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Abstract 
In this paper, we investigate the empirical likelihood diagnosis of modal linear regression models. 
The empirical likelihood ratio function based on modal regression estimation method for the re-
gression coefficient is introduced. First, the estimation equation based on empirical likelihood 
method is established. Then, some diagnostic statistics are proposed. At last, we also examine the 
performance of proposed method for finite sample sizes through simulation study. 
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1. Introduction 
The mode of a distribution is regarded as an important feature of data. Several authors have made efforts to 
identify the modes of population distributions for low-dimensional data. See, for example, Muller and Sawitzki 
[1]; Scott [2]; Friedman and Fisher [3]; Chaudhuri and Marron [4]; Fisher and Marron [5]; Davies and Kovac [6] 
Hall, Minnotte and Zhang [7]; Ray and Lindsay [8]; Yao and Lindsay [9]. In high-dimensional data, it is com-
mon to impose some model structure assumptions such as assumption on conditional distributions. Thus, it is of 
great interest to study the mode hunting for conditional distributions. 

Given a random sample ( ){ }, , 1, ,i ix y i n=  , where ix  is a p-dimension column vector, ( )|f y x  is the 
conditional density function. For the conventional regression models, the mean of ( )|f y x  is usually used to 
investigate the relationship between Y  and x  and the linear regression assumes that the mean of ( )|f y x  is 
a linear function of x . Yao and Li [10] proposed a new regression model called modal linear regression that 
assumes the mode of ( )|f y x  is a linear function of the predictor x . Modal linear regression measures the 
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center using the “most likely” conditional values rather than the conditional average used by the traditional li-
near regression. 

Lee [11] used the uniform kernel and Epanechnikov kernel to estimate the modal regression. However, their 
estimators are of little practical use because the object function is non-differentiable and its distribution is in-
tractable. Scott [2] mentioned the modal regression, but little methodology is given on how to implement it in 
practice. Recently, Yao et al. [12] investigated the estimation problem in nonparametric regression using the 
method of modal regression, and obtained a robust and efficient estimator for the nonparametric regression func- 
tion. Yao and Li [10] suggested using the Gaussian kernel and developed MEM algorithm to compute modal es- 
timators for linear models. Their estimation procedure is very convenient to be implemented for practitioners 
and the result is encouraging for many non-normal error distributions. Yu and Aristodemou [13] studied modal 
regression from Bayesian perspective. In addition, Zhao, Zhang and Liu [14] considered how to yield a robust 
empirical likelihood estimation for regression models. 

The empirical likelihood method originates from Thomas & Grunkemeier [15]. Owen [16] first proposed the 
definition of empirical likelihood and expounded the system info of empirical likelihood. Zhu and Ibrahim [17] 
utilized this method for statistical diagnostic, and they developed diagnostic measures for assessing the influence 
of individual observations when using empirical likelihood with general estimating equations, and used these 
measures to construct goodness-of-fit statistics for testing possible misspecification in the estimating equations. 
Liugen Xue and Lixing Zhu [18] summarized the application of this method. 

Over the last several decades, the diagnosis and influence analysis of linear regression model has been fully 
developed (R. D. Cook and S. Weisberg [19], Bo-cheng Wei, Go-bin Lu & Jian-qing Shi [20]). So far the statis-
tical diagnostics of modal linear regression models based on empirical likelihood method has not yet been seen 
in the literature. This paper attempts to study it. 

The rest of the paper is organized as follows. In Section 2, we review the modal regression. In Section 3, em-
pirical likelihood and estimation equation are presented. The main results are given in Section 4. Simulation 
study is given to illustrate our results in Section 5. 

2. Modal Linear Regression 
Suppose a response variable y  given a set of predictor x  is distributed with a probability density function 
(PDF) ( )|f y x . Yao and Li [10] proposed to use the mode of ( )|f y x , denoted by  

( ) ( )( )Mode | arg max |yY x f y x= , to investigate the relationship between Y  and x . The proposed modal li-
near regression method assumes that 

( ) TMode |Y x x β= .                                     (1) 

The idea of modal linear regression can be easily generalized to other models such as nonlinear regression, 
nonparametric regression, and varying coefficient partially linear regression. To include the intercept term in (1), 
we assume that the first element of x  is 1. Let Ty xε β= −  and denote by ( )|g xε  the conditional density 
of ε  given x . Here, we allow the conditional density of ε  given x  to depend on x . Based on the model 
assumption (1), one knows that ( )|g xε  is maximized at 0 for any x. If ( )|g xε  is symmetric about 0, the 
β  in (1) will be the same as the conventional linear regression parameters. However, if ( )|g xε  is skewed, 
they will be different and it is even possible that the modal regression is a linear function of x  but the conven-
tional mean regression function is nonlinear. 

Yao and Li [10] proposed to estimate the modal regression parameter β  in (1) by maximizing 

( ) ( )T

1

1 n

h h i i
i

Q y x
n

β ϕ β
=

≡ −∑                                (2) 

where ( ) ( )1
h t h t hϕ ϕ−=  and ( )tϕ  is a kernel density function. Denote by β̂  the maximizer of (2). We call 

β̂  the modal linear regression (MODLR) estimator. 

3. Empirical Likelihood and Estimation Equation 
In this section, we review empirical likelihood based on modal regression for regression coefficients, then estab-
lish the estimation equations. 

Similarly to Zhao, Zhang and Liu [14], we define an auxiliary random vector 



S. L. Wang et al. 
 

 
950 

( ) ( )T , 1, ,i i h i ix y x i nξ β ϕ β′= − =  .                           (3) 

Note that ( ){ }0 0iE ξ β = , where 0β  is the true parameter value. According to the empirical likelihood 
principle, we define the empirical likelihood ratio function of β  to be 

( ) ( ) ( )
1 11

sup 0, 1, 0
n n n

i i i i i
i ii

l np p p pβ ξ β
= ==

 
= ≥ = = 

 
∑ ∑∏ .                   (4) 

By the method of Lagrange multipliers, similar to that used in Owen (2001), ( )l β  is well-defined and can 
be re-expressed as 

( ) ( ){ } 1

1
1

n
T

i
i

l β λ ξ β
−

=

= +∏ ,                              (5) 

where λ  is determined by the constraint equation 

( )
( )T

1

1 0.
1

n
i

i in
ξ β
λ ξ β=

=
+∑  

Motivated by Zhu and Ibrahim [17], we regard λ  and β  as independent variables and define 

( ) ( )( )1

1
, log 1

n
T

n i
i

Q nλ β λ ξ β−

=

= − +∑ , 

Obviously, the maximum empirical likelihood estimates β̂  and λ̂  are the solutions of following equations: 

( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ){ }

11
1,

1

11
2,

1

,
, 1 0

,
, 1 0.

n
n T

n i i
i

n
n i T

n i
i

Q
Q n

Q
Q n

λ β
λ β ξ β λ ξ β

λ
λ β ξ β

λ β λ λ ξ β
β β

−−

=

−−

=

 ∂
= = − + = ∂


∂ ∂ = = − + = ∂ ∂

∑

∑
 

4. Local Influence Analysis of Model 
We consider the local influence method for a case-weight perturbation nRω∈ , for which the empirical log-  

likelihood function ( )|El ξ ω  is defined by ( ) ( ),
1

|
n

E i E i
i

l lξ ω ω ξ
=

=∑ . In this case, 0ω ω= , defined to be an n ×  

1 vector with all elements equal to 1, represents no perturbation to the empirical likelihood, because  

( ) ( )0|E El lξ ω ξ= . Thus, the empirical likelihood displacement is defined as ( ) ( ) ( ){ }ˆ ˆ2DE E El l lω ξ ξ ω = −  ,  

where ( )ξ̂ ω  is the maximum empirical likelihood estimator of ξ  based on ( )|El ξ ω . Let ( ) 0a ahω ω= +  
with ( ) 00ω ω=  and ( ) 0d d aa a hω = = , where h  is a direction in nR . Thus, the normal curvature of the in- 

fluence graph ( )( )TT , ELDω ω  is given by ( ) ( )0
0 TC

E
h LD

h H h
ω

ω = , where  

( )
( ){ }

( ){ }0
0

0

2
12

ˆ,

ˆ
2 2

E

E T
ETLD

LD
H lξω ω ξ

ω

ξ ω
ξ

ω ω
−∂

= − = ∆ −∂ ∆
∂ ∂

, in which ( )2 ,ELDξω ξ ω∆ = ∂  is a p n×  matrix with  

( ),k i -th element given by ( ),k E ilξ ξ∂ . 
We consider two local influence measures based on the normal curvature ( )0Ch ω  as follows. Let  

1 1 0p p nλ λ λ λ+≥ ≥ ≥ = = =   be the ordered eigenvalues of the matrix ( )0
ELD

H
ω

 and let  

( ){ }T
1, , : 1,m m mnv v v m n= =   be the associated orthonormal basis, that is, ( )0

E
m m mLD

H v v
ω

λ= . Thus, the 

spectral decomposition of ( )0
ELD

H
ω

 is given by 

( )0
T

1
.

E

n

m m mLD
m

H v v
ω

λ
=

= ∑  

The most popular local influence measures include 1v , which corresponds the largest eigen value 1λ , as well  
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as 2

1
j

p

e m mj
m

C vλ
=

= ∑ , where je  is an 1n×  vector with j -th component 1 and 0 otherwise. The 1v  represents  

the most influential perturbation to the empirical likelihood function, whereas the j -th observation with a large 
jeC  can be regarded as influential. 
As the discuss of Zhu et al. [17], for varying-coefficient density-ratio model, we can deduce that 

( ){ } ( ){ } ( ){ }1 1
22.12 1 1 2 1 1 2 1 1 ,

j

T
e j p j p j j pC ELD o ECD o n S o− −= + = + = − ∆ ∆ +                  (4) 

where ( ) ( )
( )

( )
1

21 11
, ˆ T

1 ,ˆ1
j

j E j p
j

S S
l oβ β β

ξ β
β

λ ξ β

−

=
∆ = ∂ = +

+
 

( ) ( )
( )( )11 1, 2

1
ˆ ˆ,
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1

Tn
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n
Ti
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S Q
nλ

β β λ λ

ξ β ξ β
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= =

= ∂ =
+

∑  

( ) ( )( ) ( )( ) ( )( )
( )( )

T

12 1, 2
1
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Ti
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β β
β
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β β
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( )( ) ( )( )
( )( )22 2, 2

1
ˆ ˆ,

1 ,
1

T Tn
i i

n
Ti

i

S Q
n

β β
β

β β λ λ

ξ β λλ ξ β

λ ξ β=
= =

∂ ∂
= ∂ =

+
∑  1

22.1 21 11 12S S S S−= − . 

5. Numerical Study 
We generate data-sets from following model 

0 1 1 2 2 3 3 , 1, ,i i i i iy x x x i nβ β β β ε= + + + + =   

where the covariates ( )T
1 2 3, ,i i i ix x x x=  follows a three-dimensional normal distribution ( )0,N Σ  with unit 

marginal variance and correlation 0.5. The true value of the regression coefficient is 
( ) ( )0 3, , 1.5, 2, 1.2,0T Tβ β β= = − . The error iε  is independent of ix . For ease of computation, we use the 

standard normal density function for ( )tϕ . Simulation results are computed based on 1000 random samples 
with the sample size being 150. 
 

 
Figure 1. The influence value of 

ieC .                           
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In order to check out the validity of our proposed methodology, we change the value of the first, 125th, 374th, 
789th and 999th data. For every case, it is easy to obtain ( )iξ β . For β  and λ , using the samples, we eva-
luated their maximum empirical likelihood estimators. 

Consequently, it is easy to calculate the value of 11 12 21 22, , ,S S S S  and 
ieC . The result of 

ieC  is as Figure 1. 
From the figure, we can see that in most cases, the value of 

ieC  are reasonably close to one fixed value. Fol-
lowing the definition and properties of 

ieC , we can diagnose the strong influence points, the value of which de-
viate from the average seriously. It can be seen from the result of 

ieC  that the first, 125th, 374th, 789th and 
999th data are strong influence points. Indeed, our results are illustrated. 

6. Discussion 
In this paper, we considered the statistical diagnosis for modal linear regression models based on empirical like-
lihood. Through simulation study, we illustrate that our proposed method can work fairly well. 
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