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Abstract 
Nowadays a common problem when processing data sets with the large number of covariates 
compared to small sample sizes (fat data sets) is to estimate the parameters associated with each 
covariate. When the number of covariates far exceeds the number of samples, the parameter es-
timation becomes very difficult. Researchers in many fields such as text categorization deal with 
the burden of finding and estimating important covariates without overfitting the model. In this 
study, we developed a Sparse Probit Bayesian Model (SPBM) based on Gibbs sampling which uti-
lizes double exponentials prior to induce shrinkage and reduce the number of covariates in the 
model. The method was evaluated using ten domains such as mathematics, the corpuses of which 
were downloaded from Wikipedia. From the downloaded corpuses, we created the TFIDF matrix 
corresponding to all domains and divided the whole data set randomly into training and testing 
groups of size 300. To make the model more robust we performed 50 re-samplings on selection of 
training and test groups. The model was implemented in R and the Gibbs sampler ran for 60 k ite-
rations and the first 20 k was discarded as burn in. We performed classification on training and 
test groups by calculating P (yi = 1) and according to [1] [2] the threshold of 0.5 was used as deci-
sion rule. Our model’s performance was compared to Support Vector Machines (SVM) using aver-
age sensitivity and specificity across 50 runs. The SPBM achieved high classification accuracy and 
outperformed SVM in almost all domains analyzed. 
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1. Introduction 
Nowadays, it is usual to come across data sets involving thousands or millions of covariates [3]. A common 
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problem when dealing with fat data sets is that the number of covariates to be estimated far exceeds the number 
of samples, for instance, text categorization (our focus in this article), gene expression analysis, theft detection, 
clinical diagnosis, and some business data mining tasks. In text categorization, we need to deal with hundreds 
even thousands of words in several documents. Given different categories such as mathematics, an attempt to 
categorize the documents based on their contents (i.e., words) can be cast as a variable selection regression 
problem with words as covariates in the regression. Furthermore, we need to focus on identifying relevant words 
to each specific category (i.e., mathematics). That is, predicting the type of documents based on their words 
composition. However, many covariates may have tiny effects on the category predictions, making it impossible 
to confidently identify categories based on a single covariate analysis at a time. Thus, a method that can discover 
the most informative covariates (words) among the large number of covariates (i.e. words related to a specific 
category in our context) while geared toward highlighting important ones is of a great interest. Many fields are 
dealing with the problem of identifying important covariates (in our case important words) in a regression model, 
sometimes known as feature selection [4] [5].  

Depending on the response variable being discrete (categorical) or continuous, different models have been 
used to perform prediction and estimation: 1) discrete: Logistic Regression (LR) among others have been used 
to fit models with discrete/categorical response variables. A drawback using logistic LR is that when the number 
of covariates is large, maximum likelihood estimation becomes computationally intensive and sometimes in-
tractable. Furthermore, predictors may have large estimated variances which result in poor prediction accuracy [1]; 
2) continuous: linear regression models have been extensively used to fit models with continuous response va-
riables. However these models lack accuracy when it comes to parameter estimation in high dimensional data 
settings [6]. A standard method that is widely used in regression models to improve prediction and parameter es-
timation is subset selection. Subset selection is a discrete process and has variants such as backward elimination, 
forward selection, and stepwise selection. However, using these discrete processes may cause inconsistency in 
variable selection. That is, a small change in the data may result in very different models [4] [6]. In addition, 
these approaches are computationally expensive and unstable when sample sizes are much smaller than the 
number of covariates [4] [5]. Given the aforementioned models drawbacks, researchers sought to develop me-
thods that are able to simultaneously analyze multiple covariates [7]-[9]. In the context of text categorization, 
the response variable or categories (i.e., mathematics) can be binary or multinomial (categorical) for which sim-
ple linear regression is not applicable. One alternative to deal with categorical response variables that we have 
adapted in this paper is using sparse Probit Regression (PR) method. PR is used to link the covariates to the ca-
tegorical response variable by using cumulative distribution of standard normal distribution [10]. In this paper, 
we developed a Sparse Probit Bayesian Model (SPBM) to avoid over-fitting problem and obtain fully condition-
al distributions for all parameters. While shrinking some unimportant covariates to zero SPBM allows us to 
identify smaller subset of covariates having the greatest discriminating power. To create our model, we first de-
veloped a multi-level Bayesian hierarchical model. Then, based on the Gibbs sampling algorithm developed, we 
used Markov Chain Monte Carlo method to estimate the parameters associated with the covariates [11] [12]. 
The developed SPBM automatically shrinks small coefficients to zero, which is a great flexibility to fit many 
covariates to the model in one step. Finally, the fitted model is used to perform classification on different data-
sets. The rest of this paper will be as follows, in Section 2, we will first briefly describe related works regarding 
parameter estimation with different methods. We will then explain our method, which includes the construction 
of a SPBM, MCMC, and using the posterior mean of parameters for prediction. We finally, show our results in 
the section Application and Results. 

2. Related Works 
In this section we will make a very brief overview of the machine learning algorithms and other important me-
thods that are used parameter estimation. Support Vector Machines (SVMs) are an alternative that is used in 
machine learning to deal with high dimensionality and sparsity of data [13]-[15]. Despite small sample sizes, 
SVMs usually achieve low-test errors. Several papers have reported good results on the applications that use 
SVMs for variable selections purposes [16] [17]. However, the method has a number of disadvantages, such as 
the absence of probabilistic output and the necessity of estimating a trade-off parameter in order to utilize Merc-
er kernel functions [4] [5]. David Blei et al. [18] using Latent Dirichlet Allocation (LDA) [19], introduced a 
machine learning algorithm to Probabilistic Topic Modeling (PTM). PTM aims at automatically extracting top-
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ics from texts. That is, for instance, if we apply the algorithm to the last few discourse of a politician, it produces 
economy, war, jobs as the output. The relevance of the probabilistic modeling to our paper is that the algorithm 
extracts the topics. Thus, in some cases, it is possible to consider the most rated topic in a text as the topic of the 
text. However, LDA performance is compared by some researchers as nothing more than the iterative keyboard 
searching algorithms [20]. The algorithm is also limited to the words used in the text. For instance, if you are 
looking for consciousness, and give a text regarding civil engineering to the algorithm as input, the algorithm 
will only tell you about building and constructions [21].  

Another method that is used in statistics for parameter estimation is linear regression. It is an approach to 
model the relationships between the response variables and one or several covariates. The method has been ex-
tensively used in different applications. In linear regression models, Ordinary Least Square (OLS) method is 
used to obtain the estimation of the parameters. OLS estimates parameters by minimizing sum of residual 
squared error. However, the method suffers from two drawbacks: 1) even though the estimated parameters ob-
tained by the model have low bias, they often have large variance that reduces the accuracy of the prediction by 
the model; 2) when there are large number of covariates, it is desirable to establish a small subset of parameters 
which offers the strongest effect on response variable [6]. In OLS, estimation accuracy can be improved by set-
ting the unimportant covariates to zero and thus obtaining more accurate estimates for significant covariates [6]. 
We will discuss the know how about this method in our method section. 

Logistic regression is a generalized linear model approach, which is used for modeling when the response va-
riable is categorical. In text categorization, logistic regression methods are commonly used to find maximum li-
kelihood estimations of parameters that are associated with covariates. For instance, many software packages 
use a variation of Newton-Raphson’s iterative algorithm [22] or Fisher’s scoring method [23]. To find maximum 
likelihood estimates, the aforementioned packages, implement maximization procedures, which use matrix in-
version. However, when the numbers of covariates are very large, matrix inversion method is computationally 
intensive. Thus, the estimated results often suffer from poor accuracy and lack of convergence to the true value 
of parameters that are associated with covariates-which is global maxima [1]. Furthermore, these methods fail 
when the number of parameters to be predicted far exceeds the number of observations. As a result, the above 
methods cannot perform parameter estimation and good classification when it comes to large number of cova-
riates [4]. Thus, for text categorization to analyze data sets with sample sizes that are much smaller than the 
number of covariates, new methods are required. One alternative to avoid overfitting is highly regularized ap-
proaches such as penalized regression models. These models are needed to identify non-zero coefficients, en-
hance model predictability and avoid over-fitting [5] [24]. A widely used model to avoid overfitting problem is 
the shrinkage and regularization method which can improve parameter estimation performance by reducing 
mean square error while introducing some bias [6] [25]. Furthermore, by inducing sparseness in the model, 
shrinkage method highlights important covariates. Such methods facilitate the analysis of many covariates si-
multaneously [7]. To avoid overfitting problem in text categorization, authors in [2], used a Bayesian approach 
to logistic regression. They used a prior probability distribution that favors sparseness in the model, and an op-
timization algorithm that is geared toward finding maximum a posteriori as point estimates of parameters. 
However, their optimization method is a local optimization, which results in point estimate of parameters. Ac-
cordingly, the method does not provide full posterior distributions of parameters. 

Among others, Least Absolute Shrinkage and Selection Operator (LASSO), is one of the very efficient pena-
lized regression method that is widely used for the model fitting purpose and the prediction of response variables 
[2] [6] [26]-[30]. A Bayesian LASSO method was proposed by [31] [32] in which double exponential prior is 
used on parameters in order to impose sparsity in the model. To allow data adaptive prior choice, LASSO can 
also be extended by expressing double exponential distributions as a scale mixture of normal distributions [31]- 
[33]. In this paper, we considered a Sparse Probit Bayesian Model by assigning double exponential prior distri-
bution to parameters that favor sparseness in terms of the number of used variables. Furthermore, the fully 
Bayesian approach adopted here provides us with posterior distributions of parameters which can be used for 
different prediction (classification) and estimation purposes. 

3. Methods 
In order to set up the model, we first obtain the fully conditional distributions for all parameters in a multi-level 
hierarchical model. In the second step, the Markov Chain Monte Carlo (MCMC) method based on Gibbs sam-
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pling algorithm developed is used to estimate all the parameters [11] [12]. The sparse multi-level Bayesian hie-
rarchical model is implemented to control the issue of over-fitting that arises when too many variables are in-
cluded in the model. The SPBM automatically shrinks small coefficients to zero. Thus, the model shows a great 
flexibility to fit many covariates at the same time. In step three, we will use the fitted model to perform classifi-
cation on different datasets. As it mentioned above, since the response variables are categorical, prior to develop 
the fully Bayesian model, some treatment of the response variables are required: Let 1 2, , , ny y y  represent the 
observed response variables-assuming the documents are from two categories “a” and “b”. Suppose 1iy =  if 
the category is “a” and 0 otherwise. Let ijx  represent the weight associated with word j in document i. Since, 
the response variables are discrete the error term does not satisfy the normality of error variance assumption 
which is required in order to fit linear regression models. Furthermore, simple linear regression model if used 
may not produce legitimate results. In the context of Generalized Linear Models (GLM), nonlinear link func-
tions have been used in order to associate the nonlinear and discrete response variable y to the linear predictor 

T
ix θ . T

ix  is a 1 p∗  vector, representing weights of the words one to word p in document i, and p is the num-
ber of words used in the model. θ  is the 1 p∗  vector of model parameters (in our case associated with word 
to word). Let H represent the link function between nonlinear and discrete response variable y and the linear 
predictor T

ix θ . The GLM model can be represented as (Formula (1)): 

( )( ) ( )( )1 T
i i iH E y H P y x θ= = =                                (1) 

In this formula, ix  is the covariates vector for document i. Following [34], we use Probit link function 
(Formula (2)) which corresponds to Probit regression model and is applicable to binary and multi-level outcome 
(response variables) situations. 

( )( ) ( ) ( )11 Φi i iH P y H P P−= = =                                (2) 

In this formula Φ−1 is the inverse of cumulative distribution function of standard normal distribution. In order 
to be able to find the posterior distributions of parameters, we need to integrate the likelihood function multip-
lied by joint prior distributions of all parameters. However, the model with the current configuration makes the 
integration intractable. Thus, following [34], “n” independent latent variables 1 2, , , nz z z  with ( )~ ,1T

i iz N x θ  
are introduced to the model and the following relationship between response variable and its corresponding la-
tent variable is established. This way the Probit regression model for binary outcome iy  is linked to the linear 
regression model for the latent variable iz  (Formula (3)).  
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In the following, we explain how we implemented a fully Bayesian hierarchical model and prior distributions. 
In the continuation of step one, in order to set up a fully Bayesian hierarchical model, we will use an indepen-
dent double exponential prior distributions on sθ  as follows (Formula (4)). 

( )π e
2

j
j

λ θλθ λ −
=                                    (4) 

In the above formula, λ  is the hyper-parameters of the distribution which can be selected or assigned to a 
distribution and predicted with other parameters. In our analysis, following Bae and Mallick [35], we set 

0.2γ =  so that ( )var 100η = . Double exponential distribution (left side of Formula (5)) can be represented as 
scale mixture of normal with an exponential mixing density (Formula (5)) [31] [35]. 
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This hierarchical representation will be used in order to be able to set up the Gibbs sampling algorithm. Hav-
ing ( )~ ,1T

i iz N x θ , the following hierarchical prior distribution is used to set up the Gibbs sampler: ~j jθ η   
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= ∗ . Using the above mixture representa-  

tion for the parameters and defined prior distributions, we obtain the fully conditional posteriors that lead to a 
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straightforward Gibbs sampling algorithm. 

( )Ω ~ TN ,1T
i iz x θ                                     (6) 

In Formula (6), TN stands for truncated normal distribution and Ω  represents vector of model parameters 
plus data. For observation “i” with 1iy = , iz  must be sampled from the normal distribution defined truncated 
above zero or below zero if 0iy = . 

( ) ( )1 11 1~ MVN ,T T TX X T X Z X X Tθ
− −− − − + +  

 

In Formula (7), fully conditional posterior distribution of vector of model parameters is multivariate normal dis-
tribution (MVN) with mean vector and variance covariance matrix as specified where ( )1 2diag , , , pT η η η=  . 
In (7), X is the n p∗  design matrix in which ijx  represents weight of word j in ith sample (document) and p is 
the number of words (covariates) in the model and [ ]T1 2, , , nZ z z z=   and “n” is the number of samples. The 
fully conditional distribution of hyper-parameters jη , 1, ,j p=  , are inverse-Gaussian distribution with loca-  

tion 
j

λ
θ

 and scale λ . In each iteration of the Gibbs sampling, jη  is sampled from the inverse Gaussian dis-

tribution defined in Equation (8). 

1 ~ inv gaussian ,j
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4. Data Preparation 
In this step, we move forward to process documents based on their word composition. To do so, assuming that 
we have samples from different types of documents, we process each document’s content based on the docu-
ment composition. Among different methods that are used to represent documents for statistical classification, 
we chose term weighting [2]. To do so, for each unique term in texts, we first created a term-document matrix. 
Then, for each unique word in the matrix, we calculated the frequency of the words in each document—how 
important is the word in the document. We also computed the importance of the word in all documents. To cal-
culate the weight of each term in all documents, we used a type of TF*IDF (term frequency times inverse doc-
ument frequency) term weighting with cosine normalization [2]. In this method each term (word) j in document i 
has a un-normalized primitive weight of: 
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In the above formula ijr  is the number of times that term j occurs in document i. jr  is the number of docu-
ments in which term j exists. R  is the total number of documents. Then to minimize the impact of the docu-
ment length, we cosine-normalize the feature vectors to have a Euclidian norm of 1.0. 
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5. Application and Results 
Ten domains including, Mathematics, Chemistry, Computer Science, Psychology, Neuroscience, Art, Physics, 
Electronic, Biology, and Geology are explored in this study. We first downloaded the entire domains corpus 
from Wikipedia which included 60 documents for each domain. We then, created the TFIDF matrix and then for 
each domain divided the whole data set randomly into training and testing data sets of the same size. Each do-
main’s training and test documents were randomly divided into 300 separate documents having each more than 
3000 words as follows. For each domain, 30 documents out of 60 is chosen randomly as those with 1y =  to be 
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a part of training and test data sets and the remaining documents (540) 0y =  is randomly divided in two. Thus, 
we ended up with 300 training samples and 300 test samples. This approach was adopted, to ensure that training 
and test samples both contain the documents with 1iy = . In order to make the model more robust we performed 
50 re-samplings on selection of training and test groups and re-ran the model. The model was implemented in R 
and the Gibbs sampler ran for 60 k iterations and the first 20 k is discarded as burn in. We performed classifica-
tion on training data set and test datasets by calculating ( )1iP y =  and using the threshold of 0.5 for decision 
rule [2]. This threshold has been used in research papers for the purpose of classification [2] [36]. In our model, 
binary classifier is defined as the document belonging to the domain or not. There are almost 18,000 unique 
words in the whole corpus. Without loss of generality, we performed two-sample t-test on the TFIDF matrix in 
order to rank words based on their differences in distribution between all domains documents. The top 800 
words that obtained from this procedure were used as input to the model. For each domain, we trained the model 
and posterior mean of θs were used for covariate selection and classification. Using top 80 words based on ab-
solute value of posterior mean of θs the obtained classifier for each domain predicted the probability of whether 
a document belongs to the category. Figure 1 represents the posterior mean of θs associated with words. While 
some noise like signals—words that do not have distinguishing power—are shrunk toward zero, other signals 
stand out, which turn out to be more relevant to the document classifiers.  

As explained above, we used top 80 words obtained from the moel for the purpose of classification on train 
and test groups. Table 1 and Table 2 represent the result of classification for training and testing phases. For in-
stance, the probability of a document belonging to mathematics ( )1iy =  is calculates as ( ) ( )1 Φ T

i iP y x θ= =  
and ( ) ( )0 1 1i iP y P y= = − = . In which Φ  is cumulative distribution function of standard normal distribution  
 

 
Figure 1. Posterior mean of θ. 

 
Table 1. Average sensitivity and specificity of the SPBM compared to SVM for training groups. 

Training  Math Chemistry CS Psychology Neuroscience Art Physics Electronic Biology Geology 

SPBM 
Sensitivity 1 1 0.833 1 1 1 0.93 0.97 0.97 0.98 

Specificity 1 0.97 0.863 1 1 0.99 0.94 1 0.98 0.98 

SVM 
Sensitivity 0.88 1 0.87 0.79 0.91 1 0.85 0.79 0.92 0.95 

Specificity 0.79 1 0.91 0.83 0.94 0.87 0.93 0.97 1 1 

 
Table 2. Average sensitivity and specificity of the SPBM compared to SVM for test groups. 

Test  Math Chemistry CS Psychology Neuroscience Art Physics Electronic Biology Geology 

SPBM 
Sensitivity 0.97 0.8 0.67 0.83 0.83 0.77 0.83 0.97 0.9 0.833 

Specificity 0.94 0.796 0.796 0.92 0.99 0.84 0.82 0.93 0.896 0.97 

SVM 
Sensitivity 0.67 0.82 0.73 0.62 0.75 0.72 0.8 0.88 0.83 0.79 

Specificity 0.93 0.74 0.81 0.84 0.87 0.91 0.74 0.59 0.68 0.92 
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and T
ix  the vector representing weights of the selected words for classification in document i. θ  is the asso-

ciated posterior means of model parameters. In order to assess the classification accuracy of the model, we used 
sensitivity and specificity measures. Sensitivity and specificity are statistical measures that evaluate performance 
of binary classifiers [37]. Sensitivity measures the proportion of actual positives (i.e., math documents) that are 
identified by the model to be positive (i.e., math) and specificity measures the proportion of negatives (i.e. 
non-math docs) that are correctly classified as negative (non-math). In order to compare our results to SVM, we 
used the same procedure in dividing the data into train and test groups and performed 50 re-sampling and rec-
orded the average sensitivity and specificity across 50 runs. In order to perform SVM analysis, we used Kernlab 
[38] [39] library in R. The average Sensitivity and specificity results for training and test groups using our model 
and SVM are shown in Table 1 and Table 2. Based on Table 2 results, in eight out of ten categories for test 
groups, on average the sensitivity and specificity of SPBM outperforms SVM. Table 2 also shows that, in Art 
and physics domains the specificity of SVM is better than SPBM and in terms of the sensitivity of SVM outper-
forms SPBM in computer science and chemistry domains. However, the results obtained from SPBM on these 
categories are very comparable to SVM. As we can see, the overall results suggest that SPBM outperforms SVM 
in classification.  

6. Conclusion 
Covariates selection and parameter estimation are the main issues that researchers dealing with datasets with the 
large number of covariates with small sample sizes need to overcome. Therefore, highly regularized approaches, 
such as penalized regression models, are needed to identify non-zero coefficients, enhance model predictability 
and avoid overfitting [6] [40]. In addition, continuous response variables which are a requirement of linear re-
gression methods are not applicable to response variables (phenotypes) that are dichotomous. To address these 
limitations, we developed a Sparse Probit Bayesian Model by imposing double exponential prior on parameters 
and evaluated its performance using 10 different corpuses. To obtain posterior distribution of covariates based 
on the Gibbs algorithm developed, we used a Markov Chain Monte Carlo based technique. Based on Table 2 
results, in eight out of ten categories for test groups, on average the sensitivity and specificity of SPBM outper-
form SVM. Table 2 also shows that, in art and physics domains the specificity of SVM is slightly better than 
SPBM and in terms of the sensitivity of SVM outperforms SPBM in computer science and chemistry domains. 
However, the results obtained from SPBM on these categories are very comparable to SVM. Taken all together 
these results suggest that SPBM outperforms SVM in classification. Furthermore, in this paper, we have devel-
oped a model that enabled us to, from a big corpus, distinguish a small number of words having the greatest dis-
criminating power. We used top 80 covariates obtained for the purpose of classification and the probability of 
each sample belonging to one of the categories of outcome was calculated. Additionally, the model achieved 
high classification accuracy for categorizing texts (Table 1 and Table 2). Taken together our results suggest that 
the SPBM applied to 10 different corpuses downloaded from Wikipedia allows for better class prediction and 
produces higher classification sensitivity and specificity. Our future plan is to evaluate the model performance 
while considering more complex variance-covariance matrix structure, which takes into account word-word in-
teractions (correlations). Also, future work will investigate using different link functions and their effects on the 
model performance. Lastly, we plan to extend the model to other sparse models, which use specialized prior dis-
tributions with heavier tails that might offer more robustness properties. 
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