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Abstract 
 
Many regions of the world are experiencing an increase in the frequency and intensity of droughts. The 
province of Fars, Iran, has faced particularly severe drought and ground water problems over the course of 
the last decade. However, previous research on the subject reveals a lack of useful information regarding 
droughts in this province. This paper presents a fast, efficient and reliable method that can be used to pro-
duce drought maps in which Advanced Very High Resolution Radiometer (AVHRR) images are processed 
and then compared with SPOT vegetation maps. Ten-day maximum Normalized Difference Vegetation In-
dex (NDVI) maps were produced and vegetation drought indices such as the Vegetation Condition Index 
(VCI) were calculated. Furthermore, a Temperature Condition Index (TCI) was extracted from the thermal 
bands of AVHRR images in order to produce the Vegetation Health Index (VHI). Remotely sensed data was 
then compared with hydrological and meteorological data from 1998 to 2007. The Standardized Precipitation 
Index (SPI) was used to quantify the precipitation deficit while the Standard Water Level Index (SWI) was 
developed to assess the groundwater recharge deficit. Instead of correlation coefficients, spatial correlation 
through visual comparison was found to provide better and more meaningful pictures. The highest correlation 
values were obtained when VHI or Drought Severity Index (DSI) values were correlated with the current 
month’s SWI data. DSI maps showed strong vegetation conditions existing for the majority of the study pe-
riod. For most counties in Fars, strong Pearson correlations observed between the DSI and the SWI of the 
same month reflect high rates of ground water consumption. The results of this study indicate that the pro-
posed method is a potentially promising method for early drought awareness which can be used for drought 
risk management in semi-arid climates such as in Fars, Iran. This study also recommends that the Iranian 
government develop programs to help decrease the consumption of ground water resources in the province of 
Fars to ensure the long term sustainability of the watersheds in this province. 
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1. Introduction 

In the past few decades, both the frequency and intensity of 
droughts have increased in a number of regions in the 
world [1,2]. This recurring trend has negatively impacted 
many of these areas in terms of the large annual losses in 

vegetation it causes. Because of the serious social, eco-
nomic, and environmental ramifications, drought monitor-
ing has become a high priority for many countries, and 
especially developing ones. Since the late 1980s, satellites 
have been used for detecting and monitoring droughts as 
well as assessing their impact on agriculture [3].  
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One of the most efficient monitoring methods involves 
the use of Remote Sensing Technology. With this tech-
nique, sensors operating in several spectral bands are 
mounted on satellites in order to rapidly obtain and distri-
bute drought information over large geographic areas. 
While the satellite is in orbit, it is able to explore the earth’s 
surface where in just a matter of a few days it is able to 
identify, monitor, and assess drought conditions. Using this 
technology, one can not only investigate the effect of 
droughts on vegetation cover but also their effects on 
ground water, surface temperature, and precipitation. In 
this way, a better understanding of temporal and spatial 
characteristics of the drought for a specific region can be 
achieved. 

By monitoring droughts over a long period of time (i.e., 
10 years or more) early drought warning systems can be 
developed. These early warning systems are important 
because they are being relied upon more and more to en-
sure global food security [4]. Previous methods of drought 
monitoring have typically used vegetation indices for 
drought monitoring. Kogan (1997) developed a method 
that analyzed the relationship between the Vegetation Con-
dition Index and the Temperature Condition Index 
(VCI-TCI) [3]. Eklundh in 1996 assessed the possibility of 
using NDVI data for crop and natural vegetation monitor-
ing by measuring the cross-correlation between the time 
series of NDVI and meteorological indicators such as rain-
fall (for areas where rainfall is a limiting factor) [5]. Ek-
lundh’s results showed that the correlation between NDVI 
and rainfall coefficients is quite high, between 0.7 and 0.9, 
and that NDVI lags behind rainfall by one to three months. 
Eklundh concluded that if rainfall is to be used as an indi-
cator of seasonal vegetation development, then there will 
also be certain limitations in the ability of NDVI’s to mon-
itor temporal vegetation variations.   

Singh et al. (2003) used NDVI, VCI and TCI to monitor 
droughts as well as estimate vegetation health. In their re-
search, they used both vegetation and temperature condi-
tion indices to monitor droughts in India [6]. Bhuiyan et al. 
(2006) developed a new SWI index to assess groundwater 
recharge-deficit [7]. The correlations of drought with re-
spect to different indices are visually interpreted and neces-
sitate certain disclaimers, namely that negative SPI anoma-
lies do not always correspond to drought, and that a delay 
exists between hydrological and vegetative stress. There is 
also a delay between vegetative and hydrological stress. In 
order to identify a trend over 10 years, the annual rainfall 
was plotted against the cumulative annual NDVI values 
and it was found that the NDVI values were parallel to the 
rainfall, but with a time lag of one year. Thus, this 2006 
study developed a hypothesis that there is a time lag be-
tween the rainfall and NDVI responses, and our study also 
rests on such a hypothesis. The results obtained with this 

method were compared with two other methods: 1) the 
relationship between NDVI and rainfall during the plant 
growing season, and 2) the relationship between NDVI and 
rainfall as well as NDVI and surface temperatures. The 
former characterizes the dynamics of vegetation develop-
ment via its growing season’s parameters on a consistent 
spatial scale, while the latter is based on the relationship 
between the Global Vegetation Index (GVI) and the Tem-
perature Condition Index (TCI) with rainfall [8]. Bajgiran 
et al. (2008), using AVHRR images they obtained for 
1997-2001, compared precipitation data in the north-west 
region of Iran with VCI and NDVI indices [9]. According 
to their results, both NDVI and VCI indices can be used to 
monitor regional droughts. A good linear correlation be-
tween monthly precipitation levels and NDVI or VCI 
amounts was observed and can possibly be used to predict 
and manage drought risk.  

The aim of this research was to develop drought maps 
specifically for the southwest region of Iran, with a partic-
ular focus on the province of Fars, an area that has been 
suffering from disastrous hydrological drought since 2001. 
Despite the existence of previous research on the develop-
ment of drought maps, a special method for extracting ex-
act drought estimates for this particular Iranian region has 
yet to be developed. Previous research has typically relied 
on only one or two meteorological or hydrological indices. 
In our study, however, we incorporated remote-sensing 
data, related data from the NOAA-AVHRR sensor, and 
SPOT vegetation data (to verify extracted vegetation in-
dices) to draw our conclusions.  

In this study, analyses of monthly drought dynamics 
were calculated to identify drought configurations within 
hydrological, meteorological and vegetative domains. 
Making both quantitative and visual comparisons of 
drought dynamics in meteorological, hydrological, and 
vegetative domains in the province of Fars allowed us to 
generate more useful and reliable results. To verify the 
vegetation indices extracted from the NOAA-AVHRR 
images, SPOT-VEG images from the same time period 
(1998-2007) were used. The Standardized Water Level 
Index (SWI) and the Standard Precipitation Index (SPI) 
were used to monitor and analyze hydrological and meteo-
rological drought, respectively. Normalized Difference 
Vegetation Index (NDVI), Vegetation Condition Index 
(VCI), Temperature Condition Index (TCI) and Vegetation 
Health Index (VHI) were used to assess vegetative drought. 
The development of VHI was done using VCI and TCI 
indices because they are more effective at monitoring ve-
getative drought than are other indices [6,10,11]. Given 
that the province of Fars is the most important agricultural 
region of Iran, the effects of its ground water consumption 
on NDVI were also investigated. The hydrological and 
meteorological stations of Fars are well distributed (geo-
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graphically) throughout the province, and temporal analysis 
was carried out over a span of 10 years. This specific time 
frame was used so that the long-term effects of precipita-
tion and changing ground water levels could be studied. 
Compared with traditional in-situ measurements, the results 
obtained from remote-sensing methods are capable of pro-
viding more reliable drought maps. Chapter 3 explains our 
implementation methodology while Chapter 4 provides a 
comprehensive presentation and analysis of our results. 
Finally, concluding remarks are given in Chapter 5.  
 
2. Materials and Methods 
 
2.1. Study Area 
 
Located in the southern part of the country, Fars is one of 
the 30 provinces that comprise present day Iran (Figure 
1). As of 2006, the province was home to 4.34 million 
people, 62% of which are registered urban dwellers, 
38.1% villagers, and 0.7% nomadic tribes. Three distinct 
climatic regions exist with the province’s 122, 400 km² 
territory: a mountainous area in the north and northwest 
characterized by moderately cold winters and mild sum-
mers; a central region with relatively rainy, mild winters 
and hot, dry summers; and a southern region with rela-
tively rainy, mild winters and hot, dry summers. Shiraz is 
the capital and center of Fars. The province consists of 
the following counties: Estahban, Abadeh, Eqleed, Bo-
vanat, Jahrum, Darab, Sepidan, Shiraz, Fasa, Firouzabad, 
Kazeroon, Lar, Lamerd, Marvdasht, Mamasani, Khonj 
and Nayriz. Agriculture is the most important activity in 
Fars, and its major products include cereal (wheat and 

barley), citrus fruits, dates, sugar, beets and cotton. From 
an agricultural point of view, Fars is one of the most 
strategic provinces in Iran, as it is responsible for pro-
ducing 37% of the country’s wheat.  
 
2.2. Satellite Data 
 
2.2.1. Advanced Very High Resolution Radiometer 

(AVHRR) Images 
The image data taken by the Local Area Coverage Ad-
vanced Very High Resolution Radiometer (LAC AVH- 
RR) aboard the National Oceanic and Atmospheric Ad-
ministration (NOAA) 14-16-17 satellite were prepro-
cessed using ENVI. For temporal analysis, a 10-year 
period was chosen in order to study the long-term effects 
of precipitation and groundwater levels on the vegetation 
coverage. This research was limited to ten years due to 
the inability to access any data records prior to 1998. 

Initial examination of AVHRR data collected from the 
NOAA satellite database [12] revealed that a number of the 
images had severe cloud contamination and/or missing 
passes. Of the 254 images collected during 1998 - 2007 
(April - September), 190 raw AVHRR images were se-
lected. 
 
2.2.2. SPOT Vegetation Maps 
In order to study the vegetation cover in Fars, 10-day 
composite NDVI data (derived from the sensor VEGE-
TATION on board the SPOT satellite platforms) was 
acquired from the “Vlaamse Instelling Voor Technolo-
gish Onderzoek” [13]. The SPOT-VGT S10 (10-day 
composite) NDVI composites have a spatial resolution of 

 

 
Figure 1. Study area: Map of Iran (left) and the various counties within the province of Fars (right).
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1 km2 and were derived from primary SPOT-VGT prod-
ucts; the composites were corrected for reflectance, scat-
tering, water vapor, ozone, and other gas absorption us-
ing the procedures described by Achard et al. and Du-
chemin et al. [14,15]. 

The maximum value compositing (MVC) procedure as 
described by Holben (1986) was used to merge NDVI 
values over the course of ten days [16]. The resulting 
surface reflectance value for each pixel thus corresponds 
to the date with the maximum NDVI-value in a 10-day 
period. Maximum value compositing for the synthesis of 
daily NDVI-values was found to be a reliable procedure 
for detecting changes in vegetation cover [17,18]. 

Typical NDVI-values range between 0.1 and 0.7 for 
vegetated areas, with a higher (composite) NDVI value 
equating to denser, greener vegetation. The temporal 
evolution of NDVI-values is considered to be an effec-
tive way to analyze the impact of 1) natural seasonal 
variations, 2) extreme climatic events, and 3) human 
activities on ecosystems [19]. The temporal evolution of 
NDVI values for the period 1998 - 2005 were analyzed 
in four selected counties in Fars. For each county aver-
age, decadal NDVI-values on farmland were calculated 
by spatial aggregation of the 1 km2 pixels.  
 
2.3. Meteorological and Hydrological Data 
 
Figure 2 shows the precipitation data collected from 122 
synoptic and rainfall stations in the study area over a 
ten-year period from 1998 to 2007. Groundwater-level 
data from 378 observer wells within Fars was also col-
lected. 
 
3. Methodology 
 
Figure 3 shows the flowchart of the proposed drought  
 

monitoring methodology. In the first step, preprocessing 
including image georeferencing, radiometric gain and 
offset calibration of NOAA AVHRR images, and norma-
lization of ground water level data are performed. The 
10-day NOAA AVHRR data is used to produce NDVI 
images, which are then compared and validated using 
SPOT-VEG data. From this data, long-term mean NDVI 
and max/min NDVI values are produced, which are in 
turn used to calculate DSI and VCI. In order to calculate 
the SWI and SPI indices, groundwater and precipitation 
data are used (please see “Reference Data” in the flow-
chart below). 

The next step in our proposed methodology is to use 
the DSI and VHI drought monitoring indices to derive 
drought severity maps. These drought maps are produced 
according to GIS standards and the results are discussed 
in the subsequent sections below. As shown in Figure 3, 
the DSI and VHI indices are also used to derive cor- rela-
tion coefficients. The correlation coefficients are calcu-
lated between SWI and VHI or between SWI and DSI. 
Visual spatial interpretations are performed to evaluate 
the spatial correlations that exist between SPI and VHI as 
well as between SPI and DSI (VHI is calculated from 
VCI and TCI indices). 
 
3.1. Preprocessing 
 
The five bands of raw AVHRR images were extracted 
using ENVI software, and radiometric calibrations were 
performed on bands 1 and 2 using calibration coeffi-
cients provided by NOAA. Digital number values were 
converted into an Albedo function using the following 
Equation (1): 

*DNAlbedo A B= +              (1) 
where DN is the digital number of pixels and A and B are 
calibration coefficients provided by NOAA for NOAA- 

 
(a)                                          (b) 

Figure 2. (a) Rain-gauge stations, (b) Observation wells in and around the province of Fars (Iran). 
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Figure 3. Flowchart of proposed method. 

 
-14 [20].  

Using ENVI software, geometric corrections for bands 
1 and 2 of all the images were performed in two subse-
quent stages using ephemeris data and ground control 
points. In the ground control point method, polynomial 
transformation was employed and Root Mean Square 
error (RMS) values averaged around 0.65 pixels. The 
resulting images had a nominal spatial resolution of 
1.1 km2. Also, ground water level data were normalized 
with respect to long-term annual mean values in order to 
produce SWI data. 

Many researchers have been able to determine vegeta-
tion condition using vegetation indices such as NDVI [9, 
21-25]. The NDVI is based on the fact that healthy ve-
getation has a low reflectance in the visible portion of the 
electromagnetic spectrum due to chlorophyll absorption 
and other pigments, and high reflectance in the Near 
Infrared (NIR) because of the internal reflectance by the 
mesophyll spongy tissue of a green leaf [26]. NDVI can 
be calculated using pixel’s reflectance values of red 
(visible) band and the NIR band of a satellite sensor, and 
is represented by the following Equation (2): 

( ) ( )NDVI NIR Red NIR Red= − +     (2) 

NDVI values range from –1 to +1. Because of the high 
reflectance in the NIR portion of the electromagnetic 
spectrum, healthy vegetation is represented by high ND- 
VI values between 0.05 and 1. Conversely, non-vege- 
tated surfaces (such as water bodies) yield a negative 
NDVI value. Bare soil areas have NDVI values which 
are closest to 0 due to the high reflectance in both the 

visible and NIR portions of the electromagnetic spectrum 
[27].  

Throughout each year of the study, images were col-
lected from the same 10-day period for every month and 
the ones that had the least cloud contamination were se-
lected to produce NDVI images. From these images, 
10-day maximum NDVI monthly composites were sub-
sequently generated. In order to validate these NDVI im-
ages, they were later compared to similar SPOT-VEG 
maps. After validating the NDVI images, min/max NDIV 
and long term NDVI images were obtained based on 
Maximum Value Composite (MVC) using ENVI soft-
ware.  
 
3.2. Ground Drought Indices 
 
3.2.1. Standardized Precipitation Index (SPI) 
Precipitation is the main factor which controls the forma-
tion and persistence of drought. Understanding that a def-
icit of precipitation has different impacts on ground water, 
reservoir storage, soil moisture, snow pack and stream 
flow led McKee et al. to develop the Standardized Preci-
pitation Index (SPI) [28]. The SPI is a probability index 
that is based solely on precipitation and was designed to 
quantify the precipitation deficiency for multiple time 
scales. These time scales reflect the impact of drought on 
the availability of different water resources. A long-term 
precipitation record at the desired station is fitted to a 
probability distribution, which is then transformed into a 
standardized normal distribution so that the mean SPI is 
zero. Positive SPI values indicate precipitation that is 
greater than the mean, while negative values indicate pre-
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cipitation that is less than the mean. The SPI calculation 
for any location is based on the long-term precipitation 
record for a desired period and is calculated using the 
following Equation (3):  

( )i mSPI P P σ= −              (3) 

where Pi is the seasonal precipitation, Pm is the long-term 
mean, and σ is the standard deviation of the long-term 
record. The drought categories defined by SPI values are 
listed below (Table 1). 
 
3.2.2. Standardized Water-Level Index (SWI) 
The Standardized Water-Level Index (SWI) was pro-
posed in order to monitor anomalies in ground water le-
vels [29]. Groundwater level data was obtained from the 
Ground Water Department in Shiraz, Fars. The SWI is 
computed by normalizing seasonal groundwater levels 
and dividing the difference between the seasonal water 
level and its long-term seasonal mean by the standard 
deviation. For normalization, an incomplete gamma func-
tion was used for water level data before using them for 
calculating SWI. SWI is an indicator of water-table de-
cline and an indirect measure of recharge, and thus an 
indirect reference to drought (4):   

( )ij imSWI W W σ= −             (4) 

where Wi is the seasonal water level for the ith well and jth 
observation, Wim is the seasonal mean and σ is the stan-
dard deviation. Since groundwater levels are measured 
from the ground surface to the bottom of the observation 
wells, positive anomalies correspond to water stress while 
negative anomalies represent a ‘no drought’ condition. 
 
3.3. Remote Sensed Indices 
 
3.3.1. Drought Severity Index (DSI) 
NDVI by itself does not reflect drought or non-drought 
conditions. The severity of a drought or the extent of 
wetness can be expressed by a drought severity index. 

This index is defined as a measure of the deviation of the 
current NDVI values from their long-term mean (5). 
Throughout the years of this research (i.e., 1998 to 2007), 
NDVI values were computed on a decadal basis for the 
months of April to September. Decadal, “long-term mean” 
NDVI maps covering the course of 10 years were created 
using the results from NOAA-AVHRR.   

i i meanDSI NDVI NDVI −= −              (5) 

In the equation above, NDVIi represents the NDVI for 
month i and NDVIi-mean is the long-term NDVI mean for 
the month i. A negative DSI indicates below normal ve-
getation conditions and therefore suggests the presence of 
prevailing drought.   

3.3.2. Vegetation Condition Index (VCI) 
Although the NDVI has been used extensively in the past 
for vegetation monitoring, it is often very difficult to in-
terpret in relation to vegetation conditions, especially 
when comparing different climate regions. In order to 
overcome this difficulty, Kogan (1995) created the Vege-
tation Condition Index (VCI) which compares the NDVI 
of the present month with the maximum and minimum 
NDVI (which is calculated using long-term records of RS 
images) [10]. VCI separates the short-term signal from 
the ecological signal, as demonstrated in (6):  

( ) ( )j min max minVCI NDVI NDVI *100 NDVI NDVI= − −

 (6) 
where NDVImax and NDVImin are calculated using the 
above equation. The condition of the ground vegetation 
presented by the VCI is measured as a percent. A 50% 
VCI value reflects fair vegetation conditions, whereas 
values between 50% - 100% indicate optimal or above- 
normal vegetation conditions. A VCI value of 100% 
means that the NDVI value for the selected month (week) 
is equal to the NDVImax, which in turn means that optimal 
conditions for vegetation exist. Different degrees of 
drought severity are represented by any VCI value below 
50%. Kogan (1995) identified extreme drought conditions 

 

Table 1. SPI, SWI and VHI classifications schemes. 
 noitacifissalC                               

           semehcS                      
Drought Classes 

TPS 
)McKee et al., 1993( 

SWI 
(Bhuiyan, 2004) VHI (Kogan, 2001) 

Extreme drought ＜–2.0 ＞2.0 ＜10 

Severe drought ＜–1.5 ＞1.5 ＜20 

Moderate drought ＜–1.0 ＞1.0 ＜30 

Mild drought ＜0.0 ＞0.0 ＜40 

No drought ＞0.0 ＜0.0 ＞40 
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to be those that fell below a VCI threshold of 35% [10]. 
He also suggested that further research be conducted in 
order to categorize drought severity for VCI values rang-
ing from 0 - 35%. 

A VCI value close to 0% reflects an extremely dry 
month and an NDVI value that is close to its long-term 
minimum. Low VCI values that persist over several con-
secutive time intervals indicate the development of dro- 
ught. 

3.3.3. Temperature Condition Index (TCI) 
During the rainy season in general, it is common for 
overcast conditions to prevail for up to three weeks. 
When conditions last longer than this, the weekly NDVI 
values tend to be depressed, giving the false impression of 
water stress or drought conditions. To remove the effects 
of contamination in satellite assessment of vegetation 
conditions, Kogan (1995, 1997) suggested the use of a 
Temperature Condition Index (TCI) [3,10]. The TCI is 
calculated much in the same way as the VCI, but its for-
mulation is modified to reflect the vegetation’s response 
to temperature (i.e. the higher the temperature the more 
extreme the drought). TCI is based on brightness temper-
ature (BT) and represents the deviation of the current 
month’s temperature from the recorded maximum. Using 
meteorological observations, as well as the relationship 
between ground surface temperature and moisture re-
gimes, drought-affected areas can often be detected be-
fore biomass degradation occurs. Hence, TCI plays a key 
role in drought monitoring and is represented by (7): 

( ) ( )max j max minTCI BT  BT *100 BT  BT= − −    (7) 

3.3.4. Vegetation Health Index (VHI) 
While VCI and TCI are characterized by varying mois-

ture and thermal conditions of vegetation, Vegetation 
Health Index (VHI) represents overall vegetation health. 
Kogan (2001) assigned five different drought classes to 
VHI in order to more properly construct drought maps, as 
shown in Table 1 below [11]. VHI is computed using the 
following Equation (8): 

( ) ( )VHI 0.5 VCI 0.5 TCI= +           (8) 
 
4. Results and Discussion 

 
As previously mentioned, preprocessing was applied to 
the input data in order to obtain the 10-day NDVI images 
as well as the long-term and min/max NDVI values. Fig-
ure 4 shows the validation results by comparing NDVI 
values of NOAA-AVHRR with SPOT-Vegetation maps. 
Pearson correlation shows R around 0.87. Therefore, 
SOPT-Vegetation is a good substance for missing AVH- 
RR data. 

Which is SPI and SWI were subsequently calculated 
from long-term precipitation and ground water data. VHI 
maps (See Figure 5(b)) were calculated using TCI and 
VCI values. Drought severity index (DSI) maps (See 
Figure 6) were then produced using long-term NDVI 
means. Different time lags were examined in order to 
investigate the correlation between SPI, DSI, and VHI. 
The same was done in order to interpret the SWI in rela-
tion to DSI and VHI responses. If and when the scales of 
the parameters are the same, spatial correlation coeffi-
cients (Pearson or Superman) generally yield “good” re-
sults (i.e., meaningful interpretations can be made). 

However, when the parameters are different, there is a 
higher chance of witnessing weak correlations, even 
though the parameters are entirely dependent on one 

 

 
Figure 4. Validation between AVHRR NDVI and SPOT-VEG. 
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(a)  

 

 
(b) 

Figure 5. Visual spatial correlation between (a) SPI and (b) VHI during 1999 - 2007. 
 
another. This chance is higher when values are interpo-
lated since interpolation techniques involve different ma-
thematical functions which again generate errors. There-
fore, instead of relying upon correlation coefficients, it is 
suggested that spatial correlation through visual compar-
ison be used in order to provide a better and more mea-
ningful understanding of drought configuration at region-
al scales. This is more so for events like drought which 
have a “regional” aspect. 

It was found that there is no meaningful quantitative 
correlation between SPI and DSI or VHI in different Fars 
counties. However, it was found that there is a meaning-
ful visual spatial correlation between VHI and SPI during 
1998 - 2007 (as shown in Figure 5). For SWI, and its 
correlation with DSI and VHI, the local data of each 
county was analyzed using the Pearson correlation. The 

correlation results are meaningful due to the small areas 
covered by each county.  

In this research, drought monitoring was performed on 
a regional scale rather than at local individual stations. 
Although the variations in vegetation indices can help us 
understand the effect of climatic factors on local vegeta-
tion cover, the variations are of little practical value when 
preparing large-scale mitigation plans. The more we un-
derstand the relationships between precipitation, ground-
water levels, and vegetation indices (on a regional level), 
the more insight we will have into drought onset and se-
verity. Average VHI and DSI values of all counties in the 
study area were calculated as ‘‘average VHI” and “aver-
age DSI” and their correlation with precipitation data and 
SWI were examined. The results of individual stations 
showed better correlations between VHI and/or DSI val- 
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Figure 6. Drought severity classes map. 

 
ues and same-month SWI. A correlation coefficient of 0.9 
was obtained for VHI and SWI, indicating that the major-
ity of vegetation lands cover is due to ground water irri-
gation. 

The correlation coefficients of 14 counties show a 
strong correlation between VHI and SWI. However, in 
the period explored, there were various intensities of 
drought. The Ministry of Agriculture of Iran indicates 
good yield data for the same time period. The DSI maps, 
which were extracted from NDVI maps, also show rea-
sonable vegetation cover during these ten years, which 
confirms rational yields. The Ground Water Department 
of Fars has recently warned of a significant decrease in 
aquifer levels for all agricultural plains. This type of wa-
ter consumption in the most important agricultural part of 
Iran is unsustainable, and could result in a potentially 
severe food security crisis. 
 
5. Conclusions 
 
SPOT-Vegetation maps are reliable substitutes for any 
missing or cloudy NOAA-AVHRR data that was col-
lected from 1998 to the present. The SPI maps reveal that 
meteorological drought and stress appear mostly in the 
southern, central, and eastern parts of the province of Fars; 
the years with severe drought during the study period 
appear to be from 2001 to 2003. Furthermore, VHI maps 
indicate a high visual correlation with SPI, but the quan-
titative correlations for each county do not provide relia-
ble results. When the scales of the parameters are differ-
ent, there is the possibility of weak correlations even 
when in reality one parameter is entirely dependent on the 
other. Therefore, instead of correlation coefficients, spa-

tial correlation through visual comparison provides a bet-
ter and more meaningful picture. This is especially true 
for events like drought which have a “regional” aspect. 
The DSI maps indicate good vegetation conditions for the 
majority of the study periods. Good vegetation cover 
conditions cannot be confirmed by looking at the “Preci-
pitation-DSI” Pearson correlation or the “Precipitation- 
-NDVI” results. In arid and semi-arid climate regions 
which use ground water for irrigation because of a lack of 
precipitation, vegetation cover is not only related to pre-
cipitation. A strong Pearson correlation between DSI and 
the same month SWI for the majority of Fars counties can 
be attributed in part to the irregular water consumption of 
the region’s farmers. The main cause of this kind of irre-
gular water consumption is the “assurance purchase law” 
for agricultural products from the government. If a region 
shows positive vegetation indices (as demonstrated thr- 
ough satellite-based images) despite being located in an 
arid or semi-arid region, it is very possible that the actual 
precipitation and ground water resource conditions are 
being misrepresented. Based on the finding of this re-
search, it is recommended that the Iranian government 
develop and use hydrological and meteorological drou- 
ght-risk maps not only for the province of Fars, but for 
the entire country. 
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