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Abstract 
The origin of ultra high energy cosmic rays (UHECRs) is still an open question in astroparticle 
physics. TeV blazars are a small group of active galactic nuclei (AGNs). They all have been ob-
served in TeV gamma ray band, and show violent variabilities in flux at all wavelengths. So it is be-
lieved that they have abilities to produce UHECRs. To judge whether the TeV blazars can be the 
candidates of the origin of UHECRs, we collect the information of emission region of 38 TeV blazars, 
and estimate the maximum energy that the charged particle can be accelerated there. The results 
show that TeV blazars have abilities to accelerate cosmic rays to the energy above 1018 eV, some 
even higher than 1020 eV, and they may be the sources of UHECRs. 
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1. Introduction 
The earth’s atmosphere is being constantly bombarded by elementary particles from outer space, historically 
called cosmic rays. Their discovery dates back to the beginning of the 20th century and they have been conti-
nuously studied by particle physicists and astrophysicists. The spectrum of cosmic rays extends smoothly over 
11 orders of magnitude, from less than 109 eV to over 1020 eV. Over this large energy range the spectrum falls 
off approximately by an E−3 power law. Accurate measurement shows that the spectrum is structured with four 
noticeable features: the knee is around 3 - 5 × 1015 eV, the second knee is at 4 × 1018 eV [1]-[3], the ankle is near 
3 × 1018 eV [3] [4], GZK cutoff is above 4 - 5 × 1019 eV [5] [6] which has been observed independently by 
HiRes and Auger experiments [4] [7]. At the lower energies this flux is high enough for direct satellite or bal-
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loon measurement. While at the highest energies, the flux is so low that an extremely large aperture must be 
used in the study of cosmic rays. 

The sources of cosmic rays are still unknown. It is probable that for energies up to and possibly slightly 
beyond the knee, the observed flux can be accounted by acceleration in supernova remnants. The ankle in the 
spectrum may mean a change from galactic to extragalactic sources, especially as it occurs at certain energy 
where cosmic ray protons can no longer be confined in the galactic disk. It can be interpreted as the transition 
between the galactic and extragalactic components [8] or the result of pair production by extragalactic protons 
after the interaction with photons of the cosmic microwave background radiation (CMBR) during propagation [9] 
[10]. 

Ultra high energy cosmic rays (UHECRs) were defined as those cosmic rays with energies above 1018 eV [11]. 
Since the first evidence of a cosmic ray primary with energy of 1020 eV was reported [12], a succession of de-
tectors, such as AGASA (the Akeno Giant Air Shower Array) [13], HiRes (the High Resolution Fly’s Eye) [14], 
Auger (the Pierre Auger Observatory) [15], and TA (the Telescope Array) [16], have been constructed to try to 
determine the energy spectrum, the primary composition, and the arrival direction anisotropy of UHECRs. Now 
the origin of UHECRs is still an open question in astrophysics. As yet, no astronomical sources have been iden-
tified to be the sources of UHECRs. How and where these particles gain their remarkable energies have not been 
well understood. Linsley noted that nothing in our galaxy was thought to be capable of accelerating charged par-
ticles to such energies [12]. Given the strength of galactic magnetic fields and the lack of correlations with the 
galactic plane, the highest energy cosmic rays are likely to originate in extragalactic sources. Current observa-
tions show that the spectrum is consistent with an origin in extragalactic astrophysical sources. 

It is generally believed that astrophysical sites such as neutron stars (or magnetars), gamma-ray bursts and ac-
tive galactic nuclei may be reasonable candidates for UHECR sources (see [17] [18] and references therein). Ac-
tive galactic nuclei (AGNs) are one of the best candidates for UHECR sources, as far as acceleration and ener-
getics is concerned [19]. TeV blazars (see next section) are a subclass of AGNs characterized by rapid and large 
variability at all frequencies. Thus, TeV blazars are more likely to be the origin of UHECRs. However, it is dif-
ficult to directly connect UHECRs to blazars due to the sparse UHECR events and the changes of the arrival di-
rection of UHECRs by intergalactic magnetic field. To judge whether TeV blazars can be candidates of UHECRs, 
the key is to judge whether the charged particles in the sources can be accelerated to ultra high energy. The most 
straightforward mechanism for accelerating a charged particle is placing it in an electromagnetic field. The inte-
raction of a charged particle with the electric field will boost the particle’s energy while the interaction with the 
magnetic field will confine the particle. The gyroradius of the particle is dependent on its charge and energy, so 
at some point the particle will get enough energy to escape the acceleration region. The purpose of this paper is 
to estimate the maximum energy that the charged particles can be accelerated according to the size of the emis-
sion region and the strength of the magnetic field, and then determine whether TeV blazars can be the candidates 
of UHECR source. The paper is organized as following: in Section 2 TeV, blazars are introduced, in Section 3 
the maximum energies are estimated, then in Section 4 the discussion is given and in Section 5 conclusions are 
drawn. 

2. TeV Blazars 
Blazars are a subclass of AGNs with a relativistic jet pointed close to the line of sight of the observer [20]. They 
have been observed at all wavelengths from radio to high energy gamma rays, and they show variability in flux 
at all wavelengths as well as spectral shape on time scales ranging from months to a few minutes. Blazars are 
divided into flat spectrum radio quasars (FSRQs) and BL Lacertae objects (BL Lacs). Since the first detection of 
TeV gamma rays from Mkn 421 with the Whipple imaging atmospheric Cherenkov telescopes [21], blazars have 
become one of the most interesting class of object for VHE gamma-ray astronomy. For the TeV emission is the 
most prominent feature in those sources, they are called TeV blazars, which constitutes a relatively small group 
of sources within the blazar family. The gamma-ray emission of most blazars peaks in the MeV-GeV range. 
Moreover, TeV gamma rays are efficiently absorbed by the extragalactic background light (EBL). This in addi-
tion limits the number of observed TeV blazars. Nowadays, about 50 blazars have been detected in the TeV 
gamma-ray band. These sources locate both in the northern and in the southern hemisphere. 

The electromagnetic (EM) radiation from blazar is predominantly non-thermal, and the spectral energy dis-
tributions (SEDs) of blazars are characterized by two broad peaks. The low energy peak in the SED is located 
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between infrared to X-ray energies, and the mechanism is almost certainly synchrotron emission from a relati-
vistic distribution of electrons. According to the frequency of the low energy peak, BL Lacertae objects are fur-
ther subdivided into low-, intermediate- and high-frequency peaked BL Lac objects, and they are abbreviated as 
LBL, IBL and HBL, respectively. The high energy peak is located gamma-ray energies. However, the origin of 
the high energy peak is still a matter of debate. There are several models to explain the high energy emission 
based on either leptonic or hadronic interactions. Under the assumption of leptonic models, high energy emis-
sion is explained via inverse Compton scattering of soft target photons. The target photons may come from syn-
chrotron emission by the same population of electrons which produce the low energy bump in synchrotron self 
Compton (SSC) model or from the external photons to the jet in external Compton (EC) models. These external 
photons can be the accretion disk photons or the accretion disk photons reprocessed by broad line region (BLR) 
clouds or the infrared radiation from the dusty torus. The hadronic models explain the high energy emission as 
an outcome of the synchrotron proton emission and proton-photon interactions with the synchrotron photons 
(see [22] and references therein). 

Simultaneous observations of blazars across multiple wavelengths have been made to construct the spectral 
energy distributions (SEDs). Some authors shed light on the VHE emission mechanisms of these TeV sources 
according to their SEDs and get some information of emission regions. We collect the magnetic field B, linear 
size R and Doppler factor Γ  of 38 TeV blazars. Since different models or different SED data give different 
values of these parameters, we calculate their mean values and list them in Table 1. The first column is for the 
object name, the second is for the red shift, the third is for the type, the fourth is for the magnetic field B, the 
fifth is for the emission size R, the sixth is for the Doppler factor Γ  and the last is for the reference.  

3. Estimation of Maximum Energy 
There exist several theories describing mechanisms capable of producing particles above 1018 eV. These theories 
may be divided into two major classes: top-down decay scenario and bottom-up acceleration scenario [23]. Bot-
tom-up acceleration describes processes that take a particle, such as a proton, and accelerate it to a very high 
energy. The model is the more conventional hypothesis but struggles to reach the highest energies observed. For 
bottom-up acceleration to work, the source must provide either a very large acceleration gradient or provide ac-
celeration over a very large distance. Top-down mechanisms produce the particles locally using the decay or in-
teraction of exotic particles such as the decay of a super heavy relic particle from the big bang or the interaction 
of a magnetic monopole and anti-monopole. In this model cosmic rays begin at energies at and preferably well 
above those observed, so top-down models can explain the existence of UHECR, while they have a more diffi-
cult time explaining the flux. Additionally, the models require the production of existence of very exotic par-
ticles. At present, no theory has yet to produce a conclusive mechanism nor has experiment been able to trace 
these particles to any conclusive source.  

In the bottom-up models, irrespective of the details of the acceleration mechanism, the basic requirement that 
cosmic ray accelerators must meet was summarized by Hillas [24]. Charged particles will escape from an acce-
leration region when their gyroradii increase beyond the size of the acceleration region. Thus the size and mag-
netic field strength associated with an astrophysical acceleration site determine the maximum theoretical accele-
ration energy Emax for a charged particle. There are indications that jets, powered by super-massive black holes 
at the center of active galaxies, are cosmic ray accelerators. The cosmic ray acceleration process is assumed to 
occur within a relativistic blob of plasma moving along the jet with Lorentz factor 1.5~ 10Γ  [25]. They produce 
photons of TeV energy, possibly higher, and may be the enigmatic source of the highest energy cosmic rays [26]. 
As acceleration site of charged particles, jets of AGN have the advantage that acceleration on the jet frame could 
have maximum energy smaller that these of the observed by 1 Γ  [27]. Thus, one can calculate the maximum 
theoretical acceleration energy [24] [28], that does not include any efficiency factor, 

max
15 e

μG pc10  eV
E B BZ   

≤ Γ   
  

                               (1) 

where Γ  is the Lorentz factor of the shock matter, Z  is the charge of the nucleus, B  is the strength of 
magnetic field, and R is the radius of the emission region. 

In the jets of TeV blazars, the maximum energy of a particle with charge Z  is calculated within a given 
emission region with radius R and magnetic field strength B . We locate the TeV blazars on a plot of B  vs. 

RΓ  (see Figure 1). Three diagonal short dot lines, from top to bottom, indicate the size and magnetic field  
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Table 1. The information of emission region of TeV blazars.                                            

Object z Type B (G) R (1016cm) Γ  Refs. 

KUV 00311−1938 - HBL 0.40 0.65 26 [48] 

RGB J0152+017 0.08 HBL 0.14 ± 0.13 0.58 ± 0.55 18.3 ± 11.5 [48]-[50] 

3C66A 0.41 IBL 0.44 ± 0.48 3.47 ± 3.28 27.8 ± 4.7 [48] [50] [51] 

1ES 0229+220 0.14 HBL 0.24 ± 0.34 2.70 ± 1.12 24.2 ± 22.3 [48] [50] 

PKS 0301−243 - HBL 0.33 1 2 [48] 

RBS 0413 0.19 HBL 10.11 ± 17.23 1.07 ± 0.55 18.3 ± 2.9 [52] 

1ES 0347−121 0.188 HBL 0.25 ± 0.39 3.47 ± 2.41 26.7 ± 16.6 [48] [50] [53] 

1ES 0414+009 0.287 HBL 0.01 10 50 [54] 

PKS 0447−439 - HBL 0.24 ± 0.23 0.98 ± 0.66 29.5 ± 13.4 [48] [55] 

1ES 0502+675 0.341 HBL 0.40 ± 0.49 1.0 16.5 ± 4.9 [48] [56] 

PKS 0548−322 0.069 HBL 0.27 ± 0.29 1.24 ± 0.79 13.7 ± 10.0 [48] [50] [57] 

RX J0648.7+1516 0.179 HBL 3.41 ± 5.70 1.06 ± 0.90 18.3 ± 2.9 [58] 

RGB J0710+591 0.125 HBL 0.10 ± 0.05 1.86 ± 1.34 18.0 ± 9.5 [48] [50] [56] [59] 

S5 0716+714 0.31 IBL 0.33 ± 0.25 0.78 ± 0.06 34.8 ± 8.2 [48] [50] [60] 

1ES 0806+524 0.138 HBL 0.40 ± 0.07 1.08 ± 1.11 18.0 ± 4.0 [48] [50] [61] 

1RXS J101015.9−311909 0.143 HBL 0.09 ± 0.10 3.62 ± 4.78 30.0 ± 0.0 [62] 

1ES 1011+496 0.212 HBL 0.30 ± 0.21 1.20 ± 0.78 29.3 ± 12.3 [48] [50] [63] [64] 

1ES 1101−232 0.186 HBL 0.33 ± 0.46 2.15 ± 2.26 23.3 ± 9.9 [48] [50] [65] [66] 

Mkn 421 0.031 HBL 0.10 ± 0.08 2.64 ± 2.49 31.3 ± 19.4 [48] [50] [67]-[69] 

Mkn 180 0.045 HBL 0.18 ± 0.12 0.45 ± 0.52 27.5 ± 18.1 [48] [50] [64] 

1ES 1215+303 0.13 HBL 0.05 ± 0.04 1.26 ± 1.42 45.2 ± 24.4 [48] [70] 

1ES 1218+304 0.182 HBL 0.15 ± 0.04 0.86 ± 1.15 33.0 ± 12.1 [48] [50] [71] 

W Comae 0.102 IBL 0.20 ± 0.11 1.92 ± 2.08 19.7 ± 4.2 [48] [50] [72] [73] 

4C+21.35 0.432 FSRQ 0.28 0.09 75 [74] 

3C279 0.536 FSRQ 0.48 ± 0.62 18.47 ± 26.28 19.8 ± 3.8 [22] [75]-[77] 

PKS 1424+240 - IBL 0.28 ± 0.12 3.42 ± 1.70 32.9 ± 13.7 [48] [50] [78] 

H 1426+428 0.129 HBL 0.07 ± 0.05 1.92 ± 1.05 19.5 ± 7.2 [48] [50] [79] [80] 

PKS 1510−089 0.36 FSRQ 0.23 ± 0.09 6.29 ± 2.03 15.8 ± 4.9 [81] 

AP Lib 0.049 LBL 0.01 1 40 [48] 

PG 1553+113 0.5 HBL 0.76+0.84 2.26 ± 2.75 27.5 ± 7.1 [48] [50] [82] 

Mkn 501 0.034 HBL 0.25 ± 0.22 1.31 ± 2.99 17.6 ± 5.1 [48] [50] [83]-[90] 

1ES 1959+650 0.048 HBL 0.30 ± 0.38 0.84 ± 0.45 17 ± 3.87 [48] [50] [91] [92] 

PKS 2005−489 0.071 HBL 0.26 ± 0.31 11.61 ± 18.98 23.3 ± 13.0 [48] [50] [93] 

PKS 2155−304 0.116 HBL 8.24 ± 25.21 1.31 ± 1.70 37.9 ± 27.3 [48] [50] [68]  
[77] [94] [95] 

BL Lacertae 0.069 IBL 0.62 ± 0.54 0.53 ± 0.23 16.5 ± 3.7 [48] [50] [96] 

B3 2247+381 0.119 HBL 0.07 ± 0.01 0.60 ± 0.28 32.5 ± 3.5 [97] 

1ES 2344+514 0.044 HBL 0.09 ± 0.02 0.75 ± 0.39 19.0 ± 6.2 [48] [50] [64] [98]-[100] 

H 2356−309 0.165 HBL 0.18 ± 0.15 0.74 ± 0.46 24.8 ± 17.1 [48] [50] [77] [101] 
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Figure 1. The magnetic field strength vs. the size multiplied by the doppler factor of 
the emission region for 38 TeV blazars.                                       

 
strength required of an object to accelerate protons to 1020 eV, 1019 eV and 1018 eV, respectively. Objects below 
the lines are not up to the corresponding task. The dash lines represent that the object can accelerate irons to 1020 
eV, 1019 eV and 1018 eV, respectively. From the figure, one can see that most of the TeV blazars can accelerate 
the protons to 1018 eV, but less of them can accelerate protons to 1020 eV. One can also see that most of the TeV 
blazars are above the dash lines. This means that they have abilities to accelerate heavy nuclei irons above 1020 
eV. So, TeV blazars can be taken as the candidate for UHECR origin. It should be noted that the acceleration ef-
ficiency and the possible energy loss mechanisms when particles are accelerating are not taken into account. It is 
expected that cosmic ray energy will be degraded by protonpion production on the intense nearby radiation and 
by synchrotron losses in the associated magnetic fields [24] [29]. 

4. Discussion 
As can be seen from Figure 1, most of the TeV blazars can accelerate protons and irons to the energies above 
1018 eV. So, the TeV blazars meet the basic requirement of UHECR sources and can be taken as the sources of 
UHECRs. Dermer and Razzaque [18] used Fermi data to constrain the maximum energies of cosmic rays acce-
lerated in colliding shells of gamma-ray bursts and blazars. Their results show that irons rather than protons are 
more likely to be accelerated to ultra high energies in AGNs, and BL Lac objects radiate a volume- and 
time-averaged emissivity of 1045 - 1046 erg Mpc−3∙yr−1 innonthermal gamma rays. So, BLLac objects have suffi-
cient emissivity to power UHECRs, which require ~1044 erg Mpc−3∙yr−1 [30]. 

The direct way to identify the sources of ultra high energy cosmic rays is to observe their arrival directions, 
pointing back toward their sources. So, the search for anisotropies in the arrival direction of cosmic rays on dif-
ferent angular scales can contribute to the understanding of the cosmic ray origin, in particular the identification 
of source regions or individual sources. The correlation between the UHECR arrival directions and the astro-
physical objects has been studied by several authors [31]-[38]. However, the claimed correlations between ultra 
high energy cosmic ray arrival directions and AGNs are controversial. 

The largest experiment of Pierre Auger Observatory claimed correlations of UHECRs with the nearby AGNs 
(redshift z ≤ 0.018) [39] [40] which were not confirmed by HiRes experiment in the Northern hemisphere [41]. 
The Auger collaboration updated the analysis and found that a smaller fraction of the UHECR events correlate 
with the same set of AGNs in the latest UHECR data set [42] than in the original one. Using the same parame-
ters reported by the Auger collaboration, Abu-Zayyad et al. searched for the correlation of UHECRs detected by 
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the Telescope Array experiment with nearby active galactic nuclei, and found no statistically significant correla-
tion [43]. 

When searching for potential sources of cosmic rays, the basic obstacle is that charged particles will inevita-
bly deflect as they travel through the magnetic fields that permeate galactic and extragalactic space. The infor-
mation about their source direction is erased, and this results in their observed arrival directions being almost 
isotropically distributed. Subsequently, the cosmic ray arrival directions do not point back to any of their po-
werful candidate sources. After a charged particle travels over a distance d  in an extragalactic magnetic field 

~ nGegB  of coherence length ~  1 Mpccl , the deflection angle can be estimated as [25] 
1 2 1 21

191.3
10 Mpc Mpc nG6 10  eV

egc BlE dZθ
−      

     ×       


                         (2) 

At sufficiently high energies, the deflection is small. This means, for example, that a 1020 eV proton propa-
gating through a 1 nG field with a 1 Mpc coherence length (perhaps typical of the extra-galactic field), arriving 
from 100 Mpc, will be deflected by 2.5  on average. While for a proton with energy of 1019 eV, the deflection 
can reach 25 . If for irons, the deflection will be more serious. The galactic magnetic field, locally observed to 
be on the order of a few μG , is also sufficiently strong to induce deflections in the arrival directions of ultra 
high energy cosmic rays. For a particle traveling a distance S  through a uniform magnetic field with perpen-
dicular component B, the angular deflectionδ , from its initial trajectory is [44]: 

2010  eV0.5
kpc μG
S BZ

E
δ

   
=    

   
                                 (3) 

the galactic magnetic field strength is μG , and the solar system is ~8 kpc from the galactic center. Therefore at 
energies of 1020 eV a proton will experience a deflection of 4  during propagation.  

However, protons with energies of 1019 eV will experience larger deflections. This deflection can be suffi-
ciently large as to make source identification difficult. Extragalactic and galactic magnetic fields certainly play 
an important role in UHECRs propagation. Yet the lack of knowledge concerning the distribution and strength of 
these fields, at both galactic and extragalactic scales, introduces a large degree of uncertainty in the subject of 
charged particle propagation [45]. 

Heavy nuclei have higher electric charge than protons and consequently suffer bigger deflections by magnetic 
fields. Determining the type of particles that are arriving at earth will also provide indications as to which astro-
physical processes could have produced them. A satisfactory understanding of the origin of cosmic rays must 
deal with the issue of chemical composition. With existing observation techniques, UHECR composition cannot 
be determined on an event-by-even basis. Only the trends or changes in composition can be measured from the 
statistics of many events. However, chemical compositions of ultra high energy cosmic rays measured by two 
largest detectors, High Resolution Fly’s Eye (HiRes) and Pierre Auger Observatory (PAO), particularly at the 
highest energies, are significantly differently. The HiRes data show pure proton composition [46]. On the con-
trary, the PAO data strongly favor the nuclei composition getting progressively heavier at ( )~ 4 - 40  EeVE  
[47]. 

5. Conclusion 
The origin of UHECRs is one of the most puzzling problems in cosmic ray physics. Astrophysical extragalactic 
models for the observed UHECR must satisfy some constraints. A minimum requirement for astrophysical 
sources of UHECRs is the ability to magnetically confine particles of the requisite energies. The results show 
that TeV blazars meet this basic criterion, and they can accelerate protons and irons up to ultra high energies. So 
they can be the potential UHECR sources. However, the detail of the acceleration mechanism is poorly known. 
In addition, there are some great uncertainties in intervening magnetic fields and cosmic ray primary composi-
tion. These cause the lack of any confirmed anisotropy in arrival directions to date, and then hinder the devel-
opment of theories of cosmic ray origins. Reduction of the uncertainties by large exposure observatories will be 
one way to unveil these extremely energetic sources. It should be noted that due to interactions between cosmic 
rays and the CMB protons, UHECR with energies above GZK energy can not be observed on earth when they 
traveled over distance larger than the GZK horizon (~100 Mpc). The other messengers, such as neutrinos and 
high energy gamma rays will also play an important role in identifying the sources of UHECRs. 
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