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Abstract 
We prove that a random labeled (unlabeled) tree is balanced. We also prove that random labeled 
and unlabeled trees are strongly k -balanced for any 3k ≥ . Definition: Color the vertices of graph 
G  with two colors. Color an edge with the color of its endpoints if they are colored with the same 
color. Edges with different colored endpoints are left uncolored. G  is said to be balanced if 
neither the number of vertices nor and the number of edges of the two different colors differs by 
more than one. 
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1. Introduction 
The notion of a balanced graph is defined [1] as follows: 

Definition 1.1 Let ( ),G V E=  be a finite simple graph, 2k ≥  be an integer, { }: 1, ,c V k→   be a map.  
For all { }1, ,i k∈  , we write ( ) { }( ) ( ) ( ){ }1 ,  ,i i iV c c i E c uv E u v V c−= = ∈ ∈ . We also write  

( ) ( ) ( ) ( ),  i i i iv c V c e c E c= = . The map c  is called a coloring.  

The case of 2k =  is especially interesting. In this case, the sets ( ) ( ) ( ) ( )1 2 1 2,  ,  ,  V c V c E c E c  are called the 
sets of black vertices, white vertices, black edges, and white edges respectively. If the coloring c  is fixed we 
may drop it in the notation. 

Definition 1.2 A finite simple graph ( ),G V E=  is called balanced if there exists a coloring { }: 1, 2c V →   
such that ( ) ( )1 2 1v c v c− ≤  and ( ) ( )1 2 1e c e c− ≤ . A map { }: 1, 2c V →  satisfying this condition is called a 
balanced coloring.  

The graph in Figure 1 is balanced since we have shown a balanced coloring of it. 
It is not difficult to see that: 
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Figure 1. With the given coloring, the graph 
has 4 black and 3 white vertices; it also has 2 
white edges (labeled with a “W”) and 1 black 
edge (labeled with a “B”).                   

 
1) The complete graph nK  is balanced if and only if 3n ≤  or n  is even. 
2) The star nS  is balanced if and only if 5n ≤ ; see Figure 2 for a balanced coloring of 5S . 
3) The double star ,p qS  is balanced if and only if 3p q− ≤ . (The double star ,p qS  is a connected graph 

where some two adjacent vertices have degree p  and q , and all other vertices have degree 1). 
In [2], the author introduces a somewhat similar notion of a cordial graph, a generalization of both graceful 

and harmonious graphs. It has been conjectured by A. Rosa, G. Ringel and A. Kotzig that every tree is graceful 
(Graceful Tree Conjecture, [3]), and it has been conjectured by R. Graham and N. Sloane that every tree is 
harmonious (see [4]). While these conjectures are still open, in [5] it is proved that every tree is cordial. 

Not every tree is balanced; in this paper, we will be interested in the property of being balanced for a random 
labeled and unlabeled tree, as well as for random labeled graphs. 

The main results of the paper are Theorem A and Theorem B, stated below. 
Theorem A A random labeled (unlabeled) tree is balanced; more precisely, if ( )n nt τ  denotes the number of 

all labeled (unlabeled) trees on n  vertices, and ( )n nb b′ ′′  denotes the number of all balanced labeled (unla-  

beled) trees on n  vertices, then lim 1n
n

n

b
t
′

→∞ =  and lim 1n
n

n

b
τ

′′
→∞ = . 

Remark 1.3 In this paper, for simplicity, we consider only uniform models of random graphs and random 
trees. The results can be extended to a large class of non-uniform models as well. Note that 2n

nt n −=  (see [6] 
or [7]) and 5 2n

n C nτ α −
  for some positive constants C  and α  (see [8]).  

We also would like to introduce the notion of k -balanced graphs. 
Definition 1.4 Let 2k ≥ . A finite simple graph ( ),G V E=  is called k -balanced if there exists a coloring 

{ }: 1, 2, ,c V k→   such that ( ) ( ) 1i jv c v c− ≤  and ( ) ( ) 1i je c e c− ≤  for all distinct { },  1, 2, ,i j k∈  . The 
map c  will be called a k -balanced coloring.  

Definition 1.5 Let 2k ≥ . A finite simple graph ( ),G V E=  is called strongly k -balanced if there exists a 

coloring { }: 1, 2, ,c V k→   such that ( ) 0,  1ie c i k= ≤ ≤ , and ( ) ( ) 1i jv c v c− ≤  for all distinct 

{ },  1, 2, ,i j k∈  . The map c  will be called a strongly k -balanced coloring.  
In more popular terms, a finite simple graph is strongly k -balanced if and only if it is k -equitably 

colorable. In Section 5 we study some basic properties of k -balanced graphs. We prove the following theorem. 
Theorem B. For all 3≥k , a random (labeled) tree is strongly k -balanced. 
Remark 1.6 Let us emphasize that Theorem B is originally due to B. Bollobás and R. Guy (see [9]). Our 

proof in this paper is very different with some ingredients which might be interesting independently.  
Remark 1.7 It has been proved by I. Ben-Eliezer and M. Krivelevich (see [10]) that a random graph is 

balanced. For 3≥k , it seems quite plausible that a random graph is indeed k -balanced. However, notice that 
the clique number of a random graph on n  vertices is at least ( )2log n  (see [11]) thus a random graph is not 
strongly k -balanced.  

W

B

W
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Figure 2. A balanced coloring of 5S .  
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Notes: 
1) For any finite simple graph G , we will denote the maximum degree of G  by ( )G∆ . 
2) A vertex of degree one will be called a leaf vertex or simply a leaf. A non-leaf vertex v  is called a pre- 

leaf vertex if it is adjacent exactly to 1−m  leaves where ( )degm v= . A pre-leaf vertex of degree two is called 
special. 

3) For 2n ≥ , there exists a unique tree up to isomorphism with n  vertices and maximum degree at most 
two; we will call this tree a path on n  vertices, and denote it with nP . 

4) For a finite simple graph ( ),G V E=  and for a subset A V⊆ , the induced subgraph [ ]G A  will be 
called the full subgraph of G  on A . 

5) For a tree ( ),G V E=  and a non-leaf vertex v V∈ , a subset A V⊆  will be called a branch of G  with 
respect to v  if A  is a maximal subset such that the full subgraph [ ]G A  is connected and ( ), 1d v A =  
where ( ).,.d  denotes the distance in the tree G . 

2. Characterization of Balanced Graphs 
In this section we observe some basic facts on balanced and k -balanced graphs. Let us first prove a very simple 
lemma which provides a necessary and sufficient condition for a graph to be balanced. 

Lemma 2.1 Let G  be a finite simple graph with n  vertices, and degrees 1, , nd d . G  is balanced if and 
only if there exists a partition { }1, , n I J=   such that 

1) 1I J− ≤  

2) 2k k
k I k J

d d
∈ ∈

− ≤∑ ∑   

Proof. Let ( ) { } ( )1, ,  , , ,  deg ,  1n i iG V E V v v v d i n= = = ≤ ≤ . 

Assume G  is balanced with a balanced coloring { }: 1, 2c V → . 

Let ( ){ } ( ){ }1 ,  0 ,  1 ,  1i iI i i n c v J i j n c v= ≤ ≤ = = ≤ ≤ = . 

Since c  is a balanced coloring, we get 1I J− ≤  so condition 1) is satisfied. 

For every Ii∈ , we denote  

{ } { }: ,  :i i k i i kp k I v v E q k J v v E= ∈ ∈ = ∈ ∈  

and for every j J∈ , we denote  

{ } { }: ,  :j j k j j km k I v v E n k J v v E= ∈ ∈ = ∈ ∈  

B
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Then ( )1 2\i j
i I j J

q m E E E
∈ ∈

= = ∪∑ ∑ . On the other hand, since G  is balanced, we have  

1 22 ,  2i j
i I j j

p E n E
∈ ∈

= =∑ ∑ . 

Then ( ) ( ) 1 22 2k k k k k k
k I k J k I k J

d d p q m n E E
∈ ∈ ∈ ∈

− = + − + = − ≤∑ ∑ ∑ ∑ . Thus condition 2) is also satisfied. 

To prove the converse, assume conditions 1) and 2) are satisfied. We define the coloring { }: 1, 2c V →  as 
follows: for every i I∈  we set ( ) 1ic v =  and for every j J∈  we set ( ) 2jc v = . 

Then we have ( )1 2 1 2
1 1,  ,  and \
2 2i j i j

i I j J i I j J
E p E n q m E E E

∈ ∈ ∈ ∈

= = = = ∪∑ ∑ ∑ ∑ . 

On the other hand,  

( ) ( ) and k i i k j j
k I k I k J k J

d p q d m n
∈ ∈ ∈ ∈

= + = +∑ ∑ ∑ ∑  

Then by condition 2), we get 1 2
1 1
2 k k

k I k J
E E d d

∈ ∈

− = − ≤∑ ∑ .   

Corollary 2.2 It is proved in [1] that an r -regular finite simple graph with n  vertices is balanced if and 
only if n  is even or 2r = . This fact also follows immediately from Lemma 2.1. In [13], the authors deduce the 
same fact from their characterization of balanced graphs.  

Lemma 2.1 shows that the balancedness of a graph completely depends on the degree sequence of it. This is 
no longer the case for k -balanced graphs for 3k ≥ . In fact, the trees 1G  and 2G  in Figure 3 have the same 
degree sequence ( )1,1,1,1,1,1,1,1,1,1,1,2,2,2,11 , and it is not difficult to see that 1G  is 3-balanced while 2G  
is not. 

The fact that, for 3k ≥ , the k -balancedness is not determined by the degree sequence causes difficulties in 
proving that random graphs are k -balanced. It also seems plausible that, generically, k -balancedness is a 
weaker condition than balancedness, although it does not seem easy to describe (with a good sufficient condition) 
when exactly is this true. It is useful to point out the following simple fact. 

Proposition 2.3 For all distinct ,  2m n ≥  there exists a finite simple graph which is m -balanced but not n
-balanced.  

Proof. Let p  be a prime number such that { }max ,p m n> . 
Let us first assume that m n> . If n  divides m , then the graph 1mK +  is m -balanced but not n -balanced. 

If n  does not divide m  then the graph mpK  is m -balanced but not n -balanced. 
Now assume that m n< . Then the graph mpK  is m -balanced but not n -balanced.   

3. Combinatorial Lemmas 

Let ( ){ }1, , : ,  1 ,  1 ,n n i iM d d d d d n i n= = ∈ ≤ ≤ ≤ ≤  . The elements of nM  consist of sequences of 

positive integers of length n  such that no term is bigger than n . We denote ( )
1

max max ii n
d d

≤ ≤
= . 

Now we introduce the notion of balanced sequences: 
Definition 3 A sequence (an element) nd M∈  is called balanced if and only if there exists a partition 

{ }1, , n I J=   such that 

1) 1I J− ≤  

2) 2k k
k I k J

d d
∈ ∈

− ≤∑ ∑  

The partition { }1, , n I J=   will be called a balanced partition. 
In these new terms, Lemma 2.1 states that a graph is balanced if and only if its degree sequence is balanced. 

When the sequence is not balanced, we would like to measure how far it is from being balanced. 
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Figure 3. The trees 1G  and 2G  have the same degree 
sequence; 1G  is 3-balanced while 2G  is not.         

 
Definition 3.1 Let ( )1, , nd d d=   be any finite sequence of non-negative integers. The quantity  

( )
{ }1, , , 1

min k kn I J I J k I k J
F d d d

= − ≤ ∈ ∈

= −∑ ∑
 

 

will be called the balance of d .  
Remark 3.2 By Lemma 2.1, a sequence nd M∈  is balanced if and only if ( )0 2F d≤ ≤ . The quantity 
( )F d , somewhat roughly, measures how far the sequence is from being balanced. For an example, let 8n =   

and ( )1,3,12,2,1,1,4,3d =  be a sequence of length 8. It is easy to see  

( ) ( ) ( )12 1 1 1 2 3 3 4 3F d = + + + − + + + = .  

The following easy lemma will be useful: 
Lemma 3.3 Let ( )1, , nd d d=   be any finite sequence of non-negative integers. Then ( ) ( )maxF d d≤ .  

Proof. We will present a constructive proof. 
Without loss of generality, we may assume that 1 2 nd d d≤ ≤ ≤ . First, let us assume that n  is even, so let 

2n m= . We will build two subsets ,  I J  of { }1, , n  inductively such that { }1, , n I J=  , I J=  and  
( )maxk kk I k Jd d d

∈ ∈
− ≤∑ ∑ . 

We divide the sequence into pairs ( ) ( )1 2 2 1 2, , , ,m md d d d− , and we will abide by the rule that exactly one 
element of each pair belongs to I  and the other element belongs to J . We start by letting  

{ } { }1 2 1 2 1,  m mI d J d −= = . Assume now we have built the subsets ,  ,  1 1k kI J k m≤ ≤ −  such that  

{ }2 2 1 2 2 2 2 2 1, , , ,m m m k m k k kd d d d I J− − + − + =   and { }2 2 2 2 2 1, 1m i m i kd d I− − − − ∩ =  for all 1 i k≤ ≤ . 

Let ( ) ( ),  
m mk i k ii I I JS I d S J d

∈ ∈
= =∑ ∑ . If ( ) ( )k kS I S J>  then we let  

{ } { }1 2 2 1 1 2 2,  k k m k k k m kI I d J J d+ − − + −= =   but if ( ) ( )k kS I S J≤  then we let  

{ } { }1 2 2 1 2 2 1,  k k m k k k m kI I d J J d+ − + − −= =  , and we proceed by induction. Then we let ,  m mI I J J= = . Clearly, 

we have ( ) ( )maxk kk I k JF d d d d
∈ ∈

≤ − ≤∑ ∑ . 

If n  is odd, then we may replace d  by ( )10, , , nd d d′ =   and apply the previous argument.   

G_1

G_2



A. Akhmedov, W. Shreve 
 

 
102 

We will need the following notations 
Definition 3.4 Let ( )1, , n nd d d M= ∈ . We will denote  

( ) { } ( ) { }1 1 ,   1 2i iu d i n d v d i n d= ≤ ≤ = = ≤ ≤ =  

Lemma 3.5 Let ( )1, , n nd d d M= ∈  such that ( ) ( )maxu d d≥  and ( ) ( )maxv d d≥ . Then d  is 
balanced.  

Proof. Let ( )max d m= . Without loss of generality we may assume that  

1 1 21,  2m m md d d d+= = = = = =  . If 2n m=  then d  is clearly balanced so let 2n m>  and let  
( )2 1= , ,m nd d d+′

 . 

By Lemma 3.3, ( )F d m′ ≤  hence there exists a partition { }2 1, ,m nd d I J+ ′ ′=   such that 1I J′ ′− ≤  

and k kk I k Jd d m′ ′∈ ∈
− ≤∑ ∑ . Then there exists a partition { }1 2, , md d I J′′ ′′=   such that I J′′ ′′=  and 

( ) ( ) 2k k k kk I k J k I k Jd d d d′′ ′′ ′ ′∈ ∈ ∈ ∈
− − − ≤∑ ∑ ∑ ∑ . By letting = ,  =I I I J J J′ ′′ ′ ′′   we obtain that  

{ }1, , n I J=  , 1I J− ≤ , and 2k kk I k Jd d
∈ ∈

− ≤∑ ∑ .   

4. Proof of Theorem A 
First, we will discuss the case of labeled trees. The following theorem of J. W. Moon will play a crucial role. 

Theorem 4.1 (see [14]) If 0>  is a fixed positive constant, then in a random labeled tree G  with n  
vertices, the maximum degree ( )G∆  satisfies the following inequality  

( ) ( ) ( )log log1 1
loglog loglog

n nG
n n

− < ∆ < +   

Remark 4.2 By choosing 0.1=  we obtain that  

log log0.9 1.1
loglog loglog

n n
n n
< ∆ <  

in a random tree with n  vertices.  
We will use only the upper bound in the inequality of Remark 4.2. Besides the upper bound on the maximum 

degree in random trees, we also need a lower bound on the number of vertices with degree 1, and with degree 2. 
Notice that, since the sum of degrees of a tree with n  vertices is exactly 2 2n − , at least half of the vertices 
have degree either 1 or 2. However, we need a linear lower bound for the number of vertices of degree 1 and for 
the number of vertices of degree 2 separately. 

Let ( ) ,  1 2iX T i≤ ≤  be the random variable which denotes the number of vertices of degree i  in a labeled 

tree T  with n  vertices. Also let 2 2
1 2

2 1,  1 ,  1
e e e e e
n n nµ σ σ   = = − = −   

   
. It has been proved by A. Rényi 

(see [15]) that the asymptotic distribution of random variable 1

1

X µ
σ
−  is normal with mean µ  and variance 

2
1σ . A similar result has been proved for the random variable 2

2

X µ
σ
− , by A. Meir and J. W. Moon (see [16]), 

namely, that the asymptotic distribution of the random variable 2

2

X µ
σ
−  is normal with mean µ  and variance 

2
2σ . Combining these two results we can state the following theorem (due to A. Rényi and A. Meir-J.W. Moon) 

Theorem 4.3 Let ,  α β  be fixed real numbers, α β< ; and for { }1,2i∈ , let ( ),iP α β  denotes the 

probability that 
1

iX µ
α β

σ
−

< < . Then  
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( )
21

21, e dlim
2π

t

i
n

P t
β

α
α β

−

→∞
= ∫  

We need the following immediate corollary of this theorem 

Corollary 4.4 In a random labeled tree with n  vertices, for all { }1,2i∈ , log2
loglogi

nX
n

≥ . 

Now, in the case of random labeled trees, Theorem A immediately follows from Theorem 4.1, Corollary 4.4, 
and Lemma 3.5. 

The case of unlabeled trees: We will use the results analogous to Theorem 4.1 and Theorem 4.3. The 
analogue of Theorem 4.1 is proved by W. Goh and E. Schmutz: 

Theorem 4.5 (see [12]) There exists positive constants 1 2,  c c  such that in a random unlabeled tree T  with 
n  vertices, the maximum degree ( )T∆  satisfies the inequality ( ) ( ) ( )1 2log logc n T c n< ∆ < .  

Now, for any k ∈  let the random variable kY  denotes the number of vertices of degree k  in a random 
unlabeled tree with n  vertices. The following theorem is due to M. Drmota and B. Gittenberger; in the case of  

{ }1,2k ∈ , as a special case, it provides an analogue of Theorem 4.3. 
Theorem 4.6 (see [17]) For arbitrary fixed natural k , there exist positive constants kµ  and kσ  such that 

the limiting distribution of kY  is normal with mean ( ) kn nµ µ  and variance ( ) 2
kn nσ σ .  

Corollary 4.7 For all 0c >  and 1,2i∈ , in a random unlabeled tree with n  vertices ( )logiY c n> .  
Now, in the case of unlabeled trees, the claim of Theorem A follows from Theorem 4.5, Lemma 3.5, and 

Corollary 4.7. 

5. k -Balanced Trees: Proof of Theorem B 
In this section we will assume that 3k ≥ . The fact that the k -balancedness is not determined by the degree 
sequence causes significant difficulties in proving that random graphs are balanced. We nevertheless prove that 
random trees are strongly k -balanced by more careful study of k -balancedness. 

First, we need to prove the following technical lemma. 

Lemma 5.1 Let ( ),G V E=  be a tree and ,  u v  be distinct vertices of G  with degree at least 
3
G

. If qp,  

are distinct pre-leaf vertices of G  then there exists a strongly 3-balanced coloring { }: 1, 2,3c V →  of G  

such that ( ) ( )c u c v≠  and ( ) ( )c p c q≠ .  
Proof. The proof is by induction on n G= . For 5n ≤  the claim is obvious (since, in this case, G  will be 

isomorphic either to a path or to the double star 3,2S ), so we will assume that 6n ≥  and the claim holds for all 
trees of order less than n . 

Assume that at least one of the following two conditions holds: 
(c1) there exists { } { }, \ ,z p q u v∈  such that ( )deg 3z ≥ ; 
(c2) there exists a leaf vertex not adjacent to any of the vertices qpvu ,,, . 
Then there exists a leaf w  such that if G′  is a full subgraph on { }\V w , then, in the tree G′ , we have 

( ) ( ){ }min deg ,deg
3

G
u v

′
≥ , and ,  p q  are still pre-leaf vertices. 

By inductive hypothesis, there exists a strongly 3-balanced coloring { } { }0 : \ 1, 2,3c V w →  of G′  such that 

( ) ( )0 0c u c v≠  and ( ) ( )0 0c p c q≠ . Let 0w  be the unique vertex of G  adjacent to w . Without loss of 

generality, we may assume that ( )0 0 1c w =  and ( ) ( )1 1
0 02 3c c− −≤ . 

If ( ) ( )1 1
0 01 2c c− −≥  then we let ( ) 2c w =  thus extending 0c  to a strongly 3-balanced coloring 

{ }: 1, 2,3c V →  of G′  such that ( ) ( )c u c v≠  and ( ) ( )c p c q≠ . 
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If, however, ( ) ( )1 1
0 01 2c c− −<  then there exists { },r u v∈  such that ( )0 1c r ≠ ; also, since ( )deg

3
G

r ≥ ,  

there exists a branch B  of G′  with respect to r  which is disjoint from ( )1
0 1c− . Let x  be a leaf vertex in 

B . Then { }, , ,x u v p q∉  and ( )0 1c x ≠ . We define { }: 1, 2,3c V →  as follows: 

( )
( ) { }

( )

0

0

if \ ,
1 if 

if 

c V w x
c x

c x w

ω ω
ω ω

ω

∈
= =
 =

 

Notice that because of the inequality ( ) ( ) ( )1 1 1
0 0 01 2 3c c c− − −< ≤ , we have ( ) ( )1 1

0 02 3c c− −=  and 

( ) ( )1 1
0 01 2 1c c− −= − . Then the map { }: 1, 2,3c V →  is a strongly 3-balanced coloring. 

Now, suppose that neither of the conditions (c1) and (c2) hold. Let P  be the path in G  starting at u  and 
ending at v  (it may possibly consist of just the vertices u  and v ). Then the tree G  satisfies the following 
conditions: there exists two vertices 1 2,  z z  in P  and paths 1 2,  R R  starting at 1 2,  z z  respectively such that 
any vertex of G  either belongs to one of the paths 1 2,  ,  P R R  or it is a leaf vertex adjacent to one of the 
vertices vu, . Then it is straightforward to build a strongly 3-balanced coloring { }: 1, 2,3c V →  satisfying the 
conditions ( ) ( )c u c v≠  and ( ) ( )c p c q≠ .   

The following proposition is interesting in itself; it will also play a key role in proving Theorem B. 

Proposition 5.2 If ( ),G V E=  is a tree with ( )
3
nG∆ ≤  then G  is strongly 3 -balanced. Moreover, for  

any two distinct pre-leaf vertices p  and q  of G  there exists a strongly 3-balanced coloring 
{ }: 1, 2,3c V →  such that ( ) ( )c p c q≠ .  

Proof. The proof will be by induction on n G= . For 8n ≤  we have ( ) 2G∆ ≤  hence G  is isomorphic 
to a path. Thus, the claim is obvious. Let us now assume that 9n ≥ , and the claim holds for all trees G′  of  

order less than n  with ( )
3

G
G

′
′∆ ≤ . 

Let ( ),G V E=  and { }3 ,  0,1, 2n k r r= + ∈ . We will consider the following three cases separately: 
Case 1. 1r = . 
Let v  be a leaf of G , { }= \V V v′ , and let ( ),G V E′ ′ ′=  be the full subgraph of G  on V ′ . Then we 

have  

( ) ( )
3

G
G G k

′
′∆ ≤ ∆ ≤ ≤  

By inductive hypothesis, there exists a strongly 3-balanced coloring { }: 1, 2,3c V′ ′ →  of G′ . 
On the other hand, v  is adjacent to exactly one vertex in G ; let u  be this vertex. Let j  be any element 

of { } ( ){ }1,2,3 \ c u′ . We extend the coloring c′  of G′  to a strongly 3-balanced coloring { }: 1, 2,3c V →  by 

defining ( )c v j= . 
Case 2. 2r = . 
Let 21,vv  be distinct leaves and 1 2,  u u  be the only vertices of G  adjacent to 1 2,  v v  respectively ( 1u  and 

2u  are not necessarily distinct). Let also G′  be the full subgraph of G  on the set { }1 2\ ,V v v . Then we still 

have the inequality ( ) ( )
3

G
G G k

′
′∆ ≤ ∆ ≤ ≤ . Hence, by inductive assumption, there exists a strongly 

3-balanced coloring { }: 1, 2,3c V′ ′ →  of G′ . 

Then there exist distinct { }1 2,  1, 2,3j j ∈  such that ( )1 1j c u′≠  and ( )2 2j c u′≠ . Thus we can extend c′  

to a strongly 3-balanced coloring of G  by defining ( )1 1c v j=  and ( )2 2c v j= . 
Case 3. 0r = . 
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The major difference in this case compared with the previous two cases is that when we obtain G′  by 

deleting some arbitrary three leaves 1 2 3,  ,  v v v  from G , we may lose the inequality ( )
3

G
G

′
′∆ ≤ . (Notice that 

G  possesses three leaf vertices unless it is isomorphic to a path). Suppose 1 2 3,  ,  u u u  are the vertices adjacent 
to 1 2 3,  ,  v v v  respectively. Note that 1 2 3,  ,  u u u  are not necessarily distinct. If we have the inequality 

( )
3

G
G

′
′∆ ≤  then by inductive assumption we would have a strongly 3-balanced coloring 

{ } { }1 2 3: \ , , 1, 2,3c V v v v′ → . However, if ( ) ( ) ( )1 2 3c u c u c u′ ′ ′= =  then it becomes problematic to extend c′  

to a strongly 3-balanced coloring { }: 1, 2,3c V → . Thus we need to employ different and more careful tactics. 
We will prove the following lemma which suffices for the proof of Proposition 5.2 in the case 0r = . 
Lemma 5.3 Let ( ),G V E=  be a tree with 3n k=  vertices where ( )G k∆ ≤ . If ,  p q  are distinct pre-leaf 

vertices of G  then there exists a strongly 3-balanced coloring { }: 1, 2,3c V →  such that ( ) ( )c p c q≠ .  
Proof. The proof of the lemma will be again by induction on k . The “ ( ) ( )c p c q≠  part” of the claim will 

be needed to make the step of the induction. For 2k ≤ , the graph G  is isomorphic to a path thus the claim is 
obvious. For 3k =  it can be seen by a direct checking. (We leave this to a reader as a simple exercise.) Thus 
let us assume that 4k ≥ . 

Let ( ){ }W v V d v k= ∈ = . Let also ( ) ( )deg degp q≤ . We will consider the following cases (the notations 
in each case will be independent of the notations of other cases): 

Case A: The vertices p  and q  are the only pre-leaf vertices of G . 
The claim is obvious when ( )deg 3q ≤ , so we may assume that ( )deg 4q ≥ . We will consider two sub- 

cases: 
Sub-case 1: ( )deg 3p ≥ . 
Then there exist leaves 1 2 3,  ,  w w w  such that 1w  is adjacent to p  and 2 3,  w w  are adjacent to q . Let 

G′  be the full subgraph of G  on { }1 2 3\ , ,V V w w w′ = . Notice that p  and q  are still pre-leaf vertices of 
G′ . By the inductive hypothesis, G′  has a strongly 3-balanced coloring { }: 1, 2,3c V′ ′ →  such that 
( ) ( )c p c q′ ′≠ . We may assume that ( ) ( )1,  2c p c q′ ′= = . Then we extend c′  to a strongly 3-balanced 

coloring { }: 1, 2,3c V →  by letting ( ) ( ) ( )1 2 32,  1,  3c w c w c w= = = . 
Sub-case 2: ( )deg 2p = . 
In this case there exists a path ( )1, , , , ,rw p v v q  in G  where w  is a leaf, 1, , , rp v v  are vertices of 

degree two, and  

{ }1 1, , , , , , , ,r sV w p v v q u u=    

where 1, , su u  are the leaves adjacent to q . Then we have the inequalities ( )deg 1 1s q k= − ≤ −  and 
2 2r k≥ − . We will construct the required strongly 3-balanced coloring explicitly as follows. 

First, for all 1 i s≤ ≤  we let ( ) 1ic u =  when i  is odd, and ( ) 3ic u =  when i  is even. We also let 
( ) 2c q =  and ( )2 1 2,  1 1r ic v i k− + = ≤ ≤ − . 
Now we need to define the coloring on the remaining set  

{ } { } { }( )1 2 1, , , \ 1 1r r iD w p v v v i k− += ∪ ≤ ≤ −
 

Let { }1, , n s kD x x − −=   where ( ) ( ), ,i jd x w d x w<  for all 1 i j n s k≤ < ≤ − − . (Thus we are reorder the 
elements of the set D  from closest to the farthest from the leaf w .) Then, for all 1 i n s k≤ ≤ − − , we let 
( ) 3ic x =  when i  is odd, and ( ) 1ic x =  when i  is even. 
For the rest of the proof we will assume that G  has more than two pre-leaf vertices. 
Case B: W = ∅  and p  is not special. 
Let 1 2 3,  ,  v v v  be distinct leaves such that 1v  is adjacent to p , 2v  is adjacent to q , and 3v  is adjacent to a 

vertex w  distinct from p  and q . We let G′  be the full subgraph on { }1 2 3\ , ,V v v v . Then ( )3 1G k′ = −  

and we have ( ) 1G k′∆ ≤ − . By inductive hypothesis, there exists a strongly 3-balanced coloring { }0 : 1, 2,3c V →  
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such that ( ) ( )0 0c p c q≠ . Without loss of generality we may assume that ( ) ( )0 01,  2c p c q= = . Then we 

extend 0c  to a strongly 3-balanced coloring { }: 1, 2,3c V →  as follows: if ( ) { }0 1, 2c w ∈  then we let 

( ) ( ) ( )1 2 32,  1,  3c v c v c v= = = ; and if ( )0 3c w =  then we let ( ) ( ) ( )1 2 33,  1,  2c v c v c v= = = . 
Case C: W = ∅  and p  is special. 
Let 1v  be the only leaf adjacent to p , u  be the unique non-leaf vertex adjacent to p , 2v  be a leaf vertex 

not adjacent to u , and w  be the unique vertex adjacent to 2v . We let G′  be the full subgraph on 

{ }1 2\ , ,V v v p . Then ( )3 1G k′ = −  and ( ) 1G k′∆ ≤ − . By inductive hypothesis, there exists a strongly 

3-balanced coloring { }0 : 1, 2,3c V → . Then we extend 0c  to a strongly 3-balanced coloring { }: 1, 2,3c V →  

as follows: we let ( ) { }1,2,3c p ∈  such that ( )c p  is distinct from ( )0c u  and ( )0c p . Then we define 

( ) { }2 1, 2,3c v ∈  such that ( )2c v  is distinct from ( )0c w  and ( )c p . Finally we let ( ) { }1 1, 2,3c v ∈  such that 

( )1c v  is distinct from ( )c p  and ( )2c v . Notice also that we obtain ( ) ( )c p c q≠ . 

Case D: { } ( )01,  ,  deg 3W W v p= = ≥  and there exists a leaf vertex adjacent to 0v . 

This case is similar to Case B. Since 1W =  and ( ) ( )deg degp q≤ , we have 0p v≠ . If 0q v≠ , we let 

1 2 3,  ,  v v v  be leaves adjacent to 0,  ,  p q v  respectively; and if 0q v= , we let 1 2,  v v  be leaves adjacent to 
,  p q  respectively, and 3v  be a leaf not adjacent to either of the vertices ,  p q . We define G′  be the full 

subgraph on { }1 2 3\ , ,V v v v . Then ( )
3

G
G

′
′∆ ≤  hence G′  admits a strongly 3-balanced coloring 

{ } { }1 2: \ , , 1, 2,3c V v v v′ →  such that ( ) ( )c p c q′ ′≠ . We extend c′  to a strongly 3-balanced coloring to 

{ }: 1, 2,3c V →  as in Case B. 

Case E: { }01,  W W v= = , p  is special and there exists a leaf vertex adjacent to 0v . 
This case is similar to Case C. Let 1v  be the only leaf adjacent to p , u  be the unique non-leaf vertex 

adjacent to p , 2v  be a leaf vertex adjacent to 0v . We let G′  be the full subgraph on { }1 2\ , ,V v v p . Then 

( )3 1G k′ = −  and ( ) 1G k′∆ ≤ − . By inductive hypothesis, there exists a strongly 3-balanced coloring 

{ } { }0 1: \ , , 1, 2,3c V v v p → . Then we extend 0c  to a strongly 3-balanced coloring { }: 1, 2,3c V →  as follows: 

we let ( ) { }1,2,3c p ∈  such that ( )c p  is distinct from ( )0c u  and ( )0c q . Then we define ( ) { }2 1, 2,3c v ∈  

such that ( )2c v  is distinct from ( )0 0c v  and ( )c p . Finally we let ( ) { }1 1, 2,3c v ∈  such that ( )1c v  is 

distinct from ( )c p  and ( )2c v . 

Case F: { }01,  W W v= = , and there is no leaf vertex adjacent to 0v . 
Since 3V k= , there exists a special vertex v  adjacent to 0v . Let 1v  be the unique leaf adjacent to v . Let 

also 2v  be a leaf not adjacent to any of the vertices ,  ,  p q v  (such a leaf exists because 4k ≥ ), and let w  be 
the unique vertex adjacent to 2v . 

We define G′  to be the full subgraph on { }1 2\ , ,V v v v . By inductive assumption, there exists a strongly 

3-balanced coloring { } { }0 1 2: \ , , 1, 2,3c V v v v → , moreover, if { }1 2,  \ , ,p q V v v v∈  then ( ) ( )0 0c p c q≠ . 

If { } { }1 2, \ , ,p q V v v v⊂ , then we let ( )2c v  be any element of { }1,2,3  distinct from ( )0c w . Then we let 

( )c v  be any element of { }1,2,3  distinct from ( )0 0c v  and ( )2c v . Finally, we let ( )1c v  be any element of 

{ }1,2,3  distinct from ( )c v  and ( )2c v . Thus we have extended 0c  to a strongly 3-balanced coloring 

{ }: 1, 2,3c V →  such that ( ) ( )c p c q≠ . 



A. Akhmedov, W. Shreve 
 

 
107 

If { } { }1 2, , ,p q v v v∩ ≠ ∅  then { } { } { }1 2, , ,p q v v v v∩ =  and we may assume that p v= . Then we let ( )c v   
be any element of { }1,2,3  distinct from ( )0 0c v  and ( )0c q ; then we let ( )2c v  be any element of { }1,2,3  
distinct from ( )0c w  and ( )c v ; finally we let ( )1c v  be any element of { }1,2,3  distinct from ( )c v  and 
( )2c v . 
Case G: 2W ≥ . 
In this case the claim follows immediately from Lemma 5.1.   
Now we can prove an analogous result for k -balanced graphs. 

Proposition 5.4 Let ( ),G V E=  be a tree with n  vertices where ( ) nG
k

∆ ≤  and 3k ≥ . Then G  is 

strongly k -balanced.  
Proof. The proof is by induction on k . For 3k = , the claim is true by Proposition 5.2. 

Assume now 4k ≥ . The tree G  has 
nm
k
 =   

 vertices 1, , mv v  such that ( ) 2,  1id v i m≤ ≤ ≤ . 

Moreover, for all distinct { },  1, ,i j m∈  , the vertices iv  and jv  are not connected by an edge. Let also 

{ }0 1, , mV v v=  , and 1G  be a full subgraph on the subset 0\V V . Then 1G  is a forest with n m−  vertices 

but with ( ) ( )1G G∆ ≤ ∆ . This implies that 1G  is a subgraph of a tree 2G  with n m−  vertices where 

( ) ( )2G G∆ ≤ ∆ . 

Then ( ) ( ) ( ) 2
2

1 1
1 1 1

Gn nG G n n m
k k k k k

 ∆ ≤ ∆ ≤ = − ≤ − ≤ − − − 
. By inductive hypothesis, we obtain that 2G   

is strongly ( )1k − -balanced, hence 1G  is strongly ( )1k − -balanced. Since no two elements of 0V  are 
adjacent, we obtain that G  is strongly k -balanced.   

Now, for random labeled trees, Theorem B follows immediately from Theorem 4.1 and Proposition 5.4; and 
for random unlabeled trees, it follows immediately from Theorem 4.5 and Proposition 5.4. 
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