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Abstract

Maxwell equations were originally designed to describe classic electromagnetic phenomena in any
type of medium. In particular, to describe electromagnetic phenomena under the quasistatic elec-
tric approximation in media that are electrically inhomogeneous and isotropic, such as for exam-
ple when there are strong spatial variations of conductivity, the formalism must be adapted ac-
cording to the problem considered. We review here two approaches to this problem, first a “mi-
croscopic” model, where the spatial variations of conductivity and permittivity are explicitly taken
into account. In a second “macroscopic” model, these spatial variations are taken on average by
using a mean-field formulation of Maxwell equations. Both of these models can describe the elec-
tromagnetic behavior of inhomogeneous media. We illustrate this formalism to describe the elec-
tric behavior of biological media, such as brain tissue, which is typically very inhomogeneous. We
show that the theory predicts that for the typical frequency range of biological phenomena (lower
than about 1000 Hz), the inhomogeneous nature of the medium has a determinant influence.
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1. Introduction

Maxwell equations of electromagnetism were initially designed to describe classic electromagnetic phenomena
in arbitrary media (such as vacuum, air, water, etc). In Maxwell formalism, the electromagnetic properties of
matter are described using three standard parameters, electric conductivity (o), electric permittivity (&) and
magnetic permeability () when the medium is isotropic. It is important to note that Maxwell theory is a
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mean-field theory of electromagnetism. The notions of electric conductivity and permittivity (different from that
of vacuum) of a given medium do not have a physical sense at a sub-atomic level, and thus these notions only
apply to a mean-field level. This is analogous to the notion of pressure and temperature in classic thermody-
namics.

Many materials or living tissue are not electrically homogeneous and consist of an aggregate of different ma-
terials with different electrical properties. For example, biological media are made of cells where the cellular
membrane is of very low conductivity, while different cells are separated by extracellular fluid which is highly
conductive because it contains different ionic species at millimolar concentrations. Similar considerations apply
to composite materials, such as amorphous solids [1]. In such cases, Maxwell equations can still be used, but the
fact that the conductivity and permittivity highly depend on space, complicates its application. In the present
paper, we will review this situation and show the type of expressions that can be used in electrically inhomoge-
neous media.

An alternative and complementary approach is to derive a mean-field version of Maxwell equations, by per-
forming spatial averages over some reference volume. If the volume is chosen such as to average out the spatial
inhomogeneities of conductivity and permittivity, then one can obtain a useful description to model inhomoge-
neous media. In this paper, we will review such a mean-field formulation of Maxwell equations, and delineate
the differences with the Maxwell theory in a homogeneous medium. Note that most of the models used in bio-
logical systems neglect the electrical inhomogeneity of the tissue.

2. Microscopic Model of Electrically Inhomogeneous Isotropic Media

We describe here media that are electrically inhomogeneous and isotropic, which can be caused for example by
a mixture of compounds having different electric conductivity and permittivity'. This can occur for example in
solid inhomogeneous materials such as amorphous solids [1] or in biological media such as brain tissue, in
which different cellular processes are densely packed [2], and the extracellular space consists of a mixture of
membranes of very low conductivity and extracellular highly conductive fluids. Microscopically, this means that
the conductivity and permittivity are functions of spatial coordinates x, which will be noted by o (x) and
£(x), respectively.

To model such microscopically inhomogeneous isotropic media, one starts from Maxwell equations, and in
particular Maxwell-Gauss law:

V-D=p'
and Ampere-Maxwell law:
VXE =j f +@.
y7, ot
If we assume that magnetic permeability is constant in such inhomogeneous media, we obtain:
V.-D=p'
f 1)
Vit + P _o,
ot

where D, j" and p" are respectively the electric displacement, the free-charge density and free-charge

charge density in the medium.
If we further assume that the medium is linear, the equations linking the electric field E with electric dis-
placement D and the free-charge current density ', are given by:

D(X,t):.[:g(x,t—z')E(x,z')dz' 2
and

jf(X,t)II:OG(X,t—T)E(X,T)dT. 3)

"We consider here media that are not ferromagnetic, so the spatial variations of magnetic permeability x can be neglected, and x can be con-

sidered equal to that of vacuum.
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In this model, the electric parameters o (x,t)=o(x)5(t) and &(x,t)=e(x)5(t) take their “microscop-
ic” values and are assumed to be independent of time, but depend on spatial coordinates. In Fourier-transformed
coordinates, the above equations are respectively

D, (x)=2(X)E, (x)
and

io (X)=0(X)E, ()
where @ =2xf where f isthe frequency.

It is important to note that, in this microscopic model, o and ¢ are real numbers, but this is not necessari-
ly the general case. A real electric conductivity (in Fourier-transformed coordinates) is equivalent to assume that
the calorific dissipation and polarization are fast enough so that there is no phase delay between the electric field
and the current density produced, the electric displacement and the electric field. This is the case for the low
frequency range. For electric phenomena in biological media such as cerebral cortex, this hypothesis applies to
frequencies smaller than about 1000 Hz [3]-[6].

Another approximation to Maxwell equations is the quasi-static electric approximation, which consists of
de-coupling electric and magnetic variables (this also equivalent to postulating a low number of charge carriers,
and that they move at slow speed (v < c)). Under this approximation, we can consider VxE ~0 for low
frequencies (smaller than about 1000 Hz) and E =-VV . In such conditions, the complex Fourier transform of
Equation (1) can be written as:

\% ~(8(X)VVW) =—p,
\% ~(0'(X)VVM) =iwp, .
Consequently, we have
V~((0'+ia)g)VVw):O 4)

This last equation can be used to calculate the electric potential in any point of space in an non-homogeneous
medium. It was derived previously in the context of calculating the electric potential from brain tissue [3]. It is
general enough to calculate the propagation of the extracellular potential in media which can have a complex or
inhomogeneous structure, as well as frequency dependent electric parameters.

It is important to note that Equation (4) reduces to Laplace equation (VZVw =0) when the medium is ho-
mogeneous with respectto o and ¢. Thus, Equation (4) can be seen as a generalization of Laplace equation
for media where o and ¢ are variable in space.

A particular case is when the ratio ¢/o is independent of position. In that case, the electric potential does
not satisfy Laplace equation (Vsz = 0), but obeys

V-o(x)VV, =0

When ¢/o is constant everywhere. This ratio is often called the Maxwell-Wagner time of the dielectric,
written as 7,,,, . Note that steep spatial variations of o imply that Vo can be very large, which in turn im-
plies solutions very different from the solutions of Laplace equation.

This “microscopic” model was used to calculate the extracellular electric potential (also called local field po-
tential or LFP), generated by neurons in brain tissue [3]. It was used to simulate the effect of different spatial
profiles of conductivity and permittivity around neurons. It was found that according to the profile of & and
£, one can have a high-pass or low-pass filter, but in general when o is high at short distances and decays
with larger distances, a low-pass filter is observed. For example, with an exponentially decaying conductivity, a
low-pass filter attenuates more strongly the fast frequencies compared to low frequencies. A simulation of the
LFP generated showed that the extracellular waveform of an action potential changes as the distance to the
source is increased [3]. Such frequency filtering was observed experimentally, and thus, this model shows that
part of the observed frequency filtering could be due to the spatial inhomogeneity of the brain tissue.

3. Macroscopic Model of Electrically Inhomogeneous Media

In principle, it is sufficient to solve Equation (4) in the extracellular medium to simulate the electric potential in
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any inhomogeneous medium. However, if the medium has a complex spatial structure, it may be tedious to as-
sign the space dependence of the electric parameters o and &. One way to solve this problem is to consider a
macroscopic or mean-field approach at a larger scale, in which the electric parameters will be considered as
constant in space, but are the result of a microscopic mixture of materials of different resistivity and permittivity.

The construction of a mean-field model of Maxwell equations is greatly facilitated by the fact that these equa-
tions are invariant under change of scale if electric parameters are renormalized appropriately (see details in refs.
[7] and [8]). This approach is also justified by the fact that the values measured experimentally are averaged
values, which precision depends on the measurement technique. Ideally, one should have a formalism that can
integrate those macroscopic measurements. Thus, we will build a macroscopic model, where we take spatial av-
erages of Equation (4), and make a continuous approximation for the spatial variations of these average values
(see details in ref. [6]).

We start by defining macroscopic electric parameters, ¢" and ", by taking an average of the “micro-
scopic” electric parameters over some volume V :

el (x)=(e,(x)], = f(x.0)
and
o (x)={o, ()|, =9(x.0)

We usually assume that V is much smaller than the total volume of the medium, but larger than the typical
size of the spatial inhomogeneities. For example, V is of the order of 10° to 10° um?® for brain tissue, in
which the spatial variations occur ata pm scale, while the total size of the tissue is of the order of centimeters.

Taking advantage of the fact that the average values of electric parameters are statistically independent of the
mean value of the electric field, we obtain:

o(E),
ot

(p)\v(x,t): "M () (E)|, (xt-7)dz+[ " ()

where <j 9>‘v (x,t) is the generalized current density (also called total current density), the first term in the

(x,t—7)dr,

right hand represents the “dissipative” contribution, and the second term represents the “reactive” contribution
(reaction from the medium, such as polarization). Here, all physical effects, such as diffusion, resistive and ca-
pacitive phenomena, are integrated into the frequency dependence of o and &" . The second term translates
the fact that there is an inertia time for polarization (also called Maxwell-Wagner time), because the charges do
not move instantaneously. This implies that the electric field will take a characteristic time to settle; this time is
given by the Maxwell-Wagner time of the region in which the average is taken (see details in ref. [9] and for ap-
plications to biological membranes, see ref. [4]).

Note that the generalized current density was used in the expression above because this density can be differ-
ent than zero even in the absence of charges (because ¢, = 0) [10].

Taking the complex Fourier transform of <j 9 >‘V (x, t) , We obtain;

()], =" (E,), . (5)

where o is the complex macroscopic conductivity. Thus, in this model, we consider that the imaginary part
of this complex macroscopic conductivity originates solely from capacitive effects. This is equivalent to assume
that the calorific dissipation caused by collisions between charges and various obstacles is much faster than the
variations of the electric field. Here again, this is valid only for the low frequency range (smaller than about
1000 Hz for cerebral cortex tissue).

It is important to note that in the literature [11], the complex permittivity is defined by the following relation:

;! =iz, (6)

= (0':)" + ia)g:)" )(Ew>

o

where the subscript z distinguishes from the real-valued permittivity & . We can then write

v(is)| =v-(ar' (E, ), )= V-(iwe)' (E, )], ) =0. )
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Because o) = (qﬁ" +iwe ) and (E,)=-V(V,), the expressions above (Equation (7)) can also be written
in the form:

V-((O'a")" +ia)5:)")V<Vw>v):O. (8)

Note that this last equation shows that the generalized current is conserved, which is consistent with
Vx(H)|, = <j f >‘V +io(D, )|, = <jg >‘V because of the mathematical identity V-(Vx(H ), ) =0.

v

Comparing this equation with Equation (4), we can see that the same mathematical form is obtained here for
the macroscopic model, but with frequency-dependent electric parameters (see details in ref. [8]). This form in-
variance will allow us to introduce different phenomena, such as surface polarization or ionic diffusion, by in-
cluding an ad hoc frequency dependence in o and & . The physical causes of this macroscopic frequency
dependence is that the medium is microscopically non-neutral (although it is macroscopically neutral). Such a
local non-neutrality was already postulated in a previous model of surface polarization [4]. This situation cannot
be accounted by Equation (4) if o and &V are frequency independent (in which case p, =0 when
VZV(U =0). Thus, including the frequency dependence of these parameters enables the model to capture a much
broader range of physical phenomena.

Finally, in the macroscopic model derived above, a fundamental point is that the frequency dependencies of
the electrical parameters o and &) cannot take arbitrary values, but are related to each-other by the Kra-
mers-Kronig relations [7] [11]-[13]. These relations come from the fact that the imaginary part of the complex
macroscopic conductivity is related to the permittivity (Equation (5)):

» oV (0
A" (o) =" (w)-¢, =% . a)’z——(a)z)dw, 9)

and

20 (-84 (o)

M M
o (a))—a (0) 0 0)’2—0)2

do' (10)

T
where principal value integrals are used. These equations are valid for any linear medium (i.e., when Equations
(2) and (3) are linear). These relations will turn out to be critical to relate the model to experiments, as shown
previously [7].

This “macroscopic” model was used to investigate the genesis of extracellular potentials by neurons, taking
into account the complex structure of the extracellular medium [5]. The macroscopic measurements of extracel-
lular conductivity and permittivity in brain tissue [14] can be integrated directly in this formalism. By doing this,
it was shown that ionic diffusion (and its associated “Warburg impedance™) can account for most of the fre-
quency dependence of o and & found experimentally, and including this dependence into the equation for
generating extracellular potentials (Equation (5)) leads to extracellular potentials with the typical 1/f power
spectral structure of these potentials (see ref. [5] for details). Other models have been proposed for 1/ f scaling
at high frequencies [15], but the present model is the only one that accounts for the frequency scaling of extra-
cellular potentials over the whole frequency range. This model shows that ionic diffusion provides a physical
mechanism that is capable of explaining a large range of experimental observations, and that a macroscopic
model is the right formalism to investigate such properties.

4. Discussion

In this paper, we have overviewed two formalisms to model the electrical behavior of electrically inhomogene-
ous media. The first formalism, which we called “microscopic” considers the specific case of media that are
non-homogeneous, in which the electric parameters o and ¢ are strongly dependent on position. In this case,
one must return to Maxwell equations to derive the correct equation to calculate the electric potential. The rea-
son is that in such media, there will be charge accumulation, and the local free-charge conservation law
(V- ji"= O) does not apply, one must take into account the displacement current

V- (Vx H):V(jf +%—Itgjzv(jf +%)j (see ref. [3]). This formalism was derived previously and was
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shown to simulate the low-pass filtering properties of extracellular space in brain tissue [3]. However, this “mi-
croscopic” formalism cannot integrate “macroscopic” measurements of o and ¢ [14], nor the fact that the
frequency filter deduced from experimental measurements is of 1/ f type [5].

A second formalism, which we called “macroscopic”, describes the tissue at a larger coarse-graining, and in
which the electric parameters will be considered as constant in space, but are the result of a mixture of different
media such as fluids and membranes [6]. This formalism is similar in spirit to the “Effective medium theory”
developed for inhomogeneous materials [16]. It can directly integrate the macroscopic measurements of o and
& (such as from ref. [14] for biological tissues), and thus can be used to simulate a wide variety of physical
mechanisms. For example, it can be used to simulate the polarization phenomena that the electric field induces
on neuronal membranes; it can also be used to integrate the effect of ionic diffusion.

Such a mean-field approach is possible because of the scale invariance of the mathematical structure of Max-
well equations. This property allows one to renormalize the electromagnetic parameters such that, even if the
microscopic parameters do not depend on frequency, the macroscopic parameters can be frequency-dependent in
some media (see details in ref. [8]). This is a consequence of the fact that the Maxwell-Wagner time is non-neg-
ligible in such media. Note that some models postulate that there is no such frequency dependence, which is
equivalent to neglect the Maxwell-Wagner time and consider that the charges move infinitely fast. This latter
model would correspond to the simplest possible model in electromagnetism theory. We suggest here an alterna-
tive formulation which takes into account the influence of the electrical structure of the medium.
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