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Abstract 
 
The optimal semi-matching problem is one relaxing form of the maximum cardinality matching problems in 
bipartite graphs, and finds its applications in load balancing. Ordered binary decision diagram (OBDD) is a 
canonical form to represent and manipulate Boolean functions efficiently. OBDD-based symbolic algorithms 
appear to give improved results for large-scale combinatorial optimization problems by searching nodes and 
edges implicitly. We present novel symbolic OBDD formulation and algorithm for the optimal semi- 
matching problem in bipartite graphs. The symbolic algorithm is initialized by heuristic searching initial 
matching and then iterates through generating residual network, building layered network, backward trav-
ersing node-disjoint augmenting paths, and updating semi-matching. It does not require explicit enumeration 
of the nodes and edges, and therefore can handle many complex executions in each step. Our simulations 
show that symbolic algorithm has better performance, especially on dense and large graphs. 
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1. Introduction 
 
The matching problems arise in many practical applica-
tion settings where we often wish to find the proper way 
to pair objects or people together to achieve some desired 
goal. Also the search for certain matching can be an im-
portant subtask for some complex problems such as the 
maximum network flow and traveling salesman problem 
[1]. The matching problems were classified into the fol-
lowings [2]. Problem 1 (Maximum Cardinality Matching 
in Bipartite Graphs): The nodes are partitioned into boys 
and girls, and an edge can only join a boy and a girl. We 
look for a matching with the maximum cardinality. 
Problem 2 (Maximum Cardinality Matching in General 
Graphs): This is the asexual case, where an edge joins 
two persons. Problem 3 (Maximum Weighted Matching 
in Bipartite Graphs): Here we still have nodes represent-
ing boys and girls, but each edge has a weight associated 
with it. Our goal is to find a matching with the maximum 
total weight. This is the well-known assignment problem 
of assigning people to jobs and maximizing the profit. 
Problem 4 (Maximum Weighted Matching in General 
Graphs): This problem is obtained from Problem 1 by 
making it harder in both ways. Formally, a bipartite 
graph is a graph G = (U V, E) in which U V =  and 

E  U  V. A matching in G is a set of edges, M  E, 
such that each node in U  V is an endpoint of at most 
one edge in M. In other words, each node in U is 
matched with at most one node in V and vice-versa. 
Maximum cardinality matching problem in bipartite 
graph is finding a matching that contains a maximum 
number of edges, and many efficient polynomial algo-
rithms for computing the solutions have been developed 
[1,2]. 

The load balancing problems have received intense 
study in operations research and industrial engineering, 
in which we are given a set of tasks and a set of ma-
chines, each machine can process a subset of the tasks, 
and each task requires one unit of processing time. We 
need assign each task to some machines that can process 
it in a manner that minimizes some optimization objec-
tive. One possible objective is to minimize the makespan 
of the schedule, which is the maximal number of tasks 
assigned to any given machine. Another possible goal is 
to minimize the average completion time, or flow time, 
of the tasks. A third possible goal is to maximize the 
fairness of the assignment from the machines’ point of 
view, i.e., to minimize the variance of the loads on the 
machines. Motivated by load balancing problem, Harvey 
et al. defined the optimal semi-matching problem through 
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relaxing maximum cardinality matching in bipartite 
graphs [3]. Formally, a semi-matching in a bipartite 
graph G = (U V, E) is a set of edges, M  E, such that 
each node in U is an endpoint of exactly one edge in M. 
Clearly a semi-matching does not exist if there are iso-
lated nodes in U, so we require that each node in U have 
degree at least 1. Note that it is trivial to find a 
semi-matching, i.e., simply match each node in U with 
an arbitrary neighboring node in V. Harvey et al.’s opti-
mal semi-matching problem is finding a semi-matching 
that match U with V as fairly as possible, that is, mini-
mizing the variance of the matching edges at each 
V-node. To compute optimal semi-matching efficiently, 
they presented two algorithms. The first algorithm gen-
eralizes the Hungarian method for computing maximum 
bipartite matching, and the second one is based on the 
notion of cost-reducing paths. Experimental results 
demonstrated that the second algorithm is vastly superior 
to using known network optimization algorithms to solve 
the optimal semi-matching problem [3]. The concept of 
semi-matching appeared firstly in Lawler’s book [4], 
with the objective of finding maximum weight subset of 
elements in a matrix. 

Finding optimal semi-matching in bipartite graphs is 
one of typical combinatorial optimization problems, 
where the size of graphs is a significant and often pro-
hibitive difficulty. This phenomenon is known as com-
binatorial state explosion, resulting in that large graphs 
cannot be stored and operated on even the largest con-
temporary computers. In recent years, implicitly sym-
bolic representation and manipulation technique, called 
as symbolic graph algorithm or symbolic algorithm [5,6], 
has emerged in order to combat or ease combinatorial 
state explosion. Typically, ordered binary decision dia-
gram (OBDD) or variants thereof are used to represent 
the discrete objects [6-9]. Efficient symbolic algorithms 
have been devised for hardware verification, model 
checking, testing and optimization of circuits [7,8]. 
Hachtel and Somenzi developed OBDD-based symbolic 
algorithm for maximum flow in 0-1 networks that can be 
applied to very large graphs (more than 1036 edges) [10]. 
Gu and Xu presented the symbolic ADD (Algebraic De-
cision Diagram) formulation and algorithms for maxi-
mum flow problems in general networks [11]. Symbolic 
algorithms appear to be a promising way to improve the 
computation of large-scale combinatorial optimization 
problems through encoding and searching nodes and 
edges implicitly. Our contribution is to present the sym-
bolic algorithm for optimal semi-matching in bipartite 
graphs. 

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce some concepts and properties re-
garding bipartite graphs and maximum cardinality 

matching. The symbolic formulations for bipartite graphs 
and optimal semi-matching are described in Section 3; 
Section 4 presents the symbolic OBDD algorithm; The 
last Section gives experimental results and analysis. 
 
2. Preliminaries 
 
Given a graph G = (V, E) where V is a set of nodes with 
V n  and E a set of edges with E m , a matching 

M of G is a subset of edges set E such that no two ele-
ments of M are incident to the same node. We refer to the 
edges in M as matched edge, and edges not in M as un-
matched or free edges. We also refer to a node v  V as 
matched node with respect to a matching M if there is an 
edge in M incident to v, and it is called free or unmatched 
otherwise. For a matched node v the unique node w con-
nected to v by a matching edge is called the mate of v. 
The cardinality M  of a matching M is the number of 
edges in M. A matching which contains a maximum 
number of edges is called the maximum-cardinality 
matching of the graph. 

A simple path p in G is called an alternating path with 
respect to the matching M if the edges in p are alternately 
in M and not in M. If an alternating path starts and ends 
at the same node, it is called as an alternating cycle. We 
refer to an alternating path as an even alternating path if 
it contains an even number of edges and an odd alter-
nating path if it contains an odd number of edges. An 
odd alternating path with respect to a matching M is 
called as an augmenting path if the first node and last 
node in the path p are unmatched or free. 

Property 1 If p is an augmenting path with respect to a 
matching M, then M p  = (M − p)(p − M) is also 
a matching of cardinality |M| + 1. Moreover, in the 
matching M p , all the matched nodes in M remain 
matched, and two additional nodes, namely the first and 
last nodes of p, are matched. 

Property 2 If 1 2M M  holds for two matching M1 
and M2 of G, then there are d (= 2 1M – M ) augmenting 
paths with respect to M1 in G, and the paths are 
node-disjoint. 

A bipartite graph G = (U V, E) is a graph whose 
node set is partitioned into two non-empty disjoint 
groups U and V (U ∩ V= ) such that every edge of 
the graph is incident on at most one node from each 
group. This particular structure of bipartite graphs can 
be used in developing the algorithms for maximum car-
dinality matching. We can direct all unmatched edges 
from U to V and all matched edges from V to U, and re-
fer to the directed bipartite graph (U  V, E) as a resid-
ual network with respect to bipartite graph G and match-
ing M. On the directed view, the existence of an aug-
menting path is then tantamount to the existence of a 
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path from a free node in U to a free node in V. Also, 
augmenting by a path p is trivial. One simply reverses 
the direction of all edges on the path. Observe that this 
correctly records that the endpoints of p are now matched 
and that M is replaced by M p . We will use this di-
rected view in all our implementations of bipartite 
matching algorithms. 

Property 2 guarantees the existence of many aug-
menting paths when current matching is still far from 
optimality, and suggests organizing many node-disjoint 
augmenting paths in each execution. In this regard, lay-
ered networks are usually constructed. In a layered net-
work the nodes of a graph are partitioned into layers ac-
cording to their distance with respect to the starting layer, 
i.e., a node v belongs to layer k if there is a path from the 
starting layer to v consisting of k edges and there is no 
path with fewer edges. For any edge in a layered network 
the distance of the target node is at most one more than 
the distance of the source node. The construction of the 
layered network begins by putting all free nodes in U 
into the zeroth layer, and proceeds by breadth-first search. 
The first layer is completed that contains free nodes in V, 
and the second layer contains free nodes in U and so on. 
Only edges that connect different layers can be contained 
in shortest augmenting paths, and the layered network 
contains all augmenting paths of shortest length. 
 
3. Symbolic Formulation 
 
An ordered binary decision diagram (OBDD) [5,6] pro-
vides compact, canonical and efficiently manipulative 
representation for Boolean functions. The OBDD for a 
non-constant Boolean function f is a directed acyclic 
graph G = (V, E). It includes sink or terminal nodes ‘0’ 
and ‘1’, which represent constant Boolean functions 0 
and 1. These nodes have no descendants. All other nodes 
vV include a labeled variable l(v), and have two 
out-going edges of then and else cofactors drawn as solid 
and dash lines. The nodes are in one-to-one correspon-
dence with Boolean functions. The function f(v) of a 
node vV is specified as l(v)f(v)then+ l(v)f(v)else, where “” 
and “+” denote Boolean conjunction and disjunction 
respectively, and f(v)then and f(v)else are the functions of the 
then and else children. The root node of an OBDD 
represents the function f. The variables in an OBDD are 
ordered, i.e., if v is a descendant of u , which means (u, v) 
 E, then l(u) < l(v), and all the paths in the OBDD keep 
the same variable ordering. 

Given a Boolean function and any assignments to its 
variables, the function value is determined by tracing a 
path from the function node to a terminal node following 
the appropriate branch from each node. The branch de-
pends on the variable value of the assignments, and the 

function value under the assignments is determined by its 
path’s terminal or sink node. 

For example, Figure 1 shows the binary tree and the 
OBDD for Boolean function f = x1  x3 + x2  x3, where x1 < 
x2 < x3. It is obvious that the OBDD is a directed acyclic 
graph, and stores the same information in a more com-
pact way. We trace the path ①②③④, and reach 
the sink node 0. Thus, the value of Boolean function f = 
x1  x3+x2  x3 of variable assignment (0,1,0) is 0. 

An important property of OBDDs is that they are a 
canonical representation of Boolean functions. Canonic-
ity means that for a Boolean function f and each variable 
ordering  there is a unique OBDD, and vice versa. 
Moreover, many operations of Boolean functions can be 
implemented efficiently through graphical manipulations 
of OBDDs. 

We convert a bipartite graph G = (U V, E) to an 
OBDD by encoding the nodes of G with a length-n bi- 
nary number, where n = 2log U V   
node in U corresponds to a vector of binary variables X = 
(x0, ···, xn-1), and encoded node in V corresponds to a vec-
tor of binary variables Y = (y0, ···, yn-1). The edge (u, v)E 
of G can be represented by binary vector (X, Y) = (x0, ···, 
xn-1, y0, ···, yn-1 ), where X = encoded (u) = (x0, ···, xn-1) and Y 
= encoded(v) = (y0, ···, yn-1) are the binary encoding of 
node u and v respectively. Thus, a bipartite graph is for-
mulated by a triple (s(X), t(Y), E(X, Y)), where s(X), t(Y) 
and E(X, Y) are the characteristic functions as following: 

. The en- 

   1, ,

0, otherwise

X encoded u u U
s X

 
 


     (3.1) 

   1,           ,  

0 ,               otherwise             

Y encoded v v V
t Y

 
 


   (3.2) 

       1, , , ,
,

0, oterwise

X encoded u Y encoded v u v E
E X Y

   



 

(3.3) 
These characteristic functions are of Boolean func-

tions, and can be compactly represented by OBDDs. For 
example, an OBDD for the bipartite graph in Figure 2(a) 
is shown in Figure 2(b). 

Given a bipartite graph (s(X), t(Y), E(X, Y)), the opti-
mal semi-matching problem is formulated as follows: 

max:  
, {0,1}

,
nX Y

M X Y

                   (3.4) 

subject to: 
   

   
{0,1}

, 1

, ,

nX

M X Y t Y

M X Y E X Y



 




       (3.5) 

 
4. Symbolic OBDD Algorithm 
 
Given the symbolic representation (s(X), t(Y), E(X, Y))  
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for a bipartite graph G = (U V, E), the pseudo-code of 
the symbolic OBDD algorithm for optimal semi- 
matching is presented in Figure 3. 

It begins by greedily searching initial matching and 
then iterates through a sequence of phases. Each phase 
consists of the following main steps: generating residual 
network; building layered network; traversing node- 
disjoint augmenting paths; and updating semi-matching. 
The algorithm terminates and returns the maximum 
semi-matching when the cardinality M  of semi- 
matching M equals the cardinality U . In the algorithm, 
variables and data are stored in OBDD forms, and com-
putations are implemented by symbolic OBDD opera-
tions. 

1) Searching initial matching through heuristic functions 
In order to obtain matching directly, we adopt a heu-

ristic function (X,Y,Z):{0,1}n×{0,1}n×{0,1}n {0,1}. 
The first argument is the base, and two other arguments 
are the nodes to be compared. For every choice of base X, 
 returns 1 if the second argument precedes the third one, 
else return 0. 

Two different heuristic functions are used in the sym-
bolic algorithm. The first one, relative proximity heuris-
tic function, is R(X,Y,Z) = ||Y-X||<||Z-X||, where ||XY|| =  

1

0

2
n

i
i i

i

x y




 . The second is D(X,Y,Z) = (||Y|| < ||Z||), 

called as datum proximity heuristic function that is a 
special case of relative proximity heuristic function in-
dependent of the base and simply returns the result of 

testing ||Y||<||Z||. Both heuristic functions can be repre-
sented by BDDs of size linear in n[10]. 

We obtain an initial matching of bipartite graph (s(X), 
t(Y), E(X, Y) by the following computation: 

        
        

, , , , ,

, , , , ,

Q X Y E X Y Z E X Z X Z Y

M X Y Q X Y Z Q Z Y Y Z X

   

   
 (4.1) 

The edges in Q(X,Y) form a right-unique relation, i.e., 
there is at most one edge out of each node X. MP(X,Y) is 
a left-unique subset of Q(X,Y), and consists of edges that 
share no end nodes. 

For example, Figure 4(a) and 4(b) show the initial 
matching (darkened lines) of the bipartite graph in Fig-
ure 2(a) using relative proximity heuristic function and 
datum proximity heuristic function respectively. The 
heuristic functions are also applied in finding node- 
disjoint augmenting paths. 

2) Generating residual network 
In order to find a semi-matching that match U with V 

as fairly as possible, we rank the nodes in V by incident 
degrees in a semi-matching M, which is defined as fol-
lowing: 

    deg , ,M v u U u v M v V         (4.2) 

The residual network under semi-matching M consists 
of unmatched nodes in U and nodes with the smallest 
degree in V. It is implemented by the following computa-
tions: 

 
Procedure generate_residual_network (A(X), B(Y), E(X,Y), 
M(X,Y)); 

{Rs(X) = A(X) (Y)M(X, Y); 
Rt(Y) = ranking (B(Y), M(X,Y) ); 
RE(X,Y)) = (E(X,Y)  ),( YXM  + M(Y, X))  Rt(Y); 
} 

 
 

             (4.3) 
 
 
 
 

 

Figure 1. OBDD for boolean function f = x1  x3 + x2  x3. 



T. L. GU  ET  AL 
 

69

 

Figure 2. OBDD for a bipartite graph. 
 

 

Figure 3. Pseudo-code for symbolic OBDD algorithm. 
 

 

Figure 4. Heuristic search for initial matching. 

 Procedure ranking (t(Y), M(X,Y)); 
{B(Y) = t(Y) (X)M(X, Y);  
k =0;  
while ((B(Y)) = = 0)  

{k = k +1; 
for Y  t(Y) 

{if (|(X)M(X, Y)| = = k) 
B(Y) = B(Y) + Y; 
} 

 
 
 
 
 

(4.4) 
 
 
 } 

}  
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3) Building layered network 
We need to build the layered network from a residual 

network so as to obtain node-disjoint augmenting paths. 
We initialize layer zero by setting nodes layer(0) with 
Rs(X) and outgoing edges U(0)(X,Y) with layer(0)RE(X,Y). 
On odd layer (2i+1), nodes layer (2i+1) are target-nodes 
from edges U(2i) (X,Y), and outgoing edges U(2i+1)(Y,X) 
include matched edges layer (2i+1)RE(X,Y). Even layer 2i 
consists of nodes layer (2i) of target-nodes from edges 
U(2i-1) (Y,X) and outgoing edges U(2i)(Y,X) of unmatched 
edges layer(2i)RE(X,Y). A layered network is built by 
forward-breadth-first traversing residual network. It is 
implemented by the following computations (Equation 
(4.5)). 

4) Backward traversing node-disjoint augmenting paths 
Once a layered network is constructed, we go through 

a series of steps to find node-disjoint augmenting paths. 
Supposed that the top layer of layered network with k = 
2l layers satisfies     ,kU X Y Rt Y   0, i.e., layer(2l 
+ 1) will have unmatched nodes, we proceed to build 
node-disjoint augmenting paths backward from un-
matched edges RM(l) (Y,X) and matched edges RP(l)(X,Y) 
(Equation (4.6)). 

Backward breadth-first traversing is implemented by 
the following computations (Equation (4.7)): 

This process terminates by computing RM(0) (X,Y), re-
sulting in node-disjoint MP(X,Y) and RP(X,Y). Heuristic 
functions guarantee that the augmenting paths are node- 

     
   

       
          

         
          

        

0

(2 )

2 1

(2 1)

2

, , ,

0

, 0 ,

2 1 , ; 0,1,2,

, 2 1 , ; 0,1, 2,

2 , ; 0

, 2 , ; 0,1,2, ,

i

i

i

i

P X Y RE X Y M X Y

layer Rs X

U X Y layer P X Y

layer i X U X Y Rt Y i

U Y X layer i M Y X i

layer i Y U Y X Rs X i

U X Y layer i P X Y i X Y





 



 

    

   

   

  









,1, 2,



                          (4.5) 

         
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            

2

( )

( )

( )
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2 , 1 , 1 , , ,

1 , 2 , 2 , , ,

1 , , 2 1 , ;

2 , 1 , 1 , , ,

1 , 2 , 2 , , ,

l l
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l l l

RM X Y U X Y Rt Y

RM X Y RM X Y Z RM X Z X Z Y

RM X Y RM X Y Z RM Z Y Y Z X

RP Y X Y RM X Y U l Y X

RP Y X RP Y X Z RP Y Z Y Z X

RP Y X RP Y X Z RP Z X X Z Y

 

   

   

   
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                        (4.6) 
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                 

                 
     

( 1) (2 )

( )

( )

2 1( )

1 , , , ; 1 , 2 , , 2,1

2 , 1 , 1 , , , 1 , 2 , , 2,

1 , 2 , 2 , , , 1 , 2 , , 2,1

1 , , , ; 1 , 2 , , 2,1

2 , 1 ,

i i i

i i i

i i i

i il

i i

RM X Y X RP Y X U X Y i l l

RM X Y RM X Y Z RM X Z X Z Y i l l

RM X Y RM X Y Z RM Z Y Y Z X i l l

RP Y X Y RM X Y U Y X i l l

RP Y X RP Y





     

      

      

     











      

1

    
                 

( )

( )

1 , , , 1 , 2 , , 2,1

1 , 2 , 2 , , , 1 , 2 , , 2,1

i

i i i

X Z RP Y Z Y Z X i l l

RP Y X RP Y X Z RP Z X X Z Y i l l

     

      





          (4.7) 

              
            

            

0 1 0

0 0 (0)

0 0 (0)

1 , , ,

2 , 1 , 1 , , ,

, 2 , 2 , , ,

M X Y X RP Y X U X Y

RM X Y RM X Y Z RM X Z X Z Y

RM X Y RM X Y Z RM Z Y Y Z X

  

   

   

                    (4.8) 

Copyright © 2011 SciRes.                                                                                   CN 



T. L. GU  ET  AL 
  

Copyright © 2011 SciRes.                                                                                   CN 

71

     

     

1

1

, ,

, ,

l
i

i

l
i

i

RP X Y RP X Y

MP X Y RP X Y






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


        (4.9) 

disjoint and have the shortest length (Equation (4.8) and 
(4.9)). 

5. Experimental Results 

The symbolic OBDD algorithm proposed in this paper 
has been implemented in windows 2000 and software 
package CUDD [12]. Two groups of experiments are 
conducted. In both cases, CPU time is in seconds on a P4 
1500MHz with 128MB of memory. 

In the first group of experiments, the symbolic OBDD 
algorithm is compared with Asm1 and Asm2 algorithms 
[3]. We choose randomly generated graphs with different 
numbers of nodes and edges. Random graphs are very 
close to worst cases for symbolic algorithms. The results 
are shown in Table 1. 

In the second group of experiments, we choose ran-
domly generated graphs with 4000 nodes and different  

 
Table 1. Comparison of symbolic OBDD algorithm with 
Asm1and Asm2 algorithms. 

nodes edges OBDD Asm1 Asm2 

1250 380 6.014 65.524 45.165 

1250 502 4.415 89.145 64.354 

1250 881 1.078 150.453 70.342 

1250 1011 0.96 150.781 65.897 

1250 1133 0.597 156.254 43.546. 

1250 1202 0.485 160.542 30.546 

1350 275 7.245 31.125 20.158 

1350 399 6.241 54.094 36.478 

1350 675 3.024 86.324 68.157 

1350 818 2.641 97.254 70..587 

1350 1100 1.564 105.245 53.546 

1350 1240 0.987 108.354 48.241 

5000 4010 25.156 memory out memory out

5000 4600 22.556 memory out memory out

8000 899 163.123 memory out memory out

8000 2310 92.965 memory out memory out

8000 5321 61.987 memory out memory out

8000 6873 57.332 memory out memory out

 

Figure 5. Comparison of symbolic OBDD algorithm to 
asm1and Asm2 for graphs with varying densities. 

edges (or densities), and our symbolic algorithm is com-
pared to Asm1 and Asm2 algorithms. The running times 
are plotted in Figure 5, where the x axe represents the 
graph density, i.e. the ration of the edges to the nodes, and 
the y axe is the CPU time used. It can be observed that 
the running times of our symbolic algorithm reduce dras-
tically as the graph densities increase. 

Both groups of experiments give the fact that symbolic 
algorithm outperforms both Asm1 and Asm2 algorithms, 
especially on dense and large random graphs. 
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