
Communications and Network, 2011, 3, 65-72
doi:10.4236/cn.2011.32009 Published Online May 2011 (http://www.scirp.org/journal/cn)

Copyright © 2011 SciRes. CN

The Symbolic OBDD Algorithm for Finding Optimal
Semi-Matching in Bipartite Graphs

Tianlong Gu, Liang Chang, Zhoubo Xu
School of Computer Science, Guilin University of Electronic Technology, Guilin, China

E-mail: gu@guet.edu.cn
Received December 2, 2010; revised January 19, 2011; accepted February 28, 2011

Abstract

The optimal semi-matching problem is one relaxing form of the maximum cardinality matching problems in
bipartite graphs, and finds its applications in load balancing. Ordered binary decision diagram (OBDD) is a
canonical form to represent and manipulate Boolean functions efficiently. OBDD-based symbolic algorithms
appear to give improved results for large-scale combinatorial optimization problems by searching nodes and
edges implicitly. We present novel symbolic OBDD formulation and algorithm for the optimal semi-
matching problem in bipartite graphs. The symbolic algorithm is initialized by heuristic searching initial
matching and then iterates through generating residual network, building layered network, backward trav-
ersing node-disjoint augmenting paths, and updating semi-matching. It does not require explicit enumeration
of the nodes and edges, and therefore can handle many complex executions in each step. Our simulations
show that symbolic algorithm has better performance, especially on dense and large graphs.

Keywords: Bipartite Graphs, Semi-Matching, Load Balancing, Ordered Binary Decision Diagram

1. Introduction

The matching problems arise in many practical applica-
tion settings where we often wish to find the proper way
to pair objects or people together to achieve some desired
goal. Also the search for certain matching can be an im-
portant subtask for some complex problems such as the
maximum network flow and traveling salesman problem
[1]. The matching problems were classified into the fol-
lowings [2]. Problem 1 (Maximum Cardinality Matching
in Bipartite Graphs): The nodes are partitioned into boys
and girls, and an edge can only join a boy and a girl. We
look for a matching with the maximum cardinality.
Problem 2 (Maximum Cardinality Matching in General
Graphs): This is the asexual case, where an edge joins
two persons. Problem 3 (Maximum Weighted Matching
in Bipartite Graphs): Here we still have nodes represent-
ing boys and girls, but each edge has a weight associated
with it. Our goal is to find a matching with the maximum
total weight. This is the well-known assignment problem
of assigning people to jobs and maximizing the profit.
Problem 4 (Maximum Weighted Matching in General
Graphs): This problem is obtained from Problem 1 by
making it harder in both ways. Formally, a bipartite
graph is a graph G = (U V, E) in which U V =  and

E  U  V. A matching in G is a set of edges, M  E,
such that each node in U  V is an endpoint of at most
one edge in M. In other words, each node in U is
matched with at most one node in V and vice-versa.
Maximum cardinality matching problem in bipartite
graph is finding a matching that contains a maximum
number of edges, and many efficient polynomial algo-
rithms for computing the solutions have been developed
[1,2].

The load balancing problems have received intense
study in operations research and industrial engineering,
in which we are given a set of tasks and a set of ma-
chines, each machine can process a subset of the tasks,
and each task requires one unit of processing time. We
need assign each task to some machines that can process
it in a manner that minimizes some optimization objec-
tive. One possible objective is to minimize the makespan
of the schedule, which is the maximal number of tasks
assigned to any given machine. Another possible goal is
to minimize the average completion time, or flow time,
of the tasks. A third possible goal is to maximize the
fairness of the assignment from the machines’ point of
view, i.e., to minimize the variance of the loads on the
machines. Motivated by load balancing problem, Harvey
et al. defined the optimal semi-matching problem through

mailto:gu@guet.edu.cn

66 T. L. GU ET AL

relaxing maximum cardinality matching in bipartite
graphs [3]. Formally, a semi-matching in a bipartite
graph G = (U V, E) is a set of edges, M  E, such that
each node in U is an endpoint of exactly one edge in M.
Clearly a semi-matching does not exist if there are iso-
lated nodes in U, so we require that each node in U have
degree at least 1. Note that it is trivial to find a
semi-matching, i.e., simply match each node in U with
an arbitrary neighboring node in V. Harvey et al.’s opti-
mal semi-matching problem is finding a semi-matching
that match U with V as fairly as possible, that is, mini-
mizing the variance of the matching edges at each
V-node. To compute optimal semi-matching efficiently,
they presented two algorithms. The first algorithm gen-
eralizes the Hungarian method for computing maximum
bipartite matching, and the second one is based on the
notion of cost-reducing paths. Experimental results
demonstrated that the second algorithm is vastly superior
to using known network optimization algorithms to solve
the optimal semi-matching problem [3]. The concept of
semi-matching appeared firstly in Lawler’s book [4],
with the objective of finding maximum weight subset of
elements in a matrix.

Finding optimal semi-matching in bipartite graphs is
one of typical combinatorial optimization problems,
where the size of graphs is a significant and often pro-
hibitive difficulty. This phenomenon is known as com-
binatorial state explosion, resulting in that large graphs
cannot be stored and operated on even the largest con-
temporary computers. In recent years, implicitly sym-
bolic representation and manipulation technique, called
as symbolic graph algorithm or symbolic algorithm [5,6],
has emerged in order to combat or ease combinatorial
state explosion. Typically, ordered binary decision dia-
gram (OBDD) or variants thereof are used to represent
the discrete objects [6-9]. Efficient symbolic algorithms
have been devised for hardware verification, model
checking, testing and optimization of circuits [7,8].
Hachtel and Somenzi developed OBDD-based symbolic
algorithm for maximum flow in 0-1 networks that can be
applied to very large graphs (more than 1036 edges) [10].
Gu and Xu presented the symbolic ADD (Algebraic De-
cision Diagram) formulation and algorithms for maxi-
mum flow problems in general networks [11]. Symbolic
algorithms appear to be a promising way to improve the
computation of large-scale combinatorial optimization
problems through encoding and searching nodes and
edges implicitly. Our contribution is to present the sym-
bolic algorithm for optimal semi-matching in bipartite
graphs.

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce some concepts and properties re-
garding bipartite graphs and maximum cardinality

matching. The symbolic formulations for bipartite graphs
and optimal semi-matching are described in Section 3;
Section 4 presents the symbolic OBDD algorithm; The
last Section gives experimental results and analysis.

2. Preliminaries

Given a graph G = (V, E) where V is a set of nodes with
V n and E a set of edges with E m , a matching

M of G is a subset of edges set E such that no two ele-
ments of M are incident to the same node. We refer to the
edges in M as matched edge, and edges not in M as un-
matched or free edges. We also refer to a node v  V as
matched node with respect to a matching M if there is an
edge in M incident to v, and it is called free or unmatched
otherwise. For a matched node v the unique node w con-
nected to v by a matching edge is called the mate of v.
The cardinality M of a matching M is the number of
edges in M. A matching which contains a maximum
number of edges is called the maximum-cardinality
matching of the graph.

A simple path p in G is called an alternating path with
respect to the matching M if the edges in p are alternately
in M and not in M. If an alternating path starts and ends
at the same node, it is called as an alternating cycle. We
refer to an alternating path as an even alternating path if
it contains an even number of edges and an odd alter-
nating path if it contains an odd number of edges. An
odd alternating path with respect to a matching M is
called as an augmenting path if the first node and last
node in the path p are unmatched or free.

Property 1 If p is an augmenting path with respect to a
matching M, then M p = (M − p)(p − M) is also
a matching of cardinality |M| + 1. Moreover, in the
matching M p , all the matched nodes in M remain
matched, and two additional nodes, namely the first and
last nodes of p, are matched.

Property 2 If 1 2M M holds for two matching M1
and M2 of G, then there are d (= 2 1M – M) augmenting
paths with respect to M1 in G, and the paths are
node-disjoint.

A bipartite graph G = (U V, E) is a graph whose
node set is partitioned into two non-empty disjoint
groups U and V (U ∩ V= ) such that every edge of
the graph is incident on at most one node from each
group. This particular structure of bipartite graphs can
be used in developing the algorithms for maximum car-
dinality matching. We can direct all unmatched edges
from U to V and all matched edges from V to U, and re-
fer to the directed bipartite graph (U  V, E) as a resid-
ual network with respect to bipartite graph G and match-
ing M. On the directed view, the existence of an aug-
menting path is then tantamount to the existence of a

Copyright © 2011 SciRes. CN

T. L. GU ET AL

67

path from a free node in U to a free node in V. Also,
augmenting by a path p is trivial. One simply reverses
the direction of all edges on the path. Observe that this
correctly records that the endpoints of p are now matched
and that M is replaced by M p . We will use this di-
rected view in all our implementations of bipartite
matching algorithms.

Property 2 guarantees the existence of many aug-
menting paths when current matching is still far from
optimality, and suggests organizing many node-disjoint
augmenting paths in each execution. In this regard, lay-
ered networks are usually constructed. In a layered net-
work the nodes of a graph are partitioned into layers ac-
cording to their distance with respect to the starting layer,
i.e., a node v belongs to layer k if there is a path from the
starting layer to v consisting of k edges and there is no
path with fewer edges. For any edge in a layered network
the distance of the target node is at most one more than
the distance of the source node. The construction of the
layered network begins by putting all free nodes in U
into the zeroth layer, and proceeds by breadth-first search.
The first layer is completed that contains free nodes in V,
and the second layer contains free nodes in U and so on.
Only edges that connect different layers can be contained
in shortest augmenting paths, and the layered network
contains all augmenting paths of shortest length.

3. Symbolic Formulation

An ordered binary decision diagram (OBDD) [5,6] pro-
vides compact, canonical and efficiently manipulative
representation for Boolean functions. The OBDD for a
non-constant Boolean function f is a directed acyclic
graph G = (V, E). It includes sink or terminal nodes ‘0’
and ‘1’, which represent constant Boolean functions 0
and 1. These nodes have no descendants. All other nodes
vV include a labeled variable l(v), and have two
out-going edges of then and else cofactors drawn as solid
and dash lines. The nodes are in one-to-one correspon-
dence with Boolean functions. The function f(v) of a
node vV is specified as l(v)f(v)then+ l(v)f(v)else, where “”
and “+” denote Boolean conjunction and disjunction
respectively, and f(v)then and f(v)else are the functions of the
then and else children. The root node of an OBDD
represents the function f. The variables in an OBDD are
ordered, i.e., if v is a descendant of u , which means (u, v)
 E, then l(u) < l(v), and all the paths in the OBDD keep
the same variable ordering.

Given a Boolean function and any assignments to its
variables, the function value is determined by tracing a
path from the function node to a terminal node following
the appropriate branch from each node. The branch de-
pends on the variable value of the assignments, and the

function value under the assignments is determined by its
path’s terminal or sink node.

For example, Figure 1 shows the binary tree and the
OBDD for Boolean function f = x1  x3 + x2  x3, where x1 <
x2 < x3. It is obvious that the OBDD is a directed acyclic
graph, and stores the same information in a more com-
pact way. We trace the path ①②③④, and reach
the sink node 0. Thus, the value of Boolean function f =
x1  x3+x2  x3 of variable assignment (0,1,0) is 0.

An important property of OBDDs is that they are a
canonical representation of Boolean functions. Canonic-
ity means that for a Boolean function f and each variable
ordering  there is a unique OBDD, and vice versa.
Moreover, many operations of Boolean functions can be
implemented efficiently through graphical manipulations
of OBDDs.

We convert a bipartite graph G = (U V, E) to an
OBDD by encoding the nodes of G with a length-n bi-
nary number, where n = 2log U V   
node in U corresponds to a vector of binary variables X =
(x0, ···, xn-1), and encoded node in V corresponds to a vec-
tor of binary variables Y = (y0, ···, yn-1). The edge (u, v)E
of G can be represented by binary vector (X, Y) = (x0, ···,
xn-1, y0, ···, yn-1), where X = encoded (u) = (x0, ···, xn-1) and Y
= encoded(v) = (y0, ···, yn-1) are the binary encoding of
node u and v respectively. Thus, a bipartite graph is for-
mulated by a triple (s(X), t(Y), E(X, Y)), where s(X), t(Y)
and E(X, Y) are the characteristic functions as following:

. The en-

   1, ,

0, otherwise

X encoded u u U
s X

 
 


 (3.1)

   1, ,

0 , otherwise

Y encoded v v V
t Y

 
 


 (3.2)

       1, , , ,
,

0, oterwise

X encoded u Y encoded v u v E
E X Y

   




(3.3)
These characteristic functions are of Boolean func-

tions, and can be compactly represented by OBDDs. For
example, an OBDD for the bipartite graph in Figure 2(a)
is shown in Figure 2(b).

Given a bipartite graph (s(X), t(Y), E(X, Y)), the opti-
mal semi-matching problem is formulated as follows:

max:  
, {0,1}

,
nX Y

M X Y

 (3.4)

subject to:
   

   
{0,1}

, 1

, ,

nX

M X Y t Y

M X Y E X Y



 




 (3.5)

4. Symbolic OBDD Algorithm

Given the symbolic representation (s(X), t(Y), E(X, Y))

Copyright © 2011 SciRes. CN

T. L. GU ET AL

Copyright © 2011 SciRes. CN

68

for a bipartite graph G = (U V, E), the pseudo-code of
the symbolic OBDD algorithm for optimal semi-
matching is presented in Figure 3.

It begins by greedily searching initial matching and
then iterates through a sequence of phases. Each phase
consists of the following main steps: generating residual
network; building layered network; traversing node-
disjoint augmenting paths; and updating semi-matching.
The algorithm terminates and returns the maximum
semi-matching when the cardinality M of semi-
matching M equals the cardinality U . In the algorithm,
variables and data are stored in OBDD forms, and com-
putations are implemented by symbolic OBDD opera-
tions.

1) Searching initial matching through heuristic functions
In order to obtain matching directly, we adopt a heu-

ristic function (X,Y,Z):{0,1}n×{0,1}n×{0,1}n {0,1}.
The first argument is the base, and two other arguments
are the nodes to be compared. For every choice of base X,
 returns 1 if the second argument precedes the third one,
else return 0.

Two different heuristic functions are used in the sym-
bolic algorithm. The first one, relative proximity heuris-
tic function, is R(X,Y,Z) = ||Y-X||<||Z-X||, where ||XY|| =

1

0

2
n

i
i i

i

x y




 . The second is D(X,Y,Z) = (||Y|| < ||Z||),

called as datum proximity heuristic function that is a
special case of relative proximity heuristic function in-
dependent of the base and simply returns the result of

testing ||Y||<||Z||. Both heuristic functions can be repre-
sented by BDDs of size linear in n[10].

We obtain an initial matching of bipartite graph (s(X),
t(Y), E(X, Y) by the following computation:

        
        

, , , , ,

, , , , ,

Q X Y E X Y Z E X Z X Z Y

M X Y Q X Y Z Q Z Y Y Z X

   

   
 (4.1)

The edges in Q(X,Y) form a right-unique relation, i.e.,
there is at most one edge out of each node X. MP(X,Y) is
a left-unique subset of Q(X,Y), and consists of edges that
share no end nodes.

For example, Figure 4(a) and 4(b) show the initial
matching (darkened lines) of the bipartite graph in Fig-
ure 2(a) using relative proximity heuristic function and
datum proximity heuristic function respectively. The
heuristic functions are also applied in finding node-
disjoint augmenting paths.

2) Generating residual network
In order to find a semi-matching that match U with V

as fairly as possible, we rank the nodes in V by incident
degrees in a semi-matching M, which is defined as fol-
lowing:

    deg , ,M v u U u v M v V    (4.2)

The residual network under semi-matching M consists
of unmatched nodes in U and nodes with the smallest
degree in V. It is implemented by the following computa-
tions:

Procedure generate_residual_network (A(X), B(Y), E(X,Y),
M(X,Y));

{Rs(X) = A(X) (Y)M(X, Y);
Rt(Y) = ranking (B(Y), M(X,Y));
RE(X,Y)) = (E(X,Y) ),(YXM + M(Y, X))  Rt(Y);
}

 (4.3)

Figure 1. OBDD for boolean function f = x1  x3 + x2  x3.

T. L. GU ET AL

69

Figure 2. OBDD for a bipartite graph.

Figure 3. Pseudo-code for symbolic OBDD algorithm.

Figure 4. Heuristic search for initial matching.

 Procedure ranking (t(Y), M(X,Y));
{B(Y) = t(Y) (X)M(X, Y);
k =0;
while ((B(Y)) = = 0)

{k = k +1;
for Y  t(Y)

{if (|(X)M(X, Y)| = = k)
B(Y) = B(Y) + Y;
}

(4.4)

 }

}

Copyright © 2011 SciRes. CN

70 T. L. GU ET AL

3) Building layered network
We need to build the layered network from a residual

network so as to obtain node-disjoint augmenting paths.
We initialize layer zero by setting nodes layer(0) with
Rs(X) and outgoing edges U(0)(X,Y) with layer(0)RE(X,Y).
On odd layer (2i+1), nodes layer (2i+1) are target-nodes
from edges U(2i) (X,Y), and outgoing edges U(2i+1)(Y,X)
include matched edges layer (2i+1)RE(X,Y). Even layer 2i
consists of nodes layer (2i) of target-nodes from edges
U(2i-1) (Y,X) and outgoing edges U(2i)(Y,X) of unmatched
edges layer(2i)RE(X,Y). A layered network is built by
forward-breadth-first traversing residual network. It is
implemented by the following computations (Equation
(4.5)).

4) Backward traversing node-disjoint augmenting paths
Once a layered network is constructed, we go through

a series of steps to find node-disjoint augmenting paths.
Supposed that the top layer of layered network with k =
2l layers satisfies     ,kU X Y Rt Y  0, i.e., layer(2l
+ 1) will have unmatched nodes, we proceed to build
node-disjoint augmenting paths backward from un-
matched edges RM(l) (Y,X) and matched edges RP(l)(X,Y)
(Equation (4.6)).

Backward breadth-first traversing is implemented by
the following computations (Equation (4.7)):

This process terminates by computing RM(0) (X,Y), re-
sulting in node-disjoint MP(X,Y) and RP(X,Y). Heuristic
functions guarantee that the augmenting paths are node-

     
   

       
          

         
          

        

0

(2)

2 1

(2 1)

2

, , ,

0

, 0 ,

2 1 , ; 0,1,2,

, 2 1 , ; 0,1, 2,

2 , ; 0

, 2 , ; 0,1,2, ,

i

i

i

i

P X Y RE X Y M X Y

layer Rs X

U X Y layer P X Y

layer i X U X Y Rt Y i

U Y X layer i M Y X i

layer i Y U Y X Rs X i

U X Y layer i P X Y i X Y





 



 

    

   

   

  









,1, 2,



 (4.5)

         
             
              

           
            
            

2

()

()

()

1 , , ;

2 , 1 , 1 , , ,

1 , 2 , 2 , , ,

1 , , 2 1 , ;

2 , 1 , 1 , , ,

1 , 2 , 2 , , ,

l l

l l l

l l l

l l

l l l

l l l

RM X Y U X Y Rt Y

RM X Y RM X Y Z RM X Z X Z Y

RM X Y RM X Y Z RM Z Y Y Z X

RP Y X Y RM X Y U l Y X

RP Y X RP Y X Z RP Y Z Y Z X

RP Y X RP Y X Z RP Z X X Z Y

 

   

   

   

   

   

 (4.6)

               
                 
                 

                 
     

(1) (2)

()

()

2 1()

1 , , , ; 1 , 2 , , 2,1

2 , 1 , 1 , , , 1 , 2 , , 2,

1 , 2 , 2 , , , 1 , 2 , , 2,1

1 , , , ; 1 , 2 , , 2,1

2 , 1 ,

i i i

i i i

i i i

i il

i i

RM X Y X RP Y X U X Y i l l

RM X Y RM X Y Z RM X Z X Z Y i l l

RM X Y RM X Y Z RM Z Y Y Z X i l l

RP Y X Y RM X Y U Y X i l l

RP Y X RP Y





     

      

      

     











      

1

    
                 

()

()

1 , , , 1 , 2 , , 2,1

1 , 2 , 2 , , , 1 , 2 , , 2,1

i

i i i

X Z RP Y Z Y Z X i l l

RP Y X RP Y X Z RP Z X X Z Y i l l

     

      





 (4.7)

              
            

            

0 1 0

0 0 (0)

0 0 (0)

1 , , ,

2 , 1 , 1 , , ,

, 2 , 2 , , ,

M X Y X RP Y X U X Y

RM X Y RM X Y Z RM X Z X Z Y

RM X Y RM X Y Z RM Z Y Y Z X

  

   

   

 (4.8)

Copyright © 2011 SciRes. CN

T. L. GU ET AL

Copyright © 2011 SciRes. CN

71

     

     

1

1

, ,

, ,

l
i

i

l
i

i

RP X Y RP X Y

MP X Y RP X Y












 (4.9)

disjoint and have the shortest length (Equation (4.8) and
(4.9)).

5. Experimental Results

The symbolic OBDD algorithm proposed in this paper
has been implemented in windows 2000 and software
package CUDD [12]. Two groups of experiments are
conducted. In both cases, CPU time is in seconds on a P4
1500MHz with 128MB of memory.

In the first group of experiments, the symbolic OBDD
algorithm is compared with Asm1 and Asm2 algorithms
[3]. We choose randomly generated graphs with different
numbers of nodes and edges. Random graphs are very
close to worst cases for symbolic algorithms. The results
are shown in Table 1.

In the second group of experiments, we choose ran-
domly generated graphs with 4000 nodes and different

Table 1. Comparison of symbolic OBDD algorithm with
Asm1and Asm2 algorithms.

nodes edges OBDD Asm1 Asm2

1250 380 6.014 65.524 45.165

1250 502 4.415 89.145 64.354

1250 881 1.078 150.453 70.342

1250 1011 0.96 150.781 65.897

1250 1133 0.597 156.254 43.546.

1250 1202 0.485 160.542 30.546

1350 275 7.245 31.125 20.158

1350 399 6.241 54.094 36.478

1350 675 3.024 86.324 68.157

1350 818 2.641 97.254 70..587

1350 1100 1.564 105.245 53.546

1350 1240 0.987 108.354 48.241

5000 4010 25.156 memory out memory out

5000 4600 22.556 memory out memory out

8000 899 163.123 memory out memory out

8000 2310 92.965 memory out memory out

8000 5321 61.987 memory out memory out

8000 6873 57.332 memory out memory out

Figure 5. Comparison of symbolic OBDD algorithm to
asm1and Asm2 for graphs with varying densities.

edges (or densities), and our symbolic algorithm is com-
pared to Asm1 and Asm2 algorithms. The running times
are plotted in Figure 5, where the x axe represents the
graph density, i.e. the ration of the edges to the nodes, and
the y axe is the CPU time used. It can be observed that
the running times of our symbolic algorithm reduce dras-
tically as the graph densities increase.

Both groups of experiments give the fact that symbolic
algorithm outperforms both Asm1 and Asm2 algorithms,
especially on dense and large random graphs.

6. Acknowledgements

This work has been supported by National Natural Sci-
ence Foundation of China (Grant No. 60963010 and
60903079) and Key Natural Science Foundation of
Guangxi Province (Grant No. 0832006Z).

7. References

[1] R. K. Ahuja, T. L. Magnanti and J. B. Orlin, “Network
Flows: Theory, Algorithms, and Applications,” Pearson
Education Inc., Prentice Hall, Upper Saddle River, 1993.

[2] Z. Galil, “Efficient Algorithm for Finding Maximum
Matching in Graphs,” ACM Computing Surveys, Vol. 18,
No. 1, 1986, pp. 23-37. doi:10.1145/6462.6502

[3] N. Harvey, R. Ladner, L. Lovasz and T. Tamir, “Semi-
matchings for Bipartite Graphs and Load Balancing,”
Journal of Algorithms, Vol. 59, No.1, 2006, pp. 53-78.
doi:10.1145/6462.6502

[4] E. Lawler, “Combinatorial Optimization: Networks and
Matroids,” Dover Publications Inc., New York, 2001.

[5] R. E. Bryant, “Graph-Based Algorithms for Boolean
Function Manipulation,” IEEE Transaction on Computer,
Vol. 35, No. 8, 1986, pp.677-691.
doi:10.1109/TC.1986.1676819

[6] R. E. Bryant, “Symbolic Boolean Manipulation with Or-

http://dx.doi.org/10.1145/6462.6502
http://dx.doi.org/10.1145/6462.6502
http://dx.doi.org/10.1109/TC.1986.1676819

72 T. L. GU ET AL

dered Binary Decision Diagrams,” ACM Computing Sur-
veys, Vol. 24, No. 3, 1992, pp. 293-318.
doi:10.1145/136035.136043

[7] S. B. Akers, “Binary Decision Diagrams,” IEEE Trans-
action on Computer, Vol. 27, No. 6, 1978, pp. 509-516.
doi:10.1109/TC.1978.1675141

[8] D. Sieling and R. Drechsler, “Reduction of OBDDs in
Linear Time,” Information Processing Letters, Vol. 48,
No. 3, 1993, pp. 139-144.
doi:10.1016/0020-0190(93)90256-9

[9] D. Sieling and I. Wegener, “Graph Driven BDDs—A
New Data Structure for Boolean Functions,” Theoretical
Computer Science, Vol. 141, No. 1-2, 1995, pp. 283-310.
doi:10.1016/0304-3975(94)00078-W

[10] G. D. Hachtel and F. Somenzi, “A Symbolic Algorithm
for Maximum Flow in 0-1 Networks,” Formal Methods
in System Design, Vol. 10, No. 2-3, 1997, pp. 207-219.
doi:10.1023/A:1008651924240

[11] T. L. Gu and Z. B. Xu, “The Symbolic Algorithms for
Maximum Flow in Networks,” Computers & Operations
Research, Vol. 34, No. 2, 2007, pp. 799-816.
doi:10.1016/j.cor.2005.05.009

[12] F. Somenzi, “CUDD: CU Decision Diagram Package
Release 2.3.1,” 2001. http://vlsi.Colorado.edu/

Copyright © 2011 SciRes. CN

http://dx.doi.org/10.1109/TC.1978.1675141
http://dx.doi.org/10.1016/0020-0190(93)90256-9
http://dx.doi.org/10.1016/0304-3975(94)00078-W
http://dx.doi.org/10.1023/A:1008651924240
http://dx.doi.org/10.1016/j.cor.2005.05.009
http://vlsi.colorado.edu/

	6. Acknowledgements

