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Abstract 
Due to the increasingly large size and changing nature of social networks, algorithms for dynamic 
networks have become an important part of modern day community detection. In this paper, we 
use a well-known static community detection algorithm and modify it to discover communities in 
dynamic networks. We have developed a dynamic community detection algorithm based on Spea- 
ker-Listener Label Propagation Algorithm (SLPA) called SLPA Dynamic (SLPAD). This algorithm, 
tested on two real dynamic networks, cuts down on the time that it would take SLPA to run, as well 
as produces similar, and in some cases better, communities. We compared SLPAD to SLPA, Label-
RankT, and another algorithm we developed, Dynamic Structural Clustering Algorithm for Net-
works Overlapping (DSCAN-O), to further test its validity and ability to detect overlapping com-
munities when compared to other community detection algorithms. SLPAD proves to be faster 
than all of these algorithms, as well as produces communities with just as high modularity for each 
network. 
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1. Introduction 
In the current world we live, interactions between individuals have become far easier than before due to online 
media. Massive social networks, such as Facebook, Twitter, and LinkedIn, have allowed individuals to connect 
with one another on a vast level. These interactions can be modelled with networks by turning the individuals on 
the network into nodes, and showing their communication between other individuals as edges between nodes, as 
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modelled by Figure 1. Networks can be described as either static or dynamic: a stationary structure or a con-
tinually changing structure over time. Nodes from these networks tend to group closely with each other, forming 
communities. Communities can be described as distinct groups of nodes that are very well connected between 
other closely related nodes and only loosely connected between other groups of well-connected nodes inside the 
network. 

Communities can take on several different characteristics, ranging from small, such as a close-knit group of 
friends on Facebook, to large, such as millions of individuals following an international star on Twitter, as well 
as being able to include several different types of people within the community. Another important aspect of 
these communities is their ability to overlap. A single node can belong to several different communities, such as 
a node on Facebook being friends with nodes from a workplace as well as nodes from a sports team, creating 
more dynamic interaction between communities than what would be allowed otherwise. 

Research has produced a variety of methods to analyze these massive networking sites, creating opportunities 
to study and discover the dynamics, habits, and general rules of social network communities. What are com-
monly used to study these networks are community detection algorithms, which use various techniques to group 
and produce collections of nodes that form communities. Algorithms that detect communities in dynamic net-
works use several snapshots, or timestamps, of the network, taking into account the changes of the network that 
happen naturally between consecutive timestamps, and from there also produce communities. 

In Section 2, we will introduce other community detection algorithms. Some of which we build upon to de-
velop our algorithm, and others we used as baselines on which to test our algorithm. Following this, Section 3 
will describe the basic concepts in detecting community structures in dynamic networks. Section 4 is where we 
describe our contributed algorithm SLPAD. Then to compare the overlapping community detection of our algo-
rithm, Section 5 describes the modifications we made to two other community detection algorithms to allow 
them to discover overlapping communities. Section 6 introduces the datasets we used to perform community 
detection and the measures we used to quantify the performance of their discovered communities. Then finally, 
Section 7 explains the results of our algorithm compared to the baseline algorithms run on the datasets we in-
troduce. Section 8 will conclude this paper. 

2. Relate Works 
In the pursuit of community detection, there are several algorithms present today that offer a variety of tech-
niques to process networks and find communities. One such algorithm is Label Propagation Algorithm (LPA), 
which discovers communities by allowing a random node to become a receiver, taking on the most popular label 
of all its neighbors. If there is a tie between two or more labels, which happens often in the first few iterations, a 
label is selected at random from them. The process ends when each node’s label does not change, or if the algo-  
 

 
Figure 1. A network of eight nodes with two communities. 
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rithm arrives at a user-set number of iterations, and the community membership is determined based on the la-
bels the nodes have received [1]. 

LPA can only find disjoint communities, or communities with no overlap. Another algorithm, Speaker-Lis- 
tener Label Propagation Algorithm (SLPA), uses the same propagation method as LPA, but allows for nodes to 
hold more than one label, unlike LPA’s one label allowance. This gives nodes the opportunity to be part of more 
than one community, thus allowing for the detection of overlap [2]. 

Another algorithm, LabelRank, uses the idea of label propagation for its community detection, but instead of 
propagating labels at random, LabelRank uses the probability that a node will receive a label from a neighbor, 
which removes the randomness that is seen in LPA and SLPA. Due to this avoidance of randomness, LabelRank 
produces more stable community structures than LPA and SLPA. LabelRank also uses a stop criterion, which 
ensures a safe termination that also produces good results. The stop criterion, however, does not always guaran-
tee the best runtime, but LabelRank is still very efficient despite this [3]. 

LabelRank updates all of its nodes at the same time, which can be inefficient. An algorithm based on Label-
Rank, LabelRankT, solves this problem by using local operations, working incrementally and only updating 
nodes that have changed in consecutive timestamps. This allows for greater efficiency, as well as being able to 
track a community through a change in time, due to its deterministic results [3]. 

Another development for community detection in static networks is Structural Clustering Algorithm for Net-
works (SCAN), derived from DBSCAN (Density Based Spatial Clustering of Applications with Noise). Unlike 
DBSCAN, which uses distance between nodes to determine community placement, SCAN uses a user-defined 
threshold ε to determine a node’s neighbors, using this information to incorporate the node into a community. 
Nodes that share similar neighbors in their ε-neighborhood (the user-defined threshold) can be grouped and 
formed into a community. SCAN also allows for the detection of hubs and outliers, hubs being nodes that don’t 
belong to a community, but connect two or more communities, and outliers being nodes outside of communities 
that have neighbors from only one community [4]. 

To detect communities in dynamic networks efficiently, DSCAN (Dynamic SCAN) was created as an im-
proved version of SCAN that, instead of updating the entire network with each iteration, finds the difference in 
edges between consecutive timestamps, and updates only the nodes involved in the changed edges. DSCAN also 
no longer requires a user-input for the ε threshold, instead finding an average for ε between the values of 0.4 and 
0.8. DSCAN, when dealing with larger communities, tends to perform quicker than SCAN, while at the same 
time maintaining the same quality of SCAN in modularity, a common benchmark for determining the strength of 
a community [4]. 

Another approach to community detection is based on Genetic Algorithms (GA). GA imitates evolution to 
find the optimal solution to a problem. GA starts by generating a random population of solutions, measuring 
each solution’s strength based on a fitness function, then mutating the population to form a new generation of 
solutions. The process repeats until either the maximum amount of iterations is reached, or an acceptable level 
for the fitness function has been reached, indicating an optimized solution to the problem at hand. Applying GA 
to community detection would mean using this same process to develop a community structure that would sat-
isfy a fitness function for community strength [5]. 

One algorithm that uses GA for community detection is GA-Net, which uses a system of assigning all the 
values to genes (which serve as nodes) to form communities. GA-Net starts by randomly generating genotypes 
for the network, as well as performing a check to make sure each individual can be regarded as safe, meaning 
there is an edge between the gene and the allele value assigned to it as well as protecting against improper 
grouping. GA-Net then performs uniform crossover, which creates a random binary vector, then uses that vector 
to select genes from each parent to pass on to the child. Since both parents are assumed to be safe due to the 
check, the child can also be assumed to be safe. After this, the fitness function, in GA-Net’s case community 
score, is computed for each member, and then a new population is created from the old members, eventually 
converging on a solution to the problem [5]. 

3. Community Detection in Dynamic Networks 
In a static network, let G = {V, E} be a network where V is the set of nodes and E is the set of edges consisting 
of node pairs ( ),u V v V∈ ∈ . In a dynamic network, let Gt = {Vt, Et} be a network at timestamp t with Vt and Et 
being its corresponding node and edge sets respectively.  
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Changes in a dynamic network from tG  to 1tG +  are seen in the changes from tE  to 1tE + . Any new or 
removed nodes in 1tG +  will be connected to an edge, which will be found in tE  or 1tE + ; if a node does not 
contain any incident edges, then the community structure of a network would not be affected by the disjoint 
node. Our approach to community detection in dynamic networks focuses on this idea of updating a community 
structure around the nodes that have seen edge changes between two consecutive timestamps. 

4. SLPAD 
Our study is based upon the algorithm SLPA and incorporates the ability for this algorithm to handle dynamic 
networks. We propose the algorithm SLPAD (Speaker-Listener Label Propagation Algorithm Dynamic) which 
uses SLPA’s label propagation technique to propagate labels only throughout portions of the network, reducing 
runtime. Algorithm 1 illustrates the pseudo-code for SLPAD. 

For each graph Gi, SLPAD obtains the edges, ∆E, that have changed between two consecutive timestamps 
and acquires all nodes incident to them, ∆V. This set of nodes is then expanded to include all nodes belonging to 
communities of these nodes. The SLPA algorithm is then run on these nodes, with T as number of iterations and 
r as the cutoff threshold. Essentially, SLPAD involves running SLPA on communities that change from one 
timestamp to the next. One condition for the selected listener node is that the only speakers it can receive from 
must be within the node set that is being updated. In our algorithm, along with the idea of the listener node re-
ceiving a random label from a speaker, the speaker can also be able to send their highest frequency label to the 
listener. This helps the SLPA algorithm converge quicker and produce more stable results when run multiple 
times. 

Before SLPA is run on the nodes that will be updated, two cleanup techniques must be performed. First, la-
bels of nodes that disappeared from the previous timestamp to the current are removed from all nodes in the 
network. This helps to clean out labels of nodes that no longer exist, because these nodes can no longer propa-
gate their labels through the network. The final step before running SLPA is to reset the labels of the nodes that 
are about to be updated. This is essentially the initialization phase of SLPA, but only on the nodes that will be 
updated. 

One of the ways SLPAD helps to improve modularity and tighten community structure is by using our com-
munity repair function. Community repair works by checking each node’s neighbors and moving that node to 
the community with the highest neighbor count, effectively making sure that nodes belong to the same commu-
nity that the majority of its neighbors belong to. 



N. Aston et al. 
 

 
876 

A potential problem for SLPAD is finding the right overlap for a node. If an edge between a node and its 
community disappears, its degree to the community decreases, which can possibly bring its degree down close 
to that of a different community. Since SLPAD only updates based on edge changes, a problem can arise from 
only one community involved in the edge change being updated, which can complicate finding an overlapping 
node between two communities if only one community of two in a possible overlap is updated. To combat this, 
we use a simple technique to repair overlapping in SLPAD, which works by finding the nodes attached to re-
moved edges in the network, determining how many neighbors of each community the nodes have, and then de-
ciding which communities the node belongs to. 

Due to the large size of many networks, runtime can become a problem for many algorithms. For some algo-
rithms, threading can be used to cut down on this problem. SLPAD allows for threading, where each node can 
independently ask its neighbors for label’s and obtain the maximum occurring label of the received labels. 
Threading can also handle the removal of low frequency labels and the community repair of nodes. 

5. Overlapping Community Algorithms 
For a benchmark on overlapping community detection, we modified two disjoint community detection algo-
rithms and equipped them with the ability to find overlapping community structure. Due to how these two algo-
rithms form communities, performing overlapping discovery was a simple task. 

We modified DSCAN to detect overlapping communities, calling the product DSCAN Overlapping (DSCAN- 
O). To detect nodes that connect overlapping communities, after DSCAN’s community detection, DSCAN-O 
checks every node and acquires each of their maximum similarity of all incident edges. A user specified similar-
ity-decrease value defines the overlapping threshold. Any node with an edge that is incident to another commu-
nity with a similarity greater than the node’s maximum similarity minus the similarity decrease becomes part of 
the other community and signifies overlap between the two communities. 

As well as DSCAN-O, we modified LabelRankT to be able to detect overlapping communities. Essentially, 
when the highest probability label is found, a threshold is introduced, and if any other label is within the highest 
label probability minus the threshold, the node takes on that label as well. We gave LabelRankT and DSCAN-O 
very similar overlapping community detection modifications. 

6. Dynamic Network Datasets 
To test our new algorithm compared to other commonly used algorithms, we employed three real world net-
works ranging from small to large. The first and largest, the arXiv HEP-TH physics network, is a citation graph 
that includes 27,770 papers and 352,807 citations between papers. This data in the graph is comprised of papers 
written between January 1993 and April 2003 [6]. Due to the gradual collection of the papers during the 10 
years, we were able to generate timestamps for the graph to test with SLPAD. 

The next network, the MIT Social Evolution Call-SMS network, is much smaller than the physics network, 
being made up of only 80 nodes and 273 edges. In this dataset, nodes are undergraduate students, and the edges 
between them represent calls or SMS text messages between students. The time period it includes is between 
October 2008 and May 2009 [7]. 

The final network we used is similar to the Call-SMS network described above. The MIT Friends and Fam-
ily-SMS Network tracks mobile phone usage between individuals. However, unlike the Call-SMS network 
above, this network only tracks SMS messaging. These interactions were recorded between March 2010 and 
June 2011 [8]. 

For evaluating the effectiveness of communities, we use modularity [9]. Modularity measures the difference 
between the number of edges found in a community to the expected number of edges in a randomly generated 
community structure. Modularity can be described as: 

,,

1Q
2 2

u v
u v uvu v

k k
A S

M M
 = − 
 

∑  

where M is the number of edges, A is the adjacency matrix, kx is the degree of node x, and Suv returns 1 if u and v 
are in the same community and 0 otherwise. Since our algorithms can detect overlapping communities, we will 
also use EQ [10]. EQ can be described as: 
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where M, A, and kx are the same, and lx is the set of communities of x. EQ is modularity that evaluates all com-
mon communities between nodes. When no overlaps exist in a network timestamp, then EQ is modularity. Both 
modularity and EQ produce values in the range of 0 to 1, where higher values indicate a better community 
structure. 

7. Results 
To test SLPAD, we ran it on the aforementioned networks along with SLPA, LabelRankT, and DSCAN-O. 
SLPAD ran faster than all three other algorithms and community repair improved modularity when SLPAD 
without community repair was not enough. All algorithms tested detect overlapping nodes with a slight degree 
of similarity. 

As noted previously, SLPAD provides the option for a listener to obtain either a random label or the most 
frequent label from a speaker. SLPAD using most frequent label, called SLPAD-Frequent, outperforms SLPAD 
using random label, called SLPAD-Random, on the Call-SMS network. Figure 2 shows that SLPAD-Frequent 
outperforms SLPAD-Random on modularity over almost all timestamps of the Call-SMS network. We also ran 
this same test on the Friends and Family-SMS network, producing very similar results to the Call-SMS network. 
Each version of SLPAD was average over twenty runs, due to the randomness of the SLPAD algorithm. Be-
cause of these results, both SLPA and SLPAD will be assumed to use the frequent label feature for the rest of 
the section. 

SLPAD performs comparably and faster than SLPA, LabelRankT, and DSCAN-O. On the physics network, 
represented by Figure 3 and Figure 4, SLPAD without community repair performs just below SLPA in modu-
larity, but with a lower runtime. When community repair was added to SLAPD, it remained faster than SLPA, as 
well as boosted results far above regular SLPAD and above SLPA. DSCAN-O’s runtime matches SLPAD’s 
runtime in the first half of the timestamp, but as the network increases in size, DSCAN’s runtime increase 
quicker than SLPAD’s runtime. SLPAD was able to run faster than any algorithm we tested. This is due to the 
complexity of SLPAD, which is no longer that of SLPA’s O(Tn), but instead comes down to the nodes of com-
munities that saw edge changes. So SLPAD has a complexity of O(Tx) where x <= n. SLPAD and LabelRankT 
both have a fluctuating runtime curve in Figure 4, due to the efficiency of each algorithm to only update seg-
ments of the network where changes occurred; the amount of changes from one timestamp to another is the 
cause of the fluctuating runtimes. Note that tests on SLPAD were averaged over ten runs to account for the 
fluctuating results due to randomness of the algorithm. DSCAN-O suffers in modularity due to its detection of 
hubs and outliers, making modularity comparison inefficient to compare DSCAN-O to other algorithms. 

Figure 5 and Figure 6 show the modularity and EQ of the community structures found by these same algo-
rithms on the Call-SMS network. SLPAD produced similar modularity to SLPA and better than LabelRankT 
and DSCAN-O, as well as generating similar EQ to SLPA, and DSCAN-O. SLPAD with community repair did 
not improve SLPAD’s community structure as significantly on the Call-SMS network as it did on the Physics 
network, due to SLPAD not needing as much repair for this network. DSCAN-O is still hindered in both modu-
larity and EQ because of detecting hubs and outliers, which decrease these two measures. 

When comparing SLPAD and SLPA, we can also compare how they detect overlapping nodes. Figure 7 and 
Figure 8 show the similarity in overlapping nodes found by SLAPD and SLPA for each timestamp of the Phys-
ics network and the Call-SMS network respectively. We can see that SLPAD and SLPA are somewhat similar in 
overlapping node detection. It is important to note the beginning of both graphs; at first, both graphs are per-
fectly similar, which is caused by neither graph having found any overlapping nodes yet, and is followed by a 
sudden drop to zero, which occurs when one algorithm finds overlapping nodes while the other still has not. Af-
ter these two irregularities, both algorithms start detecting overlapping nodes, and normal results are produced. 
Similarity is defined as: 

A B
S

A B
∩

=  

where A and B are the sets of overlapping nodes being compared by two algorithms on the same timestamp. 
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As noted before, SLPAD can be run as a threaded algorithm. Features of SLPAD that can run synchronously 
are: nodes can receive labels from its neighbors for one iterator at a time, removing low frequency labels from 
each node, and our community repair function. In view of large networks, performing these operations synchro-
nously greatly increases overall runtime. Figure 9 shows the comparison between SLPAD being threaded and 
unthreaded, or SLPAD-Threaded and SLPAD-Unthreaded, runtimes for each timestamp on the physics network. 
As depicted, a low number of changes results in inefficiency from threading due to the memory overhead 
needed for threading, making SLPAD-Unthreaded ideal for small edge changes. For a large number of edge 
changes, SLPAD-Unthreaded’s runtime increases at a greater rate than SLPAD-Threaded. Figure 10 and Figure 
11 show the number of edges changed and the number of nodes that will need to be updated for each timestamp. 
Node changes reflect all nodes of communities that saw edge changes and will be updated. As the number of 
edge and node changes increases, the runtime for SLPAD-Unthreaded increases while SLPAD-Threaded has a 
slower increase in runtime. 

8. Conclusion 
When discovering communities in dynamic networks, SLPAD performs faster than any other algorithm we 
tested and produces comparable, if not better, results in terms of modularity and EQ almost all the time. When 
running on the Call-SMS network, SLPAD produced about equal communities of similar modularity with both 
SLPA and LabelRankT. SLPAD was also able to produce better modularity with a shorter runtime than Labe-  
 

 
Figure 2. Modularity of communities in the Call-SMS network found by SLPAD-Random 
and SLPAD-Frequent.                                                            

 

 
Figure 3. Runtime of each algorithm took to process the physics network. SLPAD 
takes less time than SLPA, LabelRankT, and DSCAN-O.                        
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Figure 4. Modularity of communities in the physics network found by each 
algorithm.                                                           

 

 
Figure 5. Modularity of communities in the Call-SMS network found by each 
algorithm.                                                             

 

 
Figure 6. EQ of overlapping communities in the Call-SMS network found by 
each algorithm.                                                       
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Figure 7. Similarity in overlapping nodes detected by SLPAD and SLPA 
in the physics network, with 1 representing exact similarity and 0 
representing no similarity.                                          

 

 
Figure 8. Similarity in overlapping nodes detected by SLPAD and SLPA in 
the Call-SMS network, with 1 representing exact similarity and 0 representing 
no similarity.                                                       

 

 
Figure 9. Runtime comparison between SLPAD-Threaded and SLPAD- 
Unthreaded.                                                        
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Figure 10. Edge changes occuring in the physics network.                 

 

 
Figure 11. Node changes occuring in the physics network.                

 
lRankT on the physics network. On both the physics and Call-SMS networks, SLPAD was also able to detect a 
mildly similar amount of overlapping nodes when compared to SLPA. SLPAD proves to be a fast and reliable 
dynamic community detection algorithm that is capable of producing communities of similar or better quality 
when compared to existing algorithms. 
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