing data.                                                                           

n 60 180 540 
Nominal sizes 1% 5% 10% 1% 5% 10% 1% 5% 10% 

0 0λ =  1.8 5.7 10.5 1.6 5.5 10.1 0.6 4.5 10.3 

0 0.2λ =  16.7 33.9 47.5 63.9 81.2 87.3 99.3 99.9 99.9 

0 0.5λ =  93.9 97.9 98.9 100 100 100 100 100 100 

 
Table 6. SAM: 50% missing data.                                                                          

n 60 180 540 
Nominal sizes 1% 5% 10% 1% 5% 10% 1% 5% 10% 

0 0λ =  1.1 5.8 10.7 0.9 4.5 9.0 1.1 4.7 10.6 

0 0.2λ =  12.1 25.9 38.8 47.7 69.5 79.1 95.1 98.9 99.5 

0 0.5λ =  78.9 91.1 95.6 100 100 100 100 100 100 

4.2. LM Tests in SAM 
In the SAM, we generate iε ’s independently from ( )0,1N  and independent of ix ’s. All other designs are the 
same as those in the previous subsection. Tables 4-6 show the results of the LM test. The empirical levels are all 
close to the theoretical ones. But for the powers, they are not good for small value of 0λ  when sample sizes are 
small. For large value of 0λ  and larger sample sizes, the powers are good.  

5. Conclusion 
In this paper, we extend the LM tests for spatial correlations to the case where there are missing data in the de-
pendent variable. We considered the spatial error model as well as the spatial autoregressive model and derived 
the formulas of the LM test statistics in both models. Monte Carlo experiments show good finite sample perfor-
mance of the tests. The empirical levels of the LM tests are close to the theoretical ones and the powers are good 
for large sample sizes. 
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Appendix 
The second order derivatives are, for the relevant combinations of parameters of the log likelihood function for 
the SEM, 
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The second order derivatives are, for the relevant combinations of parameters of the log likelihood function 
for the SAM,  
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