
Open Journal of Statistics, 2014, 4, 620-629 
Published Online September 2014 in SciRes. http://www.scirp.org/journal/ojs 
http://dx.doi.org/10.4236/ojs.2014.48058   

How to cite this paper: Lagos-Álvarez, B., Ferreira, G. and Porcu, E. (2014) Modified Maximum Likelihood Estimation in Au-
toregressive Processes with Generalized Exponential Innovations. Open Journal of Statistics, 4, 620-629.  
http://dx.doi.org/10.4236/ojs.2014.48058  

 
 

Modified Maximum Likelihood Estimation in 
Autoregressive Processes with Generalized 
Exponential Innovations 
Bernardo Lagos-Álvarez1, Guillermo Ferreira1, Emilio Porcu2 
1Department of Statistics, Universidad de Concepción, Concepción, Chile 
2Department of Mathematics, University Federico Santa María, Valparaíso, Chile 
Email: bla@udec.cl, gferreir@udec.cl, emilio.porcu@usm.cl 
 
Received 19 June 2014; revised 8 July 2014; accepted 26 July 2014 

 
Copyright © 2014 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
We consider a time series following a simple linear regression with first-order autoregressive er-
rors belonging to the class of heavy-tailed distributions. The proposed model provides a useful 
generalization of the symmetrical linear regression models with independent error, since the er-
ror distribution covers both correlated innovations following a Generalized Exponential distribu-
tion. Furthermore, we derive the modified maximum likelihood (MML) estimators as an efficient 
alternative for estimating model parameters. Finally, we investigate the asymptotic properties of 
the proposed estimators. Our findings are also illustrated through a simulation study. 
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1. Introduction 
The common model for a stationary time series is the stationary and invertible autoregressive model of order 

( )( )p AR p  where the usual assumption is that the innovations { }t  are identically and independently distri-
buted (IID) according to a Gaussian distribution with zero mean and variance 2 0σ > . 

Recent and past literatures agree in that the assumption of Gaussianity is a way too restrictive in order to deal 
with applications (see [1] and [2] with the references therein). On the other hand, [3] assumed { }t  has a Lap-
lace distribution and computes the maximum likelihood (ML) estimators by using iterative methods. [2] have 
used the modified likelihood function proposed by [4] which is based on censored normal samples [5] and have 
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studied the robustness properties of the resulting estimators. In this context, [6] generated non-Gaussian distri-
butions through transformations of a Gaussian variate. 

[7] considered the Huber M-estimation, which is valid under heavy-tailed symmetric distributions, and uses 
different forms of contaminated Gaussian to compute the influence functionals (IF) of parameter estimates and 
gross-error sensitivity for the IF. In this context, [8] and [9] have studied the rate of convergence of the least 
squares (LS) estimators. It may be noted that M-estimation is not valid for skewed distributions, and has the 
problem of inefficient estimates for short-tailed symmetric distributions; this has been widely shown by [1] in 
the classical framework of IID observations. 

[10] obtained approximations to some likelihood functions in the context of state space models as considered 
by [11]. Besides, [12] considered an asymmetric Laplace distribution for the innovations of an autoregressive 
and moving average model and of a generalized autoregressive conditional heteroscedastic model. 

The main proposal of our paper is based on the use of modified likelihood as introduced by [13] [14] and [15] 
under the framework of IID observations, in order to estimate the parameters in the context of simple linear re-
gression with stationary and invertible autoregressive errors of order one with innovations represented by Gene-
ralized Exponential distribution; for more details on these distributions the reader refers to [16]. This method is 
notorious for giving asymptotically fully efficient estimators (for example, see [17]-[20]). 

The outline of the paper is as follows. In Section 2 we define the regression linear model with autoregressive 
errors, where the underlying distribution of the innovations is a Generalized Exponential distribution. In Section 
3 we propose the MML estimators as a powerful methodology to deal with ML estimators which are intractable 
in the case of a Generalized Exponential distribution. In Section 4 we study the asymptotic properties of the 
proposed estimators. The main advantages of the proposed estimators are discussed via simulation studies in 
Section 5. Finally discussions and observations appear in Section 6 of the proposed model and the specific nu-
merical results, attaching an Appendix which displays the details of asymptotic results. 

2. The Model 
We denote { }, 0, 1,tY t = ± 

 a time series and the following model 

1

,
.

t t t

t t t

Y Xµ δ η
η φη

∗

−

= + +

= + 
                                    (1) 

where Xt is the value of a fixed design variable X at time t, tη  is the error, assumed to be modeled through a 
non-Gaussian stationary autoregressive model, µ∗  is a constant, φ  is the autoregressive coefficient, with 

1φ < , and t  is the innovation, distributed according to a Generalized Exponential distribution (GEd), given 
by 

( ) ( ) 1
; , 1 e e , 0, 0, 0.t t

t tf
αλ λλ α αλ α λ
−− −= − ≥ > >                        (2) 

The corresponding cumulative distribution function is given by 

( ) ( ); , 1 e , 0, 0.t
t tF

αλλ α α−= − ≥ >                            (3) 

Notably, λ  and α  play, respectively, the role of scale and shape parameters. The ( )GEd ,λ α  has a 
similar form to the Gamma and Weibull distributions. See the survey in [21] for some recent developments on 
GEd, distributions. 

3. Modified Maximum Likelihood Estimators 
The model in Equation (1) can be written as 

( ) { } ( )1 1 , IIDGEd , ,t t t t t tY Y X Xφ µ δ φ λ α− −− = + − +                      (4) 

or 

( ) ( ) ,t t tB Y B Xφ µ δφ= + +                                (5) 

whit ( ): 1µ µ φ∗= − , ( ) 1B Bφ φ= −  is the autoregressive polynomial, and B  is the backward shift operator. 
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Conditional on 0 0Y y= , the likelihood function for the parameter vector ( ), , , ,µ δ φ α λΤ =β  in model (4) is 
given by 

( ) ( ) 1

1
1 e e ,t t

n
z zn n

t
L

α
α λ

−− −

=

= −∏β                               (6) 

where t tz λ=  , with ( ) ( )t t tB y B xφ µ δφ= − −  or ( )t tz wλ µ= − , tw  given by 

( ) ( ) .t t tw B y B xφ δφ= −                                  (7) 

The log-likelihood is given by 

( ) ( ) ( ) ( ) ( )
1 1

ln ln 1 ln 1 e .t
n n

z
t

t t
l n zα λ α −

= =

= + − + − −   ∑ ∑β                     (8) 

For convenience we introduce at this point the following reparameterization: : 1λ σ=  and bα = − . Then 
the density function of t  is given by 

( )
( ) 1

e; , , 0,
1 e

t

t
t tb

bf b
σ

σ
σ

σ

−

+−
= − >

−




                              (9) 

where 0σ >  and 0b < . Its cumulative distribution function is 

( ) ( ); , 1 e , 0.t
b

t tF b σσ
−−= − >                              (10) 

Now t tz σ=  , and note that { } ( )IID GEd 1,tZ bσ =
 is the standardized member of the GE family. The 

log-likelihood for the parameter vector ( ), , , ,bµ δ φ σΤ =β  then becomes 

( ) ( ) ( ) ( ) ( )
1 1

ln ln 1 ln 1 e .t
n n

z
t

t t
l n b z bσ −

= =

= − + − + + −   ∑ ∑β                    (11) 

Also note that if we consider the parameter b  as fixed, then the log-likelihood for the reduced parameter 
vector, ( )1 , , ,µ δ φ σΤ =β , is proportional to 

( ) ( ) ( ) ( )1
1 1

ln 1 ln 1 e .t
n n

z
t

t t
l n z bσ −

= =

∝ − − − + −∑ ∑β                       (12) 

For notational simplicity, let us write ( ) ( ) 1
: e 1zh z

−
= − . Then, direct inspection shows that first derivatives of 

the log-likelihood function with respect to β  and 1β  can be written as: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

1

1

1
1 1

1 1

1
1 1 1 1

1 1

1

1 1

1 1 ,

1 1 ,

1 1 ,

1 1 ,

n

t
t

n n

t t t t t
t t

n n

t t t t t
t t

n n

t t t
t t

l l
n b h z

l l
x x b x x h z

l l
y x b y x h z

l l
n z b z h z

l
b

µ µ σ

φ φ
δ δ σ

δ δ
φ φ σ

σ σ σ

=

− −
= =

− − − −
= =

= =

∂ ∂  = = + + ∂ ∂  
∂ ∂  = = − + + − ∂ ∂  
∂ ∂  = = − + + − ∂ ∂  
∂ ∂  = = − + + + ∂ ∂  
∂
∂

∑

∑ ∑

∑ ∑

∑ ∑

β β

β β

β β

β β

β ( )
1 1

ln .
n n

t t
t t

n z h z
b = =

 = + +  ∑ ∑

             (13) 

The likelihood equations are expressions in terms of intractable functions ( )ln e 1z − , which lead no explicit 
solutions, using as alternative numeric iterative methods for get the solutions. 

In order to obtain efficient closed form estimators, we consider Tiku’s method of modified likelihood estima-
tion, which is by now well established, see [22] (Chapter 6). For given values of µ , δ , b , and φ , let 

1: 2: :n n n nZ Z Z≤ ≤ ≤  be the order statistics of 1, , nZ Z . Let 1: 2: :n n n nµ µ µ≤ ≤ ≤ , with { }: :t n t nZµ =  , be the 
expected values of the standardized order statistics. 
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A standard Taylor expansion of ( )h z  around :t nz µ=  up to first order allows us to obtain 

( ) ( ) [ ] ( )

:

: : : : : ,     1, , ,
t n

t n t n t n t n t t t n
z

h z
h z h z a b z t n

z
µ

µ µ
=

∂
≈ + − = − =

∂
                (14) 

where ( ):
1

:e 1t n
t t t na bµ µ

−
= − +  and ( ): :

2
e e 1t n t n

tb µ µ −
= − . A closed form expression for :t nµ  has been calculated 

by [23], namely 
( )

( ) ( )
( ) ( )( ) ( ):

0

1 1
1 1 ,   1, , ,

1

in t

t n
i

n tn
b t i t n

it n t t i
µ

−

=

−Γ + −    = Ψ − + −Ψ =   Γ Γ − + +  
∑              (15) 

where ( ) ( ): d ln dx x xψ = Γ  is the Digamma function. However, for large n, and using the Delta Method, we 
have the well-known approximation for :t nµ  for sufficiently large n, : :t n t nµ λ≈ , with 

( ){ }( )
1

1
: : ln 1 ,

1

b

t n t n
tF F Z

n
λ

−
−

  = = − −  +   
                        (16) 

where 1F −  is the inverse of the cumulative distribution function of tε , see for instance [22]. Since ( )h z  is 
locally linear ([14] [15]), under some very general regularity conditions, :t nz  converges to :t nµ  as the sample 
size becomes large, in a small interval not containing the zero value. 

Plugging (14) into (13), we obtain the approximated derivative of the log-likelihood function for 1β , which 
can be written as 

( ) ( ) ( ) ( )1 1
:

1

1 1 ,
n

t t t n
t

l l
n b a b z

µ µ σ

∗

=

∂ ∂  = + + − ∂ ∂  
∑

β β
                     (17) 

( ) ( )
[ ] [ ]( ) ( ) [ ] [ ]( )( )1 1

:1 1
1 1

1 1 ,
n n

t t t nt t t t
t t

l l
x x b x x a b zφ φ

δ δ σ

∗

− −
= =

∂ ∂  = − + + − − ∂ ∂  
∑ ∑

β β
           (18) 

( ) ( )
[ ] [ ]( ) ( ) [ ] [ ]( )( )1 1

:1 1 1 1
1 1

1 1 ,
n n

t t t nt t t t
t t

l l
y x b y x a b zδ δ

φ φ σ

∗

− − − −
= =

∂ ∂  = − + + − − ∂ ∂  
∑ ∑

β β


         (19) 

( ) ( ) ( ) ( )1 1
: : :

1 1

1 1 .
n n

t n t n t t t n
t t

l l
n z b z a b z

σ σ σ

∗

= =

∂ ∂  = − + + + − ∂ ∂  
∑ ∑

β β


                (20) 

The zeros of the above system of equations are the MML estimators of 1β . For the sake of clarity, let  
[ ] [ ] [ ]t t ty xδ∆ = − , where [ ]ty  and [ ]tx  are the concomitants, the associate values of y  and x  for :t nz , of  

[ ] ( ) [ ]: ( )t n t tz B y B xφ δφ µ σ = − −  . Then, from Equations (17) and (18) we get 

( ) [ ]

( ) [ ] ( ) [ ]( )

( ) [ ]

( ) [ ] ( ) [ ] ( ) [ ]

1 11 1

2

1 1 1 1

1
1

.
1

1

n nn n

t tt t tt
t tt t

n n n n

t t t tt t t t t
t t t t

b B y ab b B x
b

b B x b B x b B x B y a B x
b

φ σφ
µ
δ

φ φ φ φ σ φ

= == =

= = = =

    − +     +      =        − +    +    

∑ ∑∑ ∑

∑ ∑ ∑ ∑
 

Then, from the Equations (17) and (19) we get 

[ ]

[ ] [ ]

[ ]

[ ] [ ] [ ]

1
1 11 1

2
1 1 1 1

1 1 1 1

1
1

.
1

1

n nn n

t tt t tt
t tt t

n n n n

t t t tt t t t t
t t t t

b ab b
b

b b b a
b

σ
µ
φ

σ

−
= == =

− − − −
= = = =

    ∆ − +∆      +      =       ∆ ∆ ∆ ∆ − + ∆    +    

∑ ∑∑ ∑

∑ ∑ ∑ ∑
 

Defining the n-dimensional vectors, ( )1 1, ,1 Τ=  , ( ) ( )1
11 1 , , nb a a Τ−= + + a , [ ] [ ]( )1 , , ny y

Τ
= y , and  

[ ] [ ]( )1 , , nx x
Τ

= x , the identities above lead to the following expressions for the MML estimators of 1β : 

( ) ( )
1ˆ

ˆ ,ˆ U DU U D B U
µ

φ σ
δ

−Τ Τ Τ 
 = −    

 
y a                          (21) 
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( ) ( )1ˆ ˆ ˆ ,ˆ V DV V D V
µ

δ σ
φ

−Τ Τ Τ   = − −     
y x a                         (22) 

2 24 4ˆ ˆ, or ,
2 2

c c nd c c nd
n n

σ σ+ − − −
= =                         (23) 

where 



( )


( )( )


( )( )1
2 2

ˆ ˆDiagonal , , , 1, , 1, ,n
n n n n
D b b U B V Bφ δ
× × ×
= = = −x y x  

and 

( ) ( ) [ ] ( ) [ ]( )
( ) ( ) [ ] ( ) [ ]( )

1

2

1

ˆ ˆ ˆˆ1 1 ,

ˆ ˆ ˆˆ1 .

n

t t t
t

n

tt t
t

c b a B y B x

d b B y B x b

φ µ δφ

φ µ δφ

=

=

= + + − −  

= + − −

∑

∑
 

Furthermore, note that setting the expression for ( )l b∂ ∂β  in (13) to zero and solving for b, while substi-
tuting ( ) [ ] ( ) [ ]:

ˆ ˆ ˆ ˆ ˆt n t tz B y B xφ δφ µ σ = − −   gives 

( ) [ ] [ ]( ){ }( )1

1

1ˆ ˆ ˆˆ ˆln 1 exp .
n

t t
t

b B y x
n

µ φ δ σ−

=

 = − − − ∑                      (24) 

We note that the coefficients tb ’s are positive. It is expected if the :t ne ’s have positive values, then 
{ }( ):ln 1 exp t ne− ’s are all negatives, so b̂  is negative. And if d is negative, no complex roots occur for σ̂ .  

Moreover 2 24c nd c− > , and 2 4c nd c− > , resulting as an estimator for σ , ( )2ˆ 4 2c c nd nσ = + − . We  

observe that these estimates involve the µ  parameter. 
These facts suggest that it is possible to obtain MML estimators of β  by using the following iterative pro-

cedure. As a starting point, consider the LS estimator for ( ), , ,µ δ φ γ , with γ δφ= − , which is given by 

( ) 1, , , ,S Lµ δ φ γ
Τ −= 

                                    (25) 

where 

( )1 11 ,L Y Y X Y Y Y X
ΤΤ Τ Τ Τ=                               (26) 

( ) ( ) ( )1 1 1 0 1 1, , , , , , , , , ,n n nY y y X x x X BX x x xΤ Τ Τ
−= = = =                   (27) 

0 1 1

1 1 1
1

1 1 1 1 1 1

1 1 1 1

1 1 1 1 1
1

, and .
1
1n

y X Y X
y X X X Y X X X

Y BY S
Y Y X Y Y Y X

y X X X Y X X X

Τ Τ Τ Τ

Τ Τ Τ Τ

Τ Τ Τ Τ

Τ Τ Τ Τ
−

  
  
  = = =   
       



                  (28) 

We suggest the following routine for the numerical computation of the MML estimator. Initialize with 
0 00y x= =  and 1b = −  (an exponential distribution). 
Step 0. Set ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )0 0 0 0 0 0 0 0ˆ ˆ ˆˆ , , , , , ,µ δ φ γ µ δ φ γ=  

  the LSE from (25). 

Step 1. Get ( ) ( )( )1 1ˆˆ ,µ δ  from (21) using ( ) ( ) ( )( )0 0 0ˆ ˆ, ,bφ σ , and ( )1φ̂  from (22) using ( ) ( ) ( ) ( )( )1 1 0 0ˆˆ ˆ, , ,bµ δ σ . 
Update ( )1σ̂  with (23); ( )1b  with (24). 

Step 2. Evaluate the expressions (15)-(17) in ( ), , ,µ δ φ γ  with the initial estimated values  
( ) ( ) ( ) ( )( )0 0 0 0ˆ ˆ ˆˆ , , , .µ δ φ γ  
Step 3. Get from (7) the initial estimates for the { }, 1, ,n tw w t n= = 

. Sort the set nw  saving the corres-
ponding concomitants values of 1 1, , , ,t t t ty y x x− −  say [ ] [ ] [ ] [ ]1 1, , ,t t t ty y x x− − . 

Step 4. With the values of Step 3, get ( )0σ̂  from (23) and get ( )0b̂  from (24), to obtain the complete initial 
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values vector ( )0β . 

Step i. Get ( ) ( )( )ˆˆ ,i iµ δ  from (21) using ( ) ( ) ( )( )1 1 1ˆ ˆ, ,i i ibφ σ− − − , and ( )ˆ iφ  from (22) using ( ) ( ) ( ) ( )( )1 1ˆˆ ˆ, , ,i i i ibµ δ σ − − . 

Update ( )ˆ iσ  with (23), ( )ib  with (24). 
The steps are repeated until convergence is achieved. 
Remark. The stopping criteria is given by 

( ) 3
1

ˆ ˆ ˆ 10 .s s sC β β β −
−= − <  

4. Asymptotic Equivalence and Efficiency 
The asymptotic equivalence of MML and ML estimators is based on the fact that ( ): :t n t t t nh z a b z− −  converges 
to zero as n tends to infinity. Thus, following [17] we have that the differences, ( ) ( ) ( )11 n l lµ µ∗∂ ∂ −∂ ∂β β  
and ( ) ( ) ( )11 n l lδ δ∗∂ ∂ − ∂ ∂β β  tend to zero asymptotically. Therefore, the MML and ML estimators are 
asymptotically equivalent. 

On the other hand, if we know the values of φ  and σ , asymptotically, the MML estimators ( )ˆ ,µ φ σ  and  

( )ˆ ,δ φ σ  are unbiased for µ  and δ . Namely, let ( )2 ,µ δ Τ=β  be the parameter vector and by applying the  
standard Taylor expansion in a neighborhood of ( )2 ,µ δ

Τ
=  β  we have (see [24]) 

( ) ( )

2

12
2 2

2 2 2
22

ˆ .
l l

−∗ ∗ ∂ ∂
= −  

∂∂   β

β β
β β

ββ
 

Using the results (5.7.5), p. 115 of [25] and Lemma 1 in the Appendix, we show that { }2 2
ˆ 0− =β β  for 

large n. The unbiasedness property of ( ),φ σ  is analogous to the previous case. 
Furthermore, if we know the values of φ  and σ , the MML estimators ( )ˆ ,µ φ σ  and ( )ˆ ,δ φ σ  are un-

biased and normally distributed with variance-covariance matrix 

( ) ( )
2

22 12
2

12 1122 11

1 1, .
1

v v
v vn b b v v

σφ σ
− 

Σ =  −+ −  
                       (29) 

knowledge of the values of φ  and σ . Observe that 

11 12

12 22

1lim ,
n

v v
U DU b

v vn
Τ

→∞

 
= −  

 
 

with 11 1v = , ( ) [ ]12 1
n

ttv B xφ
=

= ∑  and ( ) [ ]( )2

22 1
n

ttv B xφ
=

= ∑ . Thus, we have (29) for the asymptotic variance- 

covariance matrix of ( )ˆ ,µ φ σ . 

The asymptotic behavior of variance for σ̂  (say { }ˆVar σ ) and φ̂  (say { }ˆVar φ ) can be deduced from the 

arguments in [26]. We can thus show that { } 33
ˆVar 1 vφ  , where 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2
33 2

1
1 0; 2 1; 1 1; 2 .

2
b bnv b b b b

bσ
+ 

= − − − + + − + + 
    

Analogously, we have { } 44ˆVar 1 vσ 
, where 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )

1 1 1
44

1 22

1 1; 1 1; 2
1 2

1 2 1; 2 .
2

n b bv b b b
b b

b b
b

η η

η η

µ µ
σ

µ µ µ
σ

∗

   = + + − + + − +  + + 
+ + + − + + 

 



 

where ( ) ( );j t b k+  is jth derivative of the moment generating function of ( )1,GEd b k+ , ( )r
ηµ  is the rth 

non-central moment of { }tη  given by the Lemma 2 of the Appendix for 1, 2r = . 
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Table 1. The simulated values of mean, bias square and mean square error of the LS estimators ( ), , ,µ δ φ σ 

   and the MML 

estimators ( ), , ,µ δ φ σ  and 100n = . 

  1b = −  2b = −  

  Mean Var Bias MSE Mean Var Bias MSE 

0.0µ =  
µ  −0.000886 0.033584 −0.000886 0.033582 0.986002 0.024213 0.986002 0.996410 
µ  0.001300 0.029693 0.000130 0.023692 0.435218 0.018573 0.435218 0.216985 

1.0δ =  
δ  1.000554 0.034930 0.000554 0.034926 1.002698 0.024228 0.002698 0.024233 

δ  1.000043 0.020870 0.000043 0.020868 1.001481 0.015923 0.001481 0.015923 

0.8φ = −  
φ  −0.787714 0.004023 0.012286 0.004173 −0.786830 0.004093 0.013171 0.004566 

φ  −0.790068 0.003618 0.009932 0.003516 −0.786149 0.003588 0.013051 0.004480 

1.0σ =  
σ  3.211265 0.352510 2.211265 5.242168 2.239461 0.176988 1.239461 1.713233 

σ  1.032998 0.008841 0.032998 0.009929 1.055952 0.009012 0.055952 0.012142 

0.0µ =  
µ  0.001376 0.035637 0.001376 0.035635 1.015149 0.036122 1.015149 1.066645 
µ  0.001175 0.025692 0.001175 0.029690 0.462208 0.032993 0.462208 0.252625 

1.0δ =  
δ  0.999292 0.034422 −0.000708 0.034420 0.999049 0.024585 −0.001951 0.024583 

δ  0.998947 0.032174 −0.001053 0.032172 0.998650 0.021924 −0.001350 0.021923 

0.1φ =  
φ  0.087611 0.012722 −0.012389 0.012375 0.085178 0.029938 −0.014822 0.013157 

φ  0.095462 0.010529 −0.004538 0.010548 0.054797 0.011023 −0.005203 0.011049 

1.0σ =  
σ  3.158387 0.327490 2.158387 4.986093 2.192925 0.165809 1.192925 1.588861 

σ  1.025339 0.009202 0.025339 0.009844 1.046575 0.008996 0.046575 0.011165 

0.0µ =  
µ  −0.001417 0.055431 −0.001417 0.055427 1.403107 0.219596 1.403107 2.188284 
µ  0.000813 0.044283 0.000813 0.044279 0.779076 0.127095 0.779076 0.834031 

1.0δ =  
δ  0.999761 0.035422 −0.002239 0.035419 0.998107 0.025840 −0.001893 0.025841 

δ  0.998032 0.019583 −0.001968 0.019585 0.978544 0.016259 −0.001456 0.016260 

0.8φ =  
φ  0.762102 0.004769 −0.037898 0.006204 0.778123 0.006862 −0.071877 0.011227 

φ  0.777242 0.003312 −0.022758 0.005830 0.741970 0.006476 −0.058030 0.009843 

1.0φ =  
σ  3.205789 0.353528 2.205789 5.218997 2.362176 0.226820 1.362176 2.082321 

σ  1.032757 0.009014 0.032757 0.010086 1.076499 0.010523 0.076499 0.016374 

0.0µ =  
µ  0.012309 0.298050 0.018309 0.298172 2.962612 0.421637 2.962612 8.998682 
µ  0.015270 0.249466 0.015270 0.249674 1.252334 0.319509 1.252334 1.887818 

1.0δ =  
δ  1.005434 0.309207 0.005434 0.309206 0.999057 0.218581 −0.000943 0.218560 

δ  0.997079 0.172751 −0.002921 0.172742 1.001011 0.137776 0.001011 0.137763 

0.8φ = −  
φ  −0.786810 0.004018 0.013190 0.004782 −0.785997 0.004676 0.014353 0.004787 

φ  −0.788509 0.004374 0.011491 0.004505 −0.785681 0.004337 0.014219 0.004541 

3.0σ =  
σ  29.042450 29.572310 26.042450 707.778770 20.152190 15.007650 17.152190 309.203850 

σ  3.089355 0.071391 0.089355 0.079368 3.137597 0.079450 0.137597 0.098375 

0.0µ =  
µ  −0.009324 0.328285 −0.009324 0.328339 3.038606 0.426984 3.038606 9.550080 
µ  −0.006528 0.271379 −0.006528 0.271395 1.362092 0.374527 1.362092 2.229783 

1.0δ =  
δ  0.991023 0.307443 −0.008977 0.307493 0.997002 0.289937 −0.002998 0.285924 

δ  0.996085 0.284231 −0.003915 0.284218 0.893295 0.233959 −0.006705 0.233980 

0.1φ =  
φ  0.085039 0.019795 −0.014961 0.014518 0.099978 0.012785 −0.011022 0.015646 

φ  0.094117 0.011222 −0.005883 0.011256 0.088109 0.000979 −0.000891 0.010979 

3.0σ =  
σ  28.484590 26.924310 25.484590 676.385740 19.810370 13.435800 16.810370 296.022870 

δ  3.074408 0.072055 0.074408 0.077584 3.126289 0.074052 0.126289 0.089994 
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5. Simulation Study 
In order to have some indications of the robustness aspects of the MML estimates of µ , δ , φ  and σ  
against LSE estimates, we performed a small numerical study similar to the one presented by [26] for the gene-
ralized logistic model. We consider the following AR(1) Generalized Exponential model: 

( ) { } ( )1 1 , IID  GEd ,t t t t t tY Y X Xφ µ δ φ λ α− −− = + − +                       (30) 

where ( )0,1tX N . Additionally, our simulation study considers different scenarios, sketched as follows: 
1) 0,µ =  1,δ =  0.8φ = −  and 1,σ =  
2) 0,µ =  1,δ =  0.1φ =  and 1,σ =  
3) 0,µ =  1,δ =  0.8φ =  and 1,σ =  
4) 0,µ =  1,δ =  0.8φ = −  and 3,σ =  
5) 0,µ =  1,δ =  0.1φ = −  and 3.σ =  
Without loss of generality, we have considered the parameter b as a constant value given by b = −1 and −2. 

The summaries of Monte Carlo study for µ , δ , φ  and σ , come from the four measures, the mean, 100 × 
(Bias)2, variance and mean squared error (MSE) for both the LS and the MML estimators. Finally, we use sam-
ple size n = 100 and 10,000 replications. Table 1 displays the results from the simulations with the biases, va-
riance and MSE of the parameters estimates. The results suggest that the MML estimators are considerably more 
efficient than the LS estimators for all parameters. 

6. Conclusion 
In this paper, we have studied a regression linear model with first-order autoregressive errors belonging to a 
class of asymmetric distributions; more specifically the underlying distribution for the innovations is a Genera-
lized Exponential distribution. We have developed a complete asymptotic theory for the MML estimators in 
these models. In addition, we have shown that the MML estimators are robust and efficient, as depicted by the 
numerical study presented in Section 5 for the AR(1) GE model. We thus claim that the MML estimator is a 
very good alternative to estimate autoregressive models with asymmetric innovations (see [26] and [27], among 
others as example). The R codes may be obtained from the authors upon request in order to analyze such mod-
els. 
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Appendix 
Lemma 1. Let ( )1,Z GE b

, ( )expU Z= − , { }0q∈ ∪  and p, s∈ such that p b> −  and 1 s b p− < < + , 
then 

( ){ } ( ) ( )1 ;p qq s bE Z U U s b p
b p

− = − +
+
  

where ( ) ( );j t b k+  is jth derivative of the moment generating function of ( )GEd 1,b k+ . 
Proof 

( ){ }
( ) ( ) ( )

( ) ( )1 10 0

e e e1 d e d ; .
1 e 1 e 1 e

q sz z z
p qq s q sz

Z p b b pz z z

z b b bE Z U U z z z s b p
b p

− − −
∞ ∞ −

+ + +− − −
− = = = − +

+− − −
∫ ∫   

Lemma 2. For the process { }tη  defined as a stationary autoregressive model, t t tη φη ε= + , φ  is the 
autoregressive coefficient, with 1φ < , and t  is distributed according to a GEd. The first and second moment 
are given by 

( ) ( ) ( )
2

1 2 2
2 2and .

1 1η ε η ε
φ φµ µ µ µ
φ φ

= =
− −

 

Proof is deduced by using the moment generating function of ( )GEd ,bε σ
 

( ) ( ) ( )
( )

1 1
; , , 1,

1
b t

t b b t
b t

σ
σ σ

σ
Γ + Γ −

= − < <
Γ − +

                        (31) 

(see [21]). Moreover, for the ( )1
ηµ , we used 

{ } { } ( )1

0
lim lim

k
k k

t t kk k j
E E ε ηη φ η φ µ µ−→∞ →∞ =

= + =∑  

and for ( )2
ηµ , we used 

{ } ( ) ( )2 22 2

=0
lim lim .

k
k

tk k j
E ε ηµ φ µ µ

→∞ →∞
= =∑  
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