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Abstract 
In this paper, some theoretical mathematical aspects of the known predator-prey problem are 
considered by relaxing the assumptions that interaction of a predation leads to little or no effect 
on growth of the prey population and the prey growth rate parameter is a positive valued function 
of time. The predator growth model is derived considering that the prey follows a known growth 
models viz., Logistic and Von Bertalanffy. The result shows that the predator’s population growth 
models look to be new functions. For either models, the predator population size either converges 
to a finite positive limit or to 0 or diverges to +∞. It is shown algebraically and illustrated picto-
rially that there is a condition at which the predator-prey population models both converge to the 
same finite limit. Derivations and simulation studies are provided in the paper. Analysis of equili-
brium points and stability is also included. 
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1. Introduction 
Growth models have been widely studied and applied in many areas especially animal, plant and forestry 
sciences [1]-[7]. A generalized mathematical model for biological growth is introduced in [7] which includes the 
known functions such as Generalized Logistic, Particular Case of Logistic, Richards, Von Bertalanffy, Brody, 
Logistic, Gompertz, Generalized Weibull, Weibull, Monomolecular, Mitscherlich and many more new models. 
These are derived as solutions of the rate-state first order ordinary differential equation. Detailed studies of these 
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models with their respective relative growth models are given in [7]-[9]. 
The growth models are so flexible to be useful in modelling problems. In this paper, we apply some of these 

growth models to the population dynamics, especially the predator-prey problems. We consider that the growth 
of prey population size or density follows biological growth models and construct the corresponding growth 
models for the predator. 

In the next sections, the Lotka-Volterra predator-prey model is presented in Section 2 and the newly proposed 
approach in Section 3. The case of logistic prey model is considered in Section 3.1 and that of Von Bertalanffy 
in Section 3.2. Conclusions are in Section 4. 

2. Lotka-Volterra Predator-Prey Models 
The classical model of a predator-prey problem was originally developed in the 1920s by Vito Volterra, and 
since then many related studies have been conducted [10]-[14]. 

The Lotka-Volterra predator-prey equations are first-order and nonlinear differential equations defined [10] 
as: 

d
d
d
d

V aV bVP
t
P cP dVP
t

= −

= − +
.                                   (1) 

In the classical model, , , ,a b c d  are all positive constants. Assumptions of the model are the following: 
1) In absence of predator, prey population would grow at a natural rate. 
2) In absence of prey, predator population would decline or grow at a natural rate.  
3) When both the predator and prey are present, there occur, in combination with these natural rates of growth 

and decline, a decline in the prey population and a growth in the predator population each at a rate proportional 
to the frequency of encounters between individuals of the two populations. We often assume further that the 
frequency of such encounters is proportional to the product of the populations. 

Other assumptions [13] consider about environment and evolution of the predator and prey populations as 
follows: 

1) The prey population finds ample food at all times. 
2) The food supply of the predator population depends entirely on the size of the prey population. 
3) The rate of change of population is proportional to its size. 
4) During the process, the environment does not change in favor of one species and the genetic adaptation is 

sufficiently slow. 
5) Predators have limitless appetite. 
The usual assumption of constants for the parameters a, b, c, d may lead to oversimplification of the system 

and yet not be realistic [10] [11] [14]. In particular, [14] recommends that these parameters can be functions of 
time. 

Moreover, there are some studies that indicate that predation may promote, hinder or have no effect on in-
terspecific competitive interactions and the probability of prey coexistence [11] [15] [16]. This can be affected 
by the mechanisms of predation and competition together with what we measure from the process. According 
the authors, predators may lead to an increase of the strength of interspecific competitions or its impact on a 
prey population; or happen to decrease competitive strength or impact; or in other cases, have very little effect 
on the competitive interactions. 

This means the ecosystem is so complex that the prey and predator interactions can lead to various outcomes. 
This paper considers the case when this interaction leads to a little or no effect on growth of the prey population.  

3. The Proposed Model 
Here we consider the case when the interaction of the prey and predator populations leads to a little or no effect 
on growth of the prey population, that is, 0b ≈ . Moreover, we assume the parameter a  is positive valued 
function of time. By these considerations, the assumptions of the classical predator-prey model are relaxed. 
Then the newly proposed predator-prey model is defined as follows: 
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( )d
d
d
d

x r t x
t
y vx sxy
t

=

= − +
                                   (2) 

where x  is population size or density of prey; y  is population size or density of predator communities in the 
system. Here we assume r  to be a relative growth rate function which is positive valued function of time t . 
The other parameters , ,s u v  are considered to be positive constants.  

The prey equation in (2) is the first order differential equations whose solutions are studied to be growth 
models in [8]. This leads that the prey model can be selected from the large family of growth functions and solve 
for the predator equation. This will give more options for researchers and practitioners who are working in field 
of population dynamics.  

The general approach is as follows: 
1) Assume that there is prior information about the prey population that x  is a known growth function.  
2) Assume that the impact of predator on prey population growth is negligible. 
3) Predator population declines in absence of prey. 
4) The predator population grows with a rate proportional to a function of both x  and y , i.e.,  

y vy sxy= − + . 
5) Solve for predator’s population size y . 
The idea is to consider the prey population to follow a known growth model among the family of Koya-  

Goshu models, and then construct the corresponding growth model for the predator population. This is can be 
helpful, for example, for managing the ecosystem. Here we consider Logistic and Von Bertalanffy growth mod-
els for prey population and solve for the respective predator population sizes.  

3.1. Logistic Prey Model 
We assume that the growth of prey population follows Logistic growth function and construct the corresponding 
predator growth model. Thus, the prey population growth is assumed to be described by Logistic model given as 
follows: 

( )
1 e kt

Ax t
B −=

+
                                       (3) 

where 
0

1AB
A

 
= − 
 

, ( )0 0A x=  is initial prey population, A  is asymptotic growth of prey population, and  

k  is absolute growth rate. The Logistic curve has a single point of inflection at time 
0

1 log 1Aa
k A

  = −  
   

 and  

when the growth reaches half of its asymptotic growth ( )
2
Af a = . The respective relative growth rate is  

( )
t

A x t
r k

A
− 

=  
 

. Detailed discussion is found in [7]-[9]. 

After substituting (3) in (2), the corresponding predator’s population growth function is derived to be: 

( ) ( ) ( )
0 0 e

1 e

As
As kAs v tk

kt

Ay t y A
B

−
−

−
 =  + 

                          (4) 

here ( )0 0y y=  is the initial predator population size. Derivation is given in Appendix 1. It is interesting to  
find that prey and predator models are related as in (4) or as in (5): 

( ) ( ) ( )
0 0

0

As v v
k kA A A

y t y
A x t x t

−

   −
=       −   

.                            (5) 
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The predator model ( )y t  in equation (4) looks a new function and it does not match any one of the com-
monly known growth models. 

It is found that this predator model either declines and converges to a finite positive limit or converges to 0 or 
diverges to +∞  depending on the values of the birth parameter s  and death parameter v  of the predator. 
These three cases are discussed here below.  

Case I (As = v): In this case, ( ) ( )0 0
A

1 e

As
As k
k

kty t y A
B

−

−
 =  + 

 or equivalently ( ) ( ) ( )0 0

AsAs
kky t x t y A=  and  

also ( ) ( )0 0

As
ky y A A∞ = . It can be interpreted that the predator population decays to lower asymptote or  

grows to upper asymptote given by ( ) ( )0 0

As
ky y A A∞ = , while the prey grows following Logistic curve and  

reaches the upper asymptote A  (see Figure 1(a)). 
It is interesting to find that the two populations converge to same size when birth rate of predator becomes: 

( ) 0

0

log log
log log

A y
s k A

A A
−

=
−

                                 (6) 

then the prey population’s upper asymptote and the predator population’s lower asymptote coincide at A  and 
continue to maintain the same and equivalent population size. Figure 1(a) illustrates this occasion. When initial 
size of the predator is smaller than A, then there is an increment of its growth to converge to the same size of 
prey. Plots are shown in Figure 2. 

Case II (As < v): In this case, the predator population decays and eventually declines down to 0, while the 
prey population remains to follows logistic growth model and approaches an upper asymptote A  (see 
Figure 1(b)). 

Case III (As > v): In this case, the predator population declines for a while and grows higher and eventually 
diverges +∞ , while the prey population follows logistic model and grows to an upper asymptote A  (see 
Figure 1(c)). 

3.2. Simulation Study 
The simulation study is designed in by varying the model parameters: 0 , ,A A k  for prey and 0 , ,y s v  for pre-
dator population; and the two models viz. Logistic and Von Bertalanffy each with three cases.  

Model: Logistic, Von Bertalanffy. 
Prey’s parameters: 100A = , 0 20A = , 0.1 or 0.01k = . 
Predator’s parameters: 0 01.5  or 0.5  or 0.5y A A A= . 
Cases: Case I: As v= , Case II: As v< , Case III: As v> . 
Case I: 0.00005s =  & 0.005v = ; 0.0001s =  & 0.01v = ; 0.01s =  & 1.0v = ; 1E 10s = −  &  

1E 8v = − . 
Case II: 0.001s =  & 0.105v = ; 0.001s =  & 0.130v = ; 0.001s =  & 0.140v = ; 0.001s =  &  

0.160v = . 
Case III: 0.001s =  & 0.08v = ; 0.001s =  & 0.07v = ; 0.001s =  & 0.06v = ; 0.001s =  & 0.04v = . 
The specifications are as follows: 
Figure 1(a) displays Case I, where death/birth of predator is equal to A. The birth rate is varied from smaller 

to larger values. It is seen that the predator population size declines and eventually converges to a positive quan-
tity with various speeds of declines. More results are plotted in Figure 2. Figure 1(b) displays Case II, where 
death/birth of predator is greater than A. The death rate is increased from smaller to larger values. The predator 
population declines with speed and eventually converges to zero. More results are plotted in Figure 2. 

In Case III, see Figure 1(c), the death/birth of predator is less than A. As shown by simulations plotted in 
Figure 1 and Figure 2, the predator population declines for some time and then increases to infinity. The minimal  

point at which the curve turns or gets minimum value is found to be: 0
min

1
1 log

1

A
A

t
Ask
v

 − 
 =
 − 
 

. Then the values of  
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(a)                                                      (b) 

 
(c) 

Figure 1. Plots of predator population dynamics with prey population growth following logistic model (a) Case I, (b) Case II 
and (c) Case III.                                                                                             
 

prey and predator populations are ( )minx t v s=  and ( ) ( )0 0
min 0

As v v
Ask k
k

A A A
y t y s

As v v

−

−   =    −   
, respectively. 

In summary, it is observed that the predator population either converges to a finite limit or converges to 0 or 
diverges to +∞  depending on the selection of the parameters. We show by simulation study that for a particu-
lar value of the birth parameter s , the population sizes of both the prey and predator will converge to the same 
asymptote. 

4. Analysis of Phase Diagram and Equilibrium Points 
The newly proposed predator-prey model (2) in its full form can be expressed, in case of Logistic prey, as the  

system of equations d 1
d
x xk x
t A

 = − 
 

 and 
d
d
y vy sxy
t
= − + . The two equilibrium points of this system are  
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(a)                                                      (b) 

  
(c)                                                      (d) 

Figure 2. Plots of all three cases for the predator population dynamics with prey population growth following logistic model 
(a) 00.1, 1.5k Y A= = ; (b) 00.01, 1.5k Y A= = ; (c) 00.1, 0.5k Y A= = ; (d) 0 00.1, 0.5k Y A= = .                             
 
found to be ( ) ( )* *

1 1, 0,0x y =  and ( ) ( )* *
2 2, ,0x y A=  since at both these points the necessary and sufficient con- 

ditions 
d 0
d
x
t
=  and 

d 0
d
y
t
=  are satisfied. Also the Jacobian matrix of the system of equations is  

( )
21 0

,
xk

J x y A
sy v sx

  −  =   
 − + 

. We now analyze the nature of the equilibrium points as in [12] and the sum- 

mery is tabulated in Table 1. 
Nature of the equilibrium point ( ) ( )* *

1 1, 0,0x y = : The Jacobean matrix at this point takes the form  

( ) ( )* *
1 1

0
, 0,0

0
k

J x y J
v

 
= =  − 

. The eigenvalues are *
11 kλ =  and *

12 vλ = − . Recall that both the parameters k   
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Table 1. Stability of the equilibrium points—the case of logistic prey model.                                            

Equilibrium point Eigenvalue Case Sign of the eigenvalue Nature of the point 

( ) ( )* *
1 1, 0,0x y =  

*
11 kλ =  
*

12 vλ = −  
- 

Eigenvalues *
11λ  and *

12λ  are  
real but opposite in sign 

Unstable 

( ) ( )* *
2 2, ,0x y A=  

*
21 kλ = −  

*
22 v sAλ = − +  

Case I ( )As v=  *
21λ  is negative while *

22λ  is zero. Stable 

Case II ( )As v<  
Both the eigenvalues *

21λ  and 

 *
22λ  are negative 

Stable 

Case III ( )As v>  
*
21λ  is negative while *

22λ   
is positive 

Unstable 

 
and v  are positive quantities. Thus, the eigenvalues are real and opposite in sign and hence the equilibrium  
point ( ) ( )* *

1 1, 0,0x y =  is unstable. 

Nature of the equilibrium point ( ) ( )* *
2 2, ,0x y A= : The Jacobean matrix becomes 

( ) ( )* *
2 2

0
, ,0

0
k

J x y J A
v sA

− 
= =  − + 

. The eigenvalues are *
21 kλ = −  and *

22 v sAλ = − + . Recall that the para- 

meters , ,k v s  and A  are positive quantities and thus here arise three cases. Case I ( )As v= : In this case  
*
21 kλ = −  is negative and *

22 v sAλ = − +  is zero and hence the equilibrium point ( ) ( )* *
2 2, ,0x y A=  is stable.  

Case II ( )As v< : In this case both the eigenvalues *
21 kλ = −  and *

22 v sAλ = − +  are negative and hence the  
equilibrium point ( ) ( )* *

2 2, ,0x y A=  is stable. Case III ( )As v> : In this case both the eigenvalue *
21 kλ = −  is  

negative while *
22 v sAλ = − +  is positive and hence the equilibrium point ( ) ( )* *

2 2, ,0x y A=  is unstable. 

4.1. Von Bertalanffy Prey Model 
In this section, we assume that the growth of prey follow Von Bertalanffy biological growth function and con-
struct the corresponding predator growth model. 

Thus, the prey population growth is assumed to be described by Von Bertalanffy as 

( ) ( )3
1 e ktx t A B −= −                                   (7) 

where ( )1 3
01B A A= − , ( )0 0A x=  is initial prey population, A  is asymptotic growth of the prey population,  

and k  is absolute growth rate parameter. A single point of inflection occurs when the growth reaches the  

weight ( ) ( )8 27f a A=  at time ( ){ }1 3
0

1 log 3 1a A A
k

   = −    
. Its relative growth rate function is  

( )

1 3

3 1t
Ar k

x t

  
 = −     

. Further analyses are available in [7]-[9]. 

Now then, by substituting (7) in (2), we determine the corresponding predator population growth function (see 
Appendix 2) as: 

( ) ( ) ( ) ( ) ( )
2 1
3 30 0 03 2

1 1
1 1 3 21 e 1 e 1 e
3 2

0e e e
kt kt kt

A A AAs
As k A A AB B B

As v t ky t Y
− − −

 
      + +        − − + − + −         −    =            (8) 

here ( )0 0y y=  is the initial predator population size. It is interesting to observe that both population growth 
functions of prey and predator are related as (8) or as (9): 



M. Y. Dawed et al. 
 

 
120 

( )

( )

( ) ( ) ( )
2 12 1
3 33 30 0 0

2 3 1 3

1
1 130 3 2

0 1
3

0

1
e

1

As v
k

x t A x t Ax t AAs
k A A A

A
Ay t y
A

x t

−
    

    − −−      − + +                     

 
  −  

  =
 

  −      

                 (9) 

The three cases are presented below. 

Case I (As = v): In this case ( )

( ) ( ) ( )
2 12 1
3 33 30 0 0

2 1
3 3

1 1
3 2

0e

x t A x t Ax t AAs
k A

A A
y t y

    
    − −−      − + +                     =  and  

( )

2 1
3 30 0 01 11 1 1

3 2

0lim e

A A AAs
k A A A

t y t y

    
         − − + − + −         

         
    

→∞ = . It can be interpreted that the predator population decays with an  

exponential rate of ( )As k  and converges to a lower asymptote of 

2 1
3 30 0 01 11 1 1

3 2

0e

A A AAs
k A A A

y

    
         − − + − + −         

         
     . The prey  

population grows following Von Bertalanffy model and reaches the upper asymptote A  (see Figure 3(a)). The 
situation at which the prey population upper asymptote and the predator population lower asymptote coincide at 
A  and continue to maintain the same population sizes is found to be: 

( ) 0
2 1
3 30 0 0

log log

1 11 1 1
3 2

y A
s k A

A A A
A A A

−
=

   
        − + − + −                

   

.                   (10) 

Figure 3(a) also illustrates the occasion where the two populations converge to same. When initial size of the 
predator is smaller than A, then there is an increment of its growth to converge to the same size of prey. See 
Figure 4(c), Figure 4(d). 

Case II (As < v): In this case, the predator population decays and eventually dies down to 0, while the prey 
population follows Von Bertalanffy, as assumed, and reach an upper asymptote A  (see Figure 3(b)). 

Case III (As > v): In this case, the predator population grows higher and higher and eventually diverges to 
+∞ , while the prey population grows according to the Von Bertalanffy curve with an upper asymptote of A  
(see Figure 3(c)). The predator population growth has minimum value at time point mint  that is a function of  

the parameters. It is given by: 

1 3
0

min 1 3 1 3

1
1 log

11

A
At

k v
A s

  −  
  =      −         

. Then the values of prey and predator populations  

are, respectively, ( )minx t v s=  and 

( )
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( )
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−

    − −−      − + +            

 
  −    =  

  −  
  

. 

4.2. Simulation Study 
Similar simulation study is conducted for the Von Bertalanffy model case, using the design suggested in subsec-
tion 3.1. The results are displayed in Figure 3 and Figure 4. Figure 3(a) displays Case I for Von Bertalanffy  
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(a)                                                      (b) 

 
(c) 

Figure 3. Plots of predator population dynamics with prey population growth following Von Bertalanffy model (a) Case I,  
(b) Case II and (c) Case III.                                                                                  
 
case, where death/birth of predator is equal to A. The birth rate is varied from smaller to larger values. It is seen 
that the predator population size declines and eventually converges to a positive quantity with various speeds of 
declines. Other simulated results are plotted in Figure 4. 

Figure 3(b) displays Case II, where death/ birth of predator is greater than A. The death rate is increased from 
smaller to larger values. The predator population declines with speed and eventually converges to zero. In Case 
III, see Figure 3(c), the death/birth of predator is less than A. The predator population declines for some time 
and then increases to infinity. In summary, the predator model either declines and converges to a finite positive 
limit or converges to 0 or diverges to +∞  depending on the values of the birth parameter 𝑠𝑠 and death para-
meter 𝑣𝑣 of the predator. More results are given in Figure 4. 

5. Analysis of Phase Diagram and Equilibrium Points 
The newly proposed predator-prey model (2) in its full form can be expressed, in case of Von Bertalanffy prey,  
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(a)                                                      (b) 

  
(c)                                                      (d) 

Figure 4. Plots of all three cases for the predator population dynamics with prey population growth following Von 
Bertalanffy model (a) 00.1, 1.5k Y A= = ; (b) 00.01, 1.5k Y A= = ; (c) 00.1, 0.5k Y A= = ; (d) 0 00.1, 0.5k Y A= = .              
 

as the system of equations 
1
3d 3 1

d
x Ak x
t x

 
  = −   
 

 and 
d
d
y vy sxy
t
= − + . The two equilibrium points of this sys- 

tem are found to be ( ) ( )* *
1 1, 0,0x y =  and ( ) ( )* *

2 2, ,0x y A=  since at both these points the necessary and suffi- 

cient conditions 
d 0
d
x
t
=  and 

d 0
d
y
t
=  are satisfied. Also the Jacobian matrix of the system of equations is 
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. We now analyze the nature of the equilibrium points below as in [12]  
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and the summery is tabulated in Table 2. 
Nature of the equilibrium point ( ) ( )* *

1 1, 0,0x y = : The Jacobean matrix at this point takes the form  

( ) ( )

1
3

* *
1 1 0

23 1 0
, 0,0 3

0

Ak
J x y J A

v

  
   −   = =     

 
−  

 and the corresponding eigenvalues are  

( )1 3*
11 0

23 1
3

k A Aλ  = − 
 

 and *
12 vλ = − . Recall that all the parameters 0, ,k A A  and v  are positive quantities  

and thus here arise the following three cases: Case I ( )03.375A A=  or ( )1 3
0

2 1 0
3

A A − = . In this case *
11λ   

is zero while *
12λ  is negative and hence the equilibrium point ( ) ( )* *

1 1, 0,0x y =  is stable. Case II  

( )03.375A A<  or ( )1 3
0

2 1 0
3

A A − < . In this case both the eigenvalues *
11 kλ = −  and *

12 v sAλ = − +  are neg- 

ative and hence the equilibrium point ( ) ( )* *
1 1, 0,0x y =  is stable. Case III ( )03.375A A>  or  

( )1 3
0

2 1 0
3

A A − > . In this case the eigenvalue *
11λ  is positive while *

12λ  is negative and hence the equilibrium  

point ( ) ( )* *
2 2, ,0x y A=  is unstable. 

Nature of the equilibrium point ( ) ( )* *
2 2, ,0x y A= : The Jacobean matrix at this point takes the form  

( ) ( )* *
2 2

0
, ,0

0
k

J x y J A
v sA

− 
= =  − +   

and the corresponding eigenvalues are *
21 kλ = −  and *

22 v sAλ = − + .  

Recall that the parameters , ,k v s  and A  are positive quantities and thus here arise three cases: Case I  
( )As v= : In this case *

21 kλ = −  is negative and *
22 v sAλ = − +  is zero and hence the equilibrium point  

( ) ( )* *
2 2, ,0x y A=  is stable. Case II ( )As v< : In this case both the eigenvalues *

21 kλ = −  and *
22 v sAλ = − +   

are negative and hence the equilibrium point ( ) ( )* *
2 2, ,0x y A=  is stable. Case III ( )As v> : In this case both  

the eigenvalue *
21 kλ = −  is negative while *

22 v sAλ = − +  is positive and hence the equilibrium point  

( ) ( )* *
2 2, ,0x y A=  is unstable. 

 
Table 2. Stability of the equilibrium points—the case of Von Bertalanffy prey model.                                     

Equilibrium point Eigenvalue Case Sign of the eigenvalue Nature of the point 

( ) ( )* *
1 1, 0,0x y =  

1 3

*
11

0

23 1
3

Ak
A

λ
  

= −  
   

 

*
12 vλ = −  

Case I 03.375A A=  *
11λ  is zero and *

12λ  is negative Stable 

Case II 03.375A A<  Both *
11λ  and *

12λ  are negative Stable 

Case III 03.375A A>  *
11λ  is positive and *

12λ  is negative Unstable 

( ) ( )* *
2 2, ,0x y A=  

*
21 kλ = −  

*
22 v sAλ = − +  

Case I ( )As v=  *
21λ  is negative while *

22λ  is zero Stable 

Case II ( )As v<  Both the eigenvalues *
21λ  and *

22λ  are negative Stable 

Case III ( )As v>  *
21λ  is negative while *

22λ  is positive Unstable 
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6. Conclusions 
Some theoretical mathematical aspects of the well known predator-prey problem are studied. The classical as-
sumptions are relaxed in that the interaction of a predation leads to little or no effect on growth of the prey pop-
ulation and the prey’s growth rate parameter is a positive valued function of time. The idea is implemented for 
the two cases that the prey population follows Logistic and Von Bertalanffy growth models. The respective pre-
dator models are derived and analyzed. 

The simulation studies and further analysis of the models reveal that the predator population grows in such a 
way that either converges to a finite limit or 0 or diverges to +∞ irrespective of the fact that the prey population 
continuously grows and eventually converges to upper asymptote. There is a situation at which both prey and 
predator populations converge to the same amount, irrespective of their initial population sizes. There is also a 
situation where the predator population declines for some time and then starts to increase and diverges to infinity. 
Moreover, two equilibrium points are identified in each case, which are stable only under some specific condi-
tions. 

In general, the analytic and simulation studies have revealed some insights to the problem addressed in this 
paper so that the models obtained can be applied to the real-world situations. 
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Appendix 1: Derivation of Predator Model Given That Prey Follows Logistic  
Growth Model 
Consider the predator equation  

d
d
y vy sxy
t
= − +  

[ ]d dy v sx t
y

⇒ = − +  

log dy vt s x t⇒ = − + ∫ . 

We now substitute the Logistic function for the prey growth. That is 

( )
1 e kt

Ax t
B −=

+
, 

0

1AB
A

= − . 

Thus, 

log d
1 e kt

Ay vt s t
B −

 = − +  + ∫ . 

Put, 1 e ktw B −= +  

( )d e d 1 dktw kB t k w t−⇒ = − = − −  

( )
d d

1
w t

k w
⇒ − =

−
. 

Now, on substituting w  and dw , the log y  takes the following transformation equation: 

( ) ( )
1 1 1log d d

1 1

1log log

As Asy vt w vt w
k w w k w w

As wvt D
k w

   
= − − = − − −   

− −      
 −  = − − +    

∫ ∫
. 

Here D  is an integral constant and that we determine as follows: 
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−
− −

−
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 =  + 

. 

( )
( )

( ) ( )

( )

0 0

0
0

1 ee 1 e 1 e
1 e

e 1 e

As
Askt k As

As v tvt kt kk
kt

As
Ask As v t kt k

By t y y B B
B

A
y B

A

−
− −− −

−

− −

 +  ⇒ = = + +   +  

   = +    
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0 0

1 ee
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is the solution for the predator equation, representing predator’s population growth at t. 
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Appendix 2: Derivation of Predator Model Given That Prey Follows  
Von Bertalanffy Growth Model 
Consider the predator equation  

[ ]d d d log d
d
y yvy sxy v sx t y vt s x t
t y
= − + ⇒ = − + ⇒ = − + ∫ . 

We now substitute the Von Bertalanffy function for the prey growth. That is 

( ) ( )3
1 e ktx t A B −= − , 

1
301

A
B

A
 = −  
 

.  

Thus, 

( )3
log 1 e dkty vt sA B t−= − + −∫ . 

Put,  

( ) ( )
d1 e d e d 1 d d

1
kt kt ww B w kB t k w t t

k w
− −= − ⇒ = = − − ⇒ − =
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3
2

3 2
1

1log d 1 d
1 1

1 1 log 1
3 2

As w Asy vt w vt w w t
k w k w

Asvt w w w w C
k

   = − + = − − + + +   − −  
 = − − + + + − +  

∫ ∫
. 

Here 1C  is an integral constant and that we determine as follows: 

( )
( ) ( ) ( ) ( )3 2

1

1 11 e 1 e 1 e log e
3 2e e e

kt kt kt ktAs B B B B
kC vty t

− − − − −
− + − + − + −  = . 

Put ( ) 00y y= . Then, 
( ) ( ) ( ) ( )3 2

1

1 11 1 1 log e
3 2

0e e
ktAs B B B B

C ky
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2 1
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        −   ∴ =  

is the solution for the predator equation, representing the predator’s population growth at t. 
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