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Abstract 
 
A model of an angle-spread source, termed the “Gaussian Channel Model” is considered. The cumulative 
distribution function of the Time-of-Arrival of the multipath components is derived for an arbitrary angle 
spread. The simple approximate expressions for the Time-of-Arrival cumulative distribution function and 
probability density function are proposed. Numerical results obtained with the help of the derived expres-
sions show the good coincidence with the experimental data and other known results. 
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1. Introduction 

The implementation of smart antennas at base stations 
(BS) gives the opportunity to significantly enhance the 
performance of wireless networks [1]. The plenty of al-
gorithms for adaptive array signal processing have been 
proposed and investigated (see for example, [2,3]). The 
effectiveness of these algorithms depends on the behav-
ior of the signal propagation channel. Therefore, accurate 
statistical channel models are required for the validation 
of these adaptive algorithms. 

The propagation channel can be model in many ways. 
The one of the most popular strategies is “geometric 
modeling” [4]. It idealizes the multipath propagation en-
vironment via a geometric abstraction of the spatial rela-
tionships among the transmitter, the receiver and the 
scatterers. In other words, geometric models map the 
propagation channel’s geometry into the measurable 
fading metrics. The metrics of interest, as a rule, are the 
Angle-of-Arrival (AoA) distribution, the Time-of-Arrival 
(ToA) distribution, the power azimuth spectrum (PAS) 
and the power delay spectrum (PDS). 

There exist various geometric models based on a dif-
ferent idealization of the propagation channel’s geometry. 
The corresponding highlights and comparisons can be 
found in reviews [4,5]. The modeling approach implying 
a Gaussian density of scatterers centered at the transmit-
ter can be considered as both effective and safe (i.e. well 
fitting the experimental data in the most of cases) [4]. 
The fundamental framework on the channel modeling 
under assumption of the Gaussian scattering was pro-

vided in [6]. 
In [7,8], the Gaussian distribution of scatterers was 

used to model the urban macrocellular environment and 
the “Gaussian Channel Model” (GCM) was proposed. 
This model assumes that the scatterers can be situated in 
any point in the horizontal plane and the probability of 
occurrence of the scatterer location decreases in accor-
dance with a Gaussian law when its distance from the 
user equipment (UE) increases. This results in a situation 
when the BS “sees” the UE as a source with some angu-
lar distribution. As follows from the presented results, 
the AoA probability density function (pdf) for the GCM 
fits the experimental data [9] well. 

The goal of this paper is to give the further elaboration 
to the GCM. In order to characterize the temporal disper-
sion of the signal seen by the BS, the ToA distribution is 
derived. 

This paper is organized as follows: Section 2 gives the 
brief background on the GCM and derives the strict 
expression for the ToA cumulative distribution function 
(cdf). Section 3 introduces the approximate expression 
for ToA cdf and derives the ToA pdf. The comparison of 
the derived ToA distribution with the known results and 
the measured data is performed. Section 4 concludes the 
main findings of the paper. 
 
2. ToA CDF 
 
The GCM assumes that the random scatterers are cen-
tered at the transmitter (UE) and the probability of scat-
terer’s appearance decreases away from the transmitter 
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location. In a polar coordinate system the corresponding 
distribution can be written as [7]: 
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where r is the distance between the scatterer and the UE, 
 is the azimuth angle, reff is the nominal distance at 
which the pdf (1) decreases by e times, i.e. p(reff,  ) = 
e−1 p(0, ). It can be noted that the marginal pdf p( ) is 
uniform, i.e., the scatterers’ density is independent of 
azimuth direction. 

Figure 1 gives the background on the geometry of the 
GCM. It is supposed that D is the line-of-sight (LoS) 
distance between the UE (transmitter) and the BS (re-
ceiver), (x,y) are the Cartesian coordinates centered at the 
UE, eff is the angle corresponding to the radius reff seen 
by the BS. 

The signal transmitted by the UE is coming to the BS 
via different paths so the BS receives a set of signals 
having different AoAs and ToAs. To get the ToA distri-
bution, we will exploit some geometrical relationships 
and the fact that the distance traveled by the radio signal 
defines its propagation delay. 

Let 1 2     be the sum of the distances from an 
arbitrary scatterer to the BS and the UE, correspondingly. 
It is known that the locus of points with the same value 
of distance  is an ellipse. The BS and the UE are situ-
ated at the focuses of the ellipse and the lengths of its 
semi-axes are related though Equations 

2 2 2

2

0.25 ,

a

a b D


  

            (2) 

where a and b are the lengths of major and minor 
semi-axis (see Figure 1). 

The distance traveled by a signal via any scatterer (ly-
ing inside the ellipse) varies in the range of (D… ). To 
derive the distribution of value  we should find the 
probability F() of the scatterer appearance within the 
ellipse boundaries. 

Taking into account (1), the probability is given as 

   

2

1

ellipse

( )2 2

2 2 2
( )eff eff eff

,

1
exp exp d d

π

y xb

b y x

F p x y dxdy

x y
y x

r r r







    
       

     



 
 (3) 

where the functions y1(x) and y2(x) define the ellipse 
boundaries subject to (2): 
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It is possible to simplify (3) by introducing the new 
variables u = effx r , v = effy r . After the substitution, the 
Equation (3) takes form 
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Given the speed of light equals c, the distance  causes 
the propagation delay   = c . As follows from Figure 
1,  = D is the shortest distance between the transmitter 
and receiver. This means that the minimum propagation 
delay is equal to 0 = D c . Considering the normalized 
propagation delay n = 0   and the effective diameter 

d = 2 effD r  =  1 2sin eff , the Equation (5) can be 

rewritten as Equation (6). 
The Equation (6) represents the exact expression for 

the ToA cdf. Unfortunately, this dependence has too 
complex form and its practical usage is difficult. There-
fore, it is of interest to introduce a simpler formula. 

3. The Approximation of the ToA Distribtion 

The Equation (3) corresponds to the strict approach when 
the probability of the scatterer’s appearance within the 
ellipse boundaries is to be found. Let us now replace the 
ellipse boundaries with rectangular ones. In such a case 
the double integral in (3) can be written as a product of 
two one-dimensional integrals, i.e. 
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where c1 = −0.5D-a, c2 = −0.5D + a are the limits of 
integration over the variable y, k is the additional pa-
rameter introduced to minimize the approximation error 
due to the boundary replacement. 
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Taking into account (5) and (6), it is straightforward to obtain 
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The Equation (8) can be rewritten as 
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To minimize the difference between the exact (6) and 

approximate (9) expressions it is convenient to find the 
extremum of the mean-root-square error  considering k 
as a variable subject to the fixed parameter eff 
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The solution of (10) has been found numerically. The 
result is plotted in Figure 2 as the dependence of k upon 

eff (the dotted curve). This dependence allows analytical 
approximation with the help of Equation 
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The function (11) is presented in Figure 2 as the solid 
curve. It is clear to see that in the range of eff = 0…30˚ 
the chosen approximation fits the numerical solution 
quite well. 

The substitution of (11) into (9) results in expression 
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In the macrocellular environment the angular spread is 
rather moderate so that the value of eff is less than 30˚. 
Hence, sineff is less than 0.5 and the inequality 
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takes place for all values of n . Therefore, (12) can be 
reduced to the form 
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The Equation (14) represents the approximate expres-
sion for the ToA cdf. To compare it with the exact for-
mula (6), Figure 3 shows cdfs F(n) and ( )nF   for the 
different values of θeff = 5˚; 15˚; 30˚ and 45˚. The solid 
and dash curves correspond to (6) and (14), respectively. 

One can see that the approximate cdfs fit the exact 
ones quite well. Therefore, (14) may be used to model 
temporal dispersion of the signal received by the BS. 
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Sometimes the usage of a pdf instead of a cdf is more 
convenient. Performing the derivation of (14) by variable 
n, one can obtain that the corresponding ToA pdf is 
given as 
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The obtained results can be validated by means of 
comparison with other known results. In [10], the de-
tail study of the standard Gaussian and hyperbolic 

channel models is presented. Among other results, it 
defines the ToA pdf of the Gaussian scatterer distribu-
tion as 
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Figure 1. The geometry of the Gaussian channel model. 
 

 

Figure 2. Parameter k versus eff (dotted curve-numerical 
solution, solid curve-approximation). 

 

 
Figure 3. The comparison of the exact (solid curves) and 
approximate (dash curves) ToA cdfs. 

 
To the end of comparison, Equations (15) and (16) are 

plotted against n in Figure 4 as the solid and dash-dot 
curves, correspondingly. In accordance with [10], the 
parameter DS is set to 5. The parameter eff in (15) is 
chosen to provide the best fitting and equals to 16˚. To 
realize the comparison with the hyperbolic scatterer dis-

tribution, Figure 4 also shows the corresponding ToA 
pdf with the parameter Db = 5 (dash curve). 

Besides the comparison with the known theoretical 
Equations, the validation of the obtained results against 
the experimental data is of interest. Some experimental 
data can be found in literature. For example, [9] presents 
the results of the measurement campaigns conducted to 
collect information about the temporal and azimuthal 
signal dispersions. To depict the temporal dispersion 
seen in the typical urban environment the histogram of 
estimated delays is given. The corresponding ‘measured’ 
pdf produced from that histogram is plotted in Figure 4 
as the set of “” points. 

As follows from Figure 4, the distribution (15) is sat-
isfactorily overlapped with other theoretical results and 
fits the experimental data quite well.  

 

 
Figure 4. The GCM, standard gaussian, standard hyper-
bolic and experimental ToA pdfs. 

As follows from Figure 4, the distribution (15) is 
satisfactorily overlapped with other theoretical results 
and fits the experimental data quite well. 

4. Conclusions 
 
In this paper the further elaboration of the Gaussian 
Channel Model has been performed. This model is suit-
able for representing the signal seen at the BS in the ur-
ban macrocellular environment, and assumes that the 
probability of the scatterer occurrence decreases in ac-
cordance with a Gaussian law when its distance from the 
UE antenna increases. In order to characterize the tem-
poral dispersion of the signal seen by the BS, the exact 
expression for the ToA cdf has been derived. To simplify 
the form of the ToA distribution an approximate ap-
proach has been considered and the simpler expressions 
for the ToA cdf and pdf have been proposed. The com-
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parison of the obtained pdf with the published experi-
mental results shows a good agreement. 
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