

Phylogenetic Analysis of Baculovirus Isolates from Diseased Insects in Southern Vietnam

Nguyen Thi Phuong Thao¹, Nguyen Thi Thuy¹, Nguyen Khac Duy¹, Doan Chinh Chung², Do Minh Si², Le Thanh Long^{1*}

¹Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam ²University of Science, Ho Chi Minh City, Vietnam Email: *<u>lelong2510@gmail.com</u>

Received 8 July 2014; revised 7 August 2014; accepted 28 August 2014

Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

🙃 🛈 Open Access

Abstract

The aim of this study was to investigate the molecular identification and assess the genetic relationship of baculovirus isolated from Southern Vietnam. The diseased insect samples were collected from the different fields. The partial sequence of 450 base pairs of lef-8 gene was amplified and sequenced to assess the genetic variations of baculovirus isolates specific for Spodoptera litura, Helicoverpa zea, and Helicoverpa armigera. The sequences alignment demonstrated that Helicoverpa zea specific isolates exhibited six single nucleotide polymorphic sites. Whereas, twenty five single polymorphic sites were found in Spodoptera litura specific isolates. Thus, Spodoptera litura specific isolates were higher polymorphic than Helicoverpa zea specific isolates. The genetic distance analyses showed that the distance between Vietnamese baculovirus isolates and Group II Alphabaculovirus isolates was lower than other Baculovirus groups. The phylogeny of Vietnamese isolates in relation to other baculovirus isolates was also determined using partial sequences of lef-8 gene. The phylogenetic tree placed all Vietnamese isolates in Group II Alphabaculovirus, where seven Vietnamese Helicoverpa zea specific isolates were most closely related to Helicoverpa zea SNPV, fourteen Vietnamese Spodoptera litura specific isolates were located with Spodoptera litura NPV-G2 in one clade and a Vietnamese *Helicoverpa armigera* isolate was appeared to be closely related to Helicoverpa armigera SNPV-NNg1, Helicoverpa armigera NPV-C1, Helicoverpa armigera NPV-G4.

Keywords

Baculovirus, Helicoverpa armigera, Helicoverpa zea, Lef-8 Gene, Phylogeny, Spodoptera litura

^{*}Corresponding author.

How to cite this paper: Thao, N.T.P., Thuy, N.T., Duy, N.K., Chung, D.C., Si, D.M. and Long, L.T. (2014) Phylogenetic Analysis of Baculovirus Isolates from Diseased Insects in Southern Vietnam. *Open Journal of Genetics*, **4**, 378-384. http://dx.doi.org/10.4236/ojgen.2014.45035

1. Introduction

Baculoviruses are a very diverse group of viruses with double-stranded, circular, supercoiled genomes, with sizes varying from about 80 to over 180 kb and that encode between 90 and 180 genes [1]. The genome is packaged in rod-shaped nucleocapsids that are 230 - 385 nm in length and 40 - 60 nm in diameter [2] [3]. In the most well characterized baculoviruses, the virions are present as two types, occluded virions and budded virions. Baculoviruses have been reported from a variety of different species of invertebrates. However, the only well documented hosts are Diptera, Hymenoptera, and Lepidoptera. The Baculoviruse family is divided into four genera: Alphabaculovirus (lepidopteran-specific nucleopolyhedroviruses), Betabaculovirus (lepidopteran-specific Granuloviruses), Gammabaculovirus (hymenopteran-specific nucleopolyhedroviruses) and Deltabaculovirus (dipteran-specific nucleopolyhedroviruses) [4]. PCR-base method has been useful tools to identify baculovirus isolates. The late expression factor 8 (lef-8) was a highly conserved DNA region which was used as targets for degenerate PCR primers [5]. The lef-8 gene encodes for a subunit of the baculovirus RNA polymerase, which initiates transcription from late and very late promoters [6]. Lef-8 was previously suitable for studying baculovirus phylogeny [7].

Vietnam is a tropical country with 1,687,000 ha for fruit, treenut and vegetable crops [8]. These are favorable natural conditions for insect specific baculoviruses. However, no study of distribution and genetic variation of baculovirus in Vietnam have been conducted. In present study, partial lef-8 gene amplification and sequencing was applied to identify the distribution and genetic relationship of baculovirus in Southern Vietnam and be compared to the other baculovirus isolates.

2. Materials and Methods

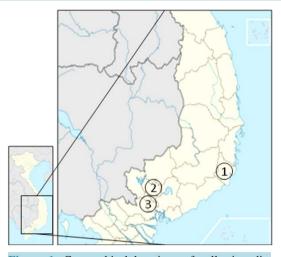
2.1. Insects and Virus Collection

The diseased insects were collected from Ho Chi Minh City, Binh Duong Province, Ninh Thuan Province (**Figure 1**). Fourteen Spodoptera specific isolates were obtained from cabbage. Seven *Helicoverpa zea* specific baculovirus isolates were obtained from tomato and corn. One *Helicoverpa armigera* isolate was obtained from tomato (**Table 1**).

2.2. DNA Extraction from Diseased Insects

DNA extractions of samples of baculovirus infected insects were performed using DNeasy Tissue Kit (69504, Qiagen) according to manuals of the manufacturer. These samples were kept frozen at -20° C.

2.3. Viral DNA Amplification by PCR


The amplification of partial lef-8 gene was performed using degenerate primers [9] (**Table 2**). PCR was performed in a final volume of 50 μ l containing 5 μ l 10× PCR Buffer (P2192, Sigma), 1.5 mM MgCl₂, 200 μ M dNTP (D7295, Sigma), 0.05 units/ μ l Taq DNA Polymerase (D6677, Sigma), 0.5 μ M Forward and Reverse Primer. PCR cycle was performed under the following conditions: one cycle of DNA denaturation at 94°C in 5 min; 40 cycles at 94°C in 30 s; annealing at 48°C in 45 s; extension at 72°C in 45 s; final extension at 72°C in 10 min. A single band was visualized following electrophoresis of the reaction product in a 1% agarose gel.

2.4. Phylogenetic Analyses

PCR products were purified using ExoSAP-IT PCR Clean up kit and used as sequencing templates. The nucleotide sequences were determined using the 3730XL DNA Analyzer. The comparison of lef-8 sequences was performed for 22 Vietnamese baculovirus isolates and other isolates from Genbank in Table 3 [10]. The lef-8 sequences were aligned using CLUSTAL W [11]. Tamura & Nei model was used as a genetic distance model. Neighbor-joining method was applied for phylogenetic construction [12]. Bootstrap analyses (using 1000 replications) were used to assess the confidence in branching order.

3. Results and Discussion

In this study, the amplification of lef-8 gene was successful for 22 isolates which were collected from various

Figure 1. Geographical locations of collecting diseased insects. 1: Ninh Thuan Province, 2: Binh Duong Province, 3: Ho Chi Minh City.

No.	Isolate	Host insect	Host plant	Collection area
1	Spli-HCM1	Spodoptera litura	Cabbage	Ho Chi Minh City
2	Spli-HCM2	Spodoptera litura	Cabbage	Ho Chi Minh City
3	Spli-HCM3	Spodoptera litura	Cabbage	Ho Chi Minh City
4	Spli-HCM4	Spodoptera litura	Cabbage	Ho Chi Minh City
5	Spli-NT1	Spodoptera litura	Cabbage	Ninh Thuan Province
6	Spli-NT2	Spodoptera litura	Cabbage	Ninh Thuan Province
7	Spli-NT3	Spodoptera litura	Cabbage	Ninh Thuan Province
8	Spli-NT4	Spodoptera litura	Cabbage	Ninh Thuan Province
9	Spli-NT5	Spodoptera litura	Cabbage	Ninh Thuan Province
10	Spli-NT6	Spodoptera litura	Cabbage	Ninh Thuan Province
11	Spli-NT7	Spodoptera litura	Cabbage	Ninh Thuan Province
12	Spli-BD1	Spodoptera litura	Cabbage	Binh Duong Province
13	Spli-BD2	Spodoptera litura	Cabbage	Binh Duong Province
14	Spli-BD3	Spodoptera litura	Cabbage	Binh Duong Province
15	Hear-BD	Helicoverpa armigera	Tomato	Binh Duong Province
16	Hz-HCM1	Helicoverpa zea	Tomato	Ho Chi Minh City
17	Hz-HCM2	Helicoverpa zea	Tomato	Ho Chi Minh City
18	Hz-HCM3	Helicoverpa zea	Tomato	Ho Chi Minh City
19	Hz-BD1	Helicoverpa zea	Corn	Binh Duong Province
20	Hz-BD2	Helicoverpa zea	Corn	Binh Duong Province
21	Hz-BD3	Helicoverpa zea	Corn	Binh Duong Province
22	Hz-BD4	Helicoverpa zea	Corn	Binh Duong Province

Ta	ble	1.	Bacu	lovirus	s iso	lates	with	ı their	· host	t insect,	host 1	plant and	l sources.
----	-----	----	------	---------	-------	-------	------	---------	--------	-----------	--------	-----------	------------

Table 2. Primer pairs used for amplification.

Primers	Sequence ^a	Size (base pairs) ^b	
L8F2	gtaaaacgacggccagtNNNACNRCNGARGAYCC	450	
L8R2	aacagctatgaccatgMMNCCYTTYTGNCCRTG	430	

^aDegenerate baculovirus primers are in uppercase type. R, A or G; Y, T or C; M, A or C; W, A or T; N, A, C, G, or T; ^bExpected size of the amplification product.

Genus	Name	Abbreviation	Accession number
	Antheraea pernyi NPV-Z	AnpeNPV-Z	NC_008035
	Anticarsia gemmatalis MNPV-2D	AgMNPV-2D	NC_008520
	Choristoneura fumiferana DEF MNPV	CfDEFMNPV	NC_005137
Alphabaculovirus Group I	Choristoneura fumiferana MNPV	CfMNPV	NC_004778
	Epiphyas postvittana NPV	EppoNPV	NC_003083
	Hyphantria cunea NPV	HycuNPV	NC_007767
	Orgyia pseudotsugata MNPV	OpMNPV	NC_001875
	Agrotis ipsilon NPV	AgipNPV	NC_011345
	Agrotis segetum NPV	AgseNPV	NC_007921
	Euproctis pseudoconspersa NPV	EupsNPV	NC_012639
	Helicoverpa armigera NPV-C1	HearNPV-C1	NC_003094
	Helicoverpa armigera NPV-G4	HearNPV-G4	NC_002654
	Helicoverpa armigera MNPV	HearMNPV	NC_011615
	Helicoverpa armigera SNPV-NNg1	HearSNPV-NNg1	NC_011354
	Helicoverpa zea SNPV	HzSNPV	NC_003349
Alphabaculovirus Group II	Leucania separate NPV-AH1	LeseNPV-AH1	NC_008348
	Lymantria dispar MNPV	LdMNPV	NC_001973
	Lymantria xylina MNPV	LyxyMNPV	NC_013953
	Mamestra configurata NPV-90-2	MacoNPV-90-2	NC_003529
	Mamestra configurata NPV-B	MacoNPV-B	NC_004117
	Spodoptera exigua MNPV	SeMNPV	NC_002169
	Spodoptera frugiperda MNPV-3AP2	SfMNPV-3AP2	NC_009011
	Spodoptera litura NPV-II	SpliNPV-II	NC_011616
	Spodoptera litura NPV-G2	SpliNPV-G2	NC_003102
	Adoxophyes orana GV	AdorGV	NC_005038
	Agrotis segetum GV	AgseGV	NC_005839
	Choristoneura occidentalis GV	ChocGV	NC_008168
	Cryptophlebia leucotreta GV	CrleGV	NC_005068
Databaaylayima	Cydia pomonella GV	CpGV	NC_002816
Betabaculovirus	Helicoverpa armigera GV	HearGV	NC_010240
	Phthorimea operculella GV	PhopGV	NC_004062
	Plutella xylostella GV	PlxyGV	NC_002593
	Spodoptera litura GV-K1	SpliGV	NC_009503
	Xestia c-nigrum GV	XnGV	NC_002331
Deltabaculovirus	Culex nigripalpus NPV	CuniNPV	NC_003084
	Neodiprion abietis NPV	NeabNPV	NC_008252
Gammabaculovirus	Neodiprion lecontei NPV	NeleNPV	NC_005906
	Neodiprion sertifer NPV	NeseNPV	NC_005905

areas of Southern Vietnam. The genetic polymorphisms among 22 baculoviruse isolates were indentified and analyzed using lef-8 gene obtained from degenerated primers. A fragment of 450 base pairs was amplified. However, a nucleotide sequence of 335 base pairs was used for the analysis due to the higher quality and reliability of sequencing after manual edition. These baculoviruse isolates were distributed in 2 main groups including 14 *Spodoptera litura* specific isolates and 7 *Helicoverpa zea* specific isolates. The base proportion was different between two types of isolates. The base proportion for *Spodoptera litura* specific isolates from Vietnam was 19.2% of thymine, 20.9% of cytosine, 34.6% of adenine and 25.3% of guanine. The base proportion for *Helicoverpa zea* specific isolates from Vietnam was 18.8% of thymine, 23.8% of cytosine, 36.4% of adenine and 21% of guanine.

The lef-8 alignment exhibited six single polymorphic sites among *Helicoverpa zea* specific isolates where the Hz-BD1, Hz-BD2, Hz-BD3, Hz-BD4 isolates differed from the remaining isolates by a G to A transition at position 1993 of lef-8 gene. The Hz-BD1 and Hz-BD3 isolates also exhibited a G to A transition at position 1972 of lef-8 gene. Whereas, the Hz-HCM2 and Hz-BD2 isolates exhibited an A to G transition at position 1908 of lef-8 gene.

The field baculovirus isolates which were collected from various crops and geographic locations commonly expressed genetic variations [13] [14]. In this study, the Vietnamese *Helicoverpa zea* specific isolates from Ho Chi Minh City were genetically different from Binh Duong Province in the number of variable positions of lef-8 gene. The alignment revealed 3 variable positions of Hz-HCM1, Hz-HCM2 and Hz-HCM3 isolates at position 1895, 1896 and 1908 in lef-8 gene. Conversely, the Hz-BD1, Hz-BD2, Hz-BD3 and HzBD4 isolates exhibited 6 variations at position 1989, 1896, 1908, 1972, 1993 and 2033 in lef-8 gene.

In contrast to *Helicoverpa zea* specific isolates, the *Spodoptera litura* specific isolates were highly variable, displaying a total of twenty five single polymorphic sites, suggesting that *Spodoptera litura* specific isolates were high polymorphic than *Helicoverpa zea* specific isolates.

The sequences of *Spodoptera litura* specific isolates and *Helicoverpa zea* specific isolates were compared to SpliNPV-G2 [15] and HzSNPV [9], respectively. The lef-8 gene of fourteen *Spodoptera litura* specific isolates were aligned with SpliNPV-G2 and showed the identity greater than 96%. The lef-8 gene of seven *Helicoverpa zea* specific isolates were aligned with HzSNPV and showed the identity greater than 98%.

The genetic distances with in *Spodoptera litura* specific isolates and *Helicoverpa zea* specific isolates were 0.101 ± 0.065 and 0.053 ± 0.022 , respectively, suggesting that the *Helicoverpa zea* specific isolates were lower genetic variable than *Spodoptera litura* specific isolates. The genetic distance between groups analyses also showed that the distance between *Spodoptera litura* specific isolates with Group II Alphabaculovirus were higher than *Helicoverpa zea* (0.234 ± 0.181 and 0.071 ± 0.044 , respectively), indicating inter-specific divergence in *Spodoptera litura* specific isolates. Thus, the partial sequence of the lef-8 gene of 335 bp used in this study could be applied to discriminate *Helicoverpa zea* specific isolates and *Spodoptera litura* specific isolates. The genetic distances from other groups (**Table 4**). This result supported for a close genetic relationship between Vietnamese isolates and Group II Alphabaculovirus.

The neighbor-joining tree was applied to assess the phylogenetic relationship of Vietnamese isolates in Baculoviridae family using partial lef-8 gene (Figure 2). The phylogram was rooted using sequence of NeseNPV, which was clustered with other isolates from Gammabaculovirus in one clade (NeabNPA isolate and NeleNPV isolate). The other major clades included the Betabaculovirus and Group I Alphabaculovirus with 46% bootstrap value and 67% bootstrap value, respectively. The Group I Alphabaculovirus originated as an ancestral Group II Alphabaculovirus [16]. All Vietnamese isolates belonged to Group II Alphabaculovirus which appeared paraphyletic as a sister clade to Group I [14]. The Vietnamese isolates formed several smaller clades within Group II Alphabaculovirus. Seven Vietnamese *Helicoverpa zea* specific isolates were located with HzSNPV isolate. The Helicoverpa zea cluster exhibited two groups: one containing 4 isolates from Binh Duong Province (from Hz-BD1 to Hz-BD4) and the other with 3 isolates from Ho Chi Minh City (from Hz-HCM1 to Hz-HCM3). This clade was supported by high bootstrap value of 91% (Figure 2). The Vietnamese Hear-BD isolate was found in Group II and appeared to be closely related to HearSNPVNNg1, HearNPV-C1 and HearNPV-G4 with 52% bootstrap value. Fourteen Vietnamese Spodoptera litura specific isolates were located with SpliNPV-G2 isolate with 78% bootstrap value, suggesting that these isolates have a close genetic relationship to SpliNPV-G2. There were no subheadings among Spodoptera litura specific isolates from Ho Chi Minh City, Ninh Thuan Province and Binh Duong Province.

	Spodoptera (Vietnam)	Helicoverpa (Vietnam)	Alpha_1	Alpha_2	Beta	Delta	Gamma
Spodoptera (Vietnam)		0.272	0.352	0.181	0.371	0.712	0.720
Helicoverpa (Vietnam)	0.379		0.236	0.044	0.281	0.767	0.560
Alpha_1	0.472	0.343		0.190	0.360	0.524	0.732
Alpha_2	0.234	0.071	0.261		0.180	0.654	0.596
Beta	0.476	0.399	0.412	0.258		0.687	0.550
Delta	0.873	0.915	0.681	0.760	0.709		1.004
Gamma	0.717	0.639	0.683	0.600	0.503	0.934	

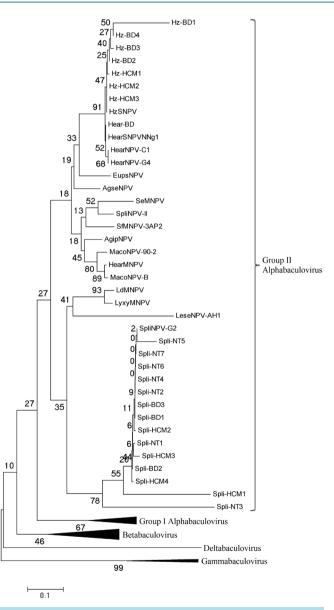


Figure 2. Phylogenetic tree constructed from partial lef-8 sequences of baculovirus isolates by the neighbor-joining analysis method. Bootstrap resampling was done 1000 times, and resulting bootstrap values are shown on the corresponding branches.

 Table 4. Matrix of Tamura & Nei genetic distance among baculovirus isolates. Lower triangular matrix values were mean genetic distances, upper triangular matrix values were standard errors.

Acknowledgements

This study was supported by Department of Science and Technology Ho Chi Minh city, Vietnam.

References

- Rohrmann, G.F. (2011) Baculovirus Molecular Biology. 2nd Edition, National Library of Medicine (US), National Center for Biotechnology Information, Bethesda, 9-10.
- [2] Lung, O.Y., Cruz, A.M. and Blissard, G.W. (2003) Ac23, an Envelope Fusion Protein Homolog in the Baculovirus Autographa californica Multicapsid Nucleopolyhedrovirus, Is a Viral Pathogenicity Factor. Journal of Virology, 77, 328-339. <u>http://dx.doi.org/10.1128/JVI.77.1.328-339.2003</u>
- [3] Roncarati, R. and Knebel-Morsdorf, D. (1997) Identification of the Early Actin-Rearrangement-Inducing Factor Gene, Arif-1, from *Autographa californica* Multicapsid Nuclear Polyhedrosis Virus. *Journal of Virology*, **71**, 7933-7941.
- [4] Jehle, J.A., Blissard, G.W., Bonning, B.C., Cory, J.S., Herniou, E.A., Rohrmann, G.F., Theilmann, D.A., Thiem, S.M. and Vlak, J.M. (2006) On the Classification and Nomenclature of Baculoviruses: A Proposal for Revision. *Archives of Virology*, **151**, 1257-1266. <u>http://dx.doi.org/10.1007/s00705-006-0763-6</u>
- [5] Lange, M., Wang, H.L., Hu, Z.H. and Jehle, J.A. (2004) Towards a Molecular Identification and Classification System of Lepidopteran-Specific Baculoviruses. *Virology*, **325**, 36-47. <u>http://dx.doi.org/10.1016/j.virol.2004.04.023</u>
- [6] Guarino, L.A., Xu, B., Jin, J.P. and Dong, W. (1998) A Virus-Encoded RNA Polymerase Purified from Baculovirus-Infected Cells. *Journal of Virology*, 72, 7985-7991.
- [7] Herniou, E.A., Luque, T., Chen, X., Vlak, J.M., Winstanley, D., Cory, J.S. and O'Reilly, D.R. (2001) Use of Whole Genome Sequence Data to Infer Baculovirus Phylogeny. *Journal of Virology*, 75, 8117-8126. <u>http://dx.doi.org/10.1128/JVI.75.17.8117-8126.2001</u>
- [8] Food and Agriculture Organization of the United Nations (2013) World Food and Agriculture. FAO Statistical Yearbook, Rome, 165-168.
- [9] Herniou, E.A., Olszewski, J.A., O'Reilly, D.R. and Cory, J.S. (2004) Ancient Coevolution of Baculoviruses and Their Insect Hosts. *Journal of Virology*, 78, 3244-3251. <u>http://dx.doi.org/10.1128/JVI.78.7.3244-3251.2004</u>
- [10] Solange, A.B.M., Matias, J.G., Mariano, N.B. and Pablo, D.G. (2011) Baculovirus: Molecular Insights on Their Diversity and Conservation. *International Journal of Evolutionary Biology*, 2011, 1-15.
- [11] Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. (2011) MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. *Molecular Biology and Evolution*, 28, 2731-2739. <u>http://dx.doi.org/10.1093/molbev/msr121</u>
- [12] Saitou, N. and Nei, M. (1987) The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees. *Molecular Biology and Evolution*, 4, 406-425.
- [13] Li, L., Li, Q., Willis, L.G., Erlandson, M., Theilmann, D.A. and Donly, C. (2005) Complete Comparative Genomic Analysis of Two Field Isolates of *Mamestra configurata* Nucleopolyhedrovirus-A. *Journal of General Virology*, 86, 91-105. <u>http://dx.doi.org/10.1099/vir.0.80488-0</u>
- [14] Craveiro, S.R., Melo, F.L., Ribeiro, Z.M., Ribeiro, B.M., Báo, S.N., Inglis, P.W. and Castro, M.E. (2013) Pseudoplusia Includens Single Nucleopolyhedrovirus: Genetic Diversity, Phylogeny and Hypervariability of the Pif-2 Gene. *Journal* of Invertebrate Pathology, **114**, 258-267. http://dx.doi.org/10.1016/j.jip.2013.08.005
- [15] Pang, Y., Yu, J. and Wang, L. (2001) Sequence Analysis of the *Spodoptera litura* Multicapsid Nucleopolyhedrovirus Genome. *Virology*, 287, 391-404. <u>http://dx.doi.org/10.1006/viro.2001.1056</u>
- [16] Jiang, Y., Deng, F., Rayner, S., Wang, H. and Hu, Z. (2009) Evidence of a Major Role of GP64 in Group I Alphabaculovirus Evolution. Virus Research, 142, 85-91. <u>http://dx.doi.org/10.1016/j.virusres.2009.01.015</u>

IIIIII II

 \checkmark

Scientific Research Publishing (SCIRP) is one of the largest Open Access journal publishers. It is currently publishing more than 200 open access, online, peer-reviewed journals covering a wide range of academic disciplines. SCIRP serves the worldwide academic communities and contributes to the progress and application of science with its publication.

Other selected journals from SCIRP are listed as below. Submit your manuscript to us via either submit@scirp.org or Online Submission Portal.

