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Abstract 
In the framework of stochastic processes, the connection between the dynamic programming 
scheme given by the Hamilton-Jacobi-Bellman equation and a recently proposed control approach 
based on the Fokker-Planck equation is discussed. Under appropriate assumptions it is shown 
that the two strategies are equivalent in the case of expected cost functionals, while the Fokker- 
Planck formalism allows considering a larger class of objectives. To illustrate the connection be-
tween the two control strategies, the cases of an Itō stochastic process and of a piecewise-deter- 
ministic process are considered. 
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1. Introduction 
In the modelling of uncertainty, the theory of stochastic processes [1] provides established mathematical tools 
for the modelling and the analysis of systems with random dynamics. Furthermore in application, the possibility 
to control sequences of events subject to random disturbances is highly desirable for real applications. In this 
paper, we elucidate the connection between the well established Hamilton-Jacobi-Bellman (HJB) control frame- 
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work [2] [3] and a control strategy based on the Fokker-Planck (FP) equation [4] [5]. Illustrative examples allow 
gaining additional insight on this connection. 

We focus on a representative n-dimensional continuous-time stochastic processes described by the following 
model  

( ) ( )d , d , dt t t t t tX a X t b X Wα α= +                             (1.1) 

where a  is a Lipschitz-continuous n-dimensional drift function and m
tW ∈  is a m-dimensional Wiener 

process with stochastically independent components. The dispersion function b  with values in n m×  is 
assumed to be smooth and full rank; see [6]. This is the well-known Itō stochastic differential equation (SDE) [1] 
where we consider also the action of a d-components vector of controls ( ), dt xα α= ∈ , that allows driving 
the random process towards a certain goal [3]. We denote with   the set of Markovian controls that contains  
all jointly measurable functions [ ]: 0, nT Aα × → , where dA ⊂   is a given compact set [3]. In determinis-  
tic dynamics, the optimal control is achieved by finding a control law α  that minimizes a given objective 
defined by a cost functional ( ),J X α ; see, e.g., [2]. 

In the non-deterministic case, the state tX  is random, so that inserting a stochastic process into a 
deterministic cost functional will result into a random variable. Therefore, in stochastic optimal control prob- 
lems the expected value of a given cost functional is considered [7]. In particular, we have  

( ) ( )( ) ( )
0

, , , d .
T

t t TJ X h X t X t g Xα α = +  ∫                      (1.2) 

This is a Bolza type cost functional in the finite-horizon case ( )T < ∞  and it is assumed here that the 
controller knows the state of the system at each instant of time (complete observations). For this case, the 
method of dynamic programming can be applied [2] [7] [8] in order to derive the HJB equation for inf Jα  with 
α  as the optimization function. Some other cases of the cost structure of ( ),J X α  are quoted in [8], that have 
applications in finance, engineering, and in production planning and forest harvesting. Each J  will lead to a 
different form of the HJB equation that can be analysed with appropriate methods of partial differential equa- 
tions; see, e.g., [9]. 

A control approach close to the HJB formulation consists in approximating the continuous stochastic process 
by a discrete Markov decision chain. In this approach the information of the controlled stochastic process, 
carried by the transition probability density function of the approximating Markov process, is utilized to solve 
the Bellman equation; for details see [10]. 

However, the common methodology to find an optimal controller of random processes consists in reformulat- 
ing the problem from stochastic to deterministic. This is a reasonable approach when we consider the problem 
from a statistical point of view, with the purpose to find out the collective “ensemble” behaviour of the process. 
In fact, the average [ ]⋅  of the functional of the process X  is omnipresent in almost all stochastic optimal 
control problems considered in the scientific literature. 

The value of the cost functional before averaging is a way to measure the cost of a single trajectory of the 
process. However, the knowledge of the single realization is not useful for the statistical analysis, that would 
require to determine the average, the variance, and other properties associated to the state of the stochastic 
process. 

On the other hand, a stochastic process is completely characterized by its law which, in many cases, can be 
represented by the probability density function (PDF). Therefore, a control methodology that employs the PDF 
would provide an accurate and flexible control strategy that could accommodate a wide class of objectives. For 
this reason, in [11]-[14] PDF control schemes were proposed, where the cost functional depends, possibly non- 
linearly, on the PDF of the stochastic state variable; see, e.g., [11]-[14] for specific applications. 

The important step in the Fokker-Planck control framework proposed in [4] [5] is to recognize that the 
evolution of the PDF associated to the stochastic process (1.1) is characterized as the solution of the Fokker- 
Planck (also known as forward Kolmogorov) equation; see, e.g., [15] [16]. This is a partial differential equation 
of parabolic type with Cauchy data given by the initial PDF distribution. Therefore, the formulation of objec- 
tives in terms of the PDF and the use of the Fokker-Planck equation provide a consistent framework to formu- 
late an optimal control strategy of stochastic processes. 

In this paper, we discuss the relationship between the HJB and the FP frameworks. We show that the FP 
control strategy provides the same optimal control as the HJB method for an appropriate choice of the objectives. 
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Specifically, this is the case for objectives that are formulated as expected cost functionals and assuming that 
both the HJB equation and the FP equation admit a unique classical solution. The latter assumption is motivated 
by the purpose of this work to show the connection between the HJB and FP frameworks, without aiming at 
finding the most general setting, e.g. for viscosity solution of the HJB equation [9] [17] [18] or FP equation with 
irregular coefficients [19], where this connection holds. Furthermore, we remark that the FP approach allows 
accommodating any desired functional of the stochastic state and its density, that is now represented by the PDF 
associated to the controlled stochastic process. 

In the next section, we illustrate the HJB framework. In Section 3, we discuss the FP method. Section 4 is 
devoted to specific illustrative examples. A section of conclusions completes this paper. 

2. The HJB Framework 
We consider the optimal control of the state n

tX ∈  whose evolution is governed by drift and random 
diffusion as follows  

( )( ) ( )( )
( ]

0 0 0

d , , d , , d ,

, , .
t t t t t t

t

X a X t X t b X t X W

X x t t T

α α = +


= ∈
                      (1.3) 

The control function α  use the current value tX  to affect the dynamics of the stochastic process by 
adjusting the drift and the dispersion function. 

We define the expected cost for the admissible controls α ∈  as follows  

,=|)()),(,(=)( 0000,0 



 +∫ xXXgdsXsXhC tTss

T

txt αα                      (1.4) 

which is an expectation conditional to the process tX  taking the value 0x  at time 0t . Here, tX  solves the 
stochastic differential Equation (1.3) with control α  and the following functions  

: , :n nh A g× → →     

are smooth and bounded. We call h  the running cost and g  the terminal cost. Our goal is to find an optimal  
control *α  which minimizes the expected cost ( )

0 0,t xC α  for the process (1.3), namely  

( )
0 0

*
,arg min .t xCαα α∈=                                  (1.5) 

We assume that this control is unique. Further, we define the following value function, also known as the cost 
to go function,  

( ) ( ) ( ) [ ], 0, : min , , , .n
t xu t x C t x t T

α
α

∈
= ∈ ×


                       (1.6) 

It is well known [2] [3] that u  solves the Hamilton-Jacobi-Bellman equation and that the optimal control can 
be reconstructed from u . Assume that the optimal control is unique and is attained, then we have  

( ) ( ) ( )*
, ,, min .t x t xu t x C C

α
α α

∈
= =


 

In the following, to ease notation we use the Einstein summation convention: when an index variable appears 
twice in a single term this means that a summation over all possible values of the index takes place. For exam- 
ple, we have that ( ) ( ), : ,i i i iia u t x a u t x∂ = ∂∑ . Moreover, i∂ , 1, ,i n=   denotes derivative with respect to the  
variable ix , and t∂  denotes partial derivative with respect to the time variable. 

Theorem 1. Assume that tX  solves (1.3) with a Markov control function α  and that the function u  
defined by (1.6) is bounded and smooth. Then u  satisfies the following Hamilton-Jacobi-Bellman equation  

( )
( ) ( )

2, , , 0,

, ,
tu H t x Du D u

u T x g x

∂ + =


=
                           (1.7) 

with the Hamiltonian function 

( )
( )

( ) ( ) ( ) ( ) ( )2

,
, , , : min , , , , ,i i ij ijt x A

H t x Du D u a x u t x d x u t x h x
α

α α α
∈
 = ∂ + ∂ +           (1.8) 
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and ( ) ( ) ( ), ,
,

2
ik jk

ij

b x b x
d x

α α
α = . 

Notice that the optimal control satisfies at each time t  and state x  the following optimality condition  

( ) ( ) ( ) ( ) ( ), , , , , 0.i i ij ija x u t x d x u t x h xα α αα α α∂ ∂ + ∂ ∂ + ∂ =                   (1.9) 

Existence and uniqueness of solutions to the HJB equation often involve the concept of uniform parabolicity; 
see [3] [18] [20]. The HJB equation is called uniformly parabolic [3] if there exists a constant 0c >  such that, 
for all ( ),x Aα ∈ ×  and nξ ∈ , the following holds  

( ) 2

, 1
, ,

n

ij i j
i j

d x cα ξ ξ ξ
=

≥∑  

where n⊂   represents a bounded or unbounded set. 
If the non-degeneracy condition holds, results from the theory of PDEs of parabolic type imply existence and 

uniqueness of solutions to the HJB problem (1.7) with the properties required in the Verification Theorem [3]. In 
particular, we have the following theorem due to Krylov. 

Theorem 2. If the non-degeneracy assumption holds, and in addition we have that A  is compact,   is 
bounded with 3C∂ ∈ , the drift, the diffusion, and the Lagrange functions are sufficiently smooth on the 
space-time cylinder ( )0,Q T= × , and the final condition is ( )3g C∈  , then the HJB has a unique solution  

( ) ( )1,2u C Q C Q∈  . 

3. The Fokker-Planck Formulation 
In this section, we discuss an alternative to the HJB approach that is based on the formulation of a Fokker- 
Planck optimal control problem. We suppose that the functions a  and b  of (1.3) yield a stochastic process 

n
tX ∈  for which it exists an absolutely continuous measure. Thus, ( ),t xρ  denotes the PDF of the state 

variable tX , where the process starts at 0t t=  with initial value distributed according to the density 0ρ . 
The time evolution of the PDF ρ  is governed by the Fokker-Planck equation 

( ) ( )( ) ( )( ) ( )( ) ( )( )
( ) ( )0 0

, , , , , , , 0,

, .
t i i ij ijt x a x t x t x d x t x t x

t x x

ρ α ρ α ρ

ρ ρ

−∂ − ∂ + ∂ =


=
           (1.10) 

Also in this case, the FP problem can be defined in a bounded or unbounded set in n . Existence and 
uniqueness to this problem often relay on the concept of uniform parabolicity as in Theorem 2. For the case 

n=  , we refer to [19] [20]; see also [21] and the references therein. Furthermore, we remark that in the case 
of bounded domains, boundary conditions for the FP model must be chosen that ought to be meaningful for the 
underlying stochastic process. This is a delicate issue that is not the focus of this work and therefore, in the 
following, we consider the common case where n=  . 

Now, we consider a cost functional ( ),J ρ α  that is linear in ρ . In correspondence to this cost functional, 
we define the following PDE optimal control problem  

( ) ( ) ( )min , , . . satisfies 1.10 .J s t
α

ρ α ρ ρ α
∈

=


                  (1.11) 

It is important to recognize that if ( ) ( )0 0x x xρ δ= − , then we can write the cost functional ( )
0 0,t xC α  

introduced in (1.4) as follows  

( ) ( )( ) ( )( ) ( ) ( ) ( )
0 0 0

, , : , , , d d , d ,n n

T
t x t

C J h x s x s x s x g x T x xα ρ α α α ρ ρ= = +∫ ∫ ∫ 
       (1.12) 

that gives (1.4) in terms of the probability measure, ( ), ds x xρ . 
To characterize the optimal solution to (1.11) where the cost functional (1.4) is considered, we introduce the 

Lagrange functional [22]. 

( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )( )
0

0

, , : , , , d d , d

, , , , , , , , d d ,

n n

n

T

t

T
s i i ij ijt

q h x s x s x s x g x T x x

q s x s x a x s x s x d x s x s x s x

ρ α α ρ ρ

ρ α ρ α ρ

= +

+ −∂ − ∂ + ∂

∫ ∫ ∫

∫ ∫
 




  (1.13) 
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where the function [ ]0: , nq t T × →   represents the Lagrange multiplier. 
We have that the optimal control solution is characterized as the solution to the following optimality system 

( ) ( )( ) ( )( ) ( )( ) ( )( )
( ) ( )0 0

, , , , , , , 0,

, ,
t i i ij ijt x a x t x t x d x t x t x

t x x

ρ α ρ α ρ

ρ ρ

−∂ − ∂ + ∂ =


=
          (1.14) 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )

, , , , , , , , , 0,

, ,
t i i ij ijq t x a x t x q t x d x t x q t x h x t x

q T x g x

α α α∂ + ∂ + ∂ + =


=
       (1.15) 

( )( ) ( ) ( )( ) ( ) ( )( ), , , , , , , , 0,i i ij ija x t x q t x d x t x q t x h x t xα α αα α α∂ ∂ + ∂ ∂ + ∂ =          (1.16) 

where [ ]0 ,t t T∈  and nx∈ . 
Now, we illustrate the equivalence between the HJB and the FP formulation. The key point is to notice that 

(1.16) corresponds to the first-order necessary optimality condition (1.9) for the minimization of the Hamil- 
tonian in the HJB formulation, once we identify the Lagrange multiplier q  with the value function u  in (1.7). 
Therefore, provided that the minimization problem (1.11) admits a unique solution *α  in terms of the first- and 
second-order derivatives of u , then we can replace such *α  into the backward Kolmogorov Equation (1.15), 
thus obtaining the HJB Equation (1.7). This procedure results in the Equation (1.15), because of the formal 
equivalence between (1.16) and (1.9). With our setting, since the solution u  of (1.7) is unique, then the uni- 
queness of α  and ρ  follows; see [3]. 

Notice that with the above setting, the optimal control *α  does not depend explicitly on the density ρ , but 
only on the Lagrange multiplier q , that is the value function u . (This explains why the feedback control is 
based on the value function.) Hence, the Equations (1.15)-(1.16) determine the optimal control. This will not be 
the case in the more general situation in which the cost functional in (1.12) is not linear in ρ . This happens for 
instance when J  does not represent an expected cost; see [4] [5] for the case of a tracking functional for the 
density. 

We also note that the solution to the adjoint FP Equation (1.15) and to the optimality condition equation for 
the control function (1.16) do not depend on the initial condition 0ρ  of the forward FP Equation (1.14). Hence, 
according the HJB formulation, the solution to the backward Kolmogorov equation is not affected by the initial 
state of the system. 

4. Illustrative Examples 
In this section, we consider two examples that illustrate that the FP optimal control formulation may provide the 
same control strategy as the HJB method. In the following, the first example refers to a Itōstochastic process, 
while the second example considers a piecewise deterministic process. 

4.1. Controlled Itō Stochastic Process 
We consider an optimal transport problem that is related to a model for mean-field games; see, e.g., [23]. It 
reflects the congestion situation, where the behaviour of the crowd depends on the form of the attractive strongly 
convex potential g . In this model, the dynamics of an agent is governed by the following stochastic differential 
equation  

( )d , d d ,t t tX t X t b Wα= +  

where the velocity α  represents the controlling drift function and the dynamics is perturbed by random 
diffusion of intensity 2b ε= . With this setting, the evolution of the PDF for this process is given by the 
following FP equation  

( ) ( ) ( )2
0div 0, 0, ,t x x xρ ε ρ ρα ρ δ∂ − ∆ + = = −                   (1.17) 

where the PDF ρ  formally corresponds to the mass density of the transport problem. 
The purpose of the optimal control is to determine a drift of minimal kinetic energy that moves a mass 

distribution from an initial location to a final destination. The corresponding objective is as follows [24]  
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( ) ( ) ( ) ( ) ( )2

0

1, , , d d , d .
2 n n

T
J t x t x x t g x T x xρ α α ρ ρ= +∫ ∫ ∫ 

               (1.18) 

In this functional, the kinetic energy term is augmented with the term ( ) ( ), dng x T x xρ∫  that describes the  

attractive potential of the final destination. It can be interpreted as the requirement that the crowd aims at 
reaching the region of low potential g  at the terminal time T . 

The corresponding adjoint equation is given by the following backward evolution equation  

( )2 21 0, , ,
2t q q q q T gα α ε∂ + + ⋅∇ + ∆ = ⋅ =                       (1.19) 

and the optimality condition is given by  

( ) 0.qρ α +∇ =                                   (1.20) 

It is immediate to see that combining the adjoint equation and the optimality condition, we obtain the 
following HJB problem  

( )2 21 0, , .
2tu u u u T gε∂ − ∇ + ∆ = ⋅ =                         (1.21) 

4.2. Controlled Piecewise Deterministic Process 
Our second example refers to a class of piecewise deterministic processes (PDP). A first general formulation of 
these systems that switch randomly within a certain number of deterministic discrete states at random times is 
given in [25]. Specifically, we deal with a PDP model described by a state function that is continuous in time 
and is driven by a discrete S-state renewal Markov process denoted with ( )t ; see [26] for additional details. A 
switching control problem for ordinary differential equations has been investigated in [27]. In our case, the PDP 
equation model is a first-order differential equation, where the driving term is affected by the renewal process  
[28]. The state function ( )X t , [ ): 0, nX ∞ → ⊆  , is defined by the following properties [25]: 

a) The state function satisfies the following equation  

( ) ( ) [ ), 0, , , ,t t s ttX a X t tα= ∈ ∞

                           (1.22) 

where ( ) [ ): 0,t ∞ →   is a continuous-time Markov chain (defined below by c) and d)) with S  discrete  

states { }1, , S=  . Correspondingly, given s∈ , we say that the dynamics is in the (deterministic) state s ,  

driven by the dynamics function : n
sa →  , that is taken from the set of functions { }1, , Sa a . We require  

that all ( ),s sa x α , s∈ , be Lipschitz continuous in x , continuous in ( ), n
s sx Aα ∈ ×  and bounded. With  

this assumptions for fixed s , the solution X  exists and is unique and bounded. Furthermore, assuming that 
the sets of admissible controls sA  are closed and compact and a fixed initial condition is considered, then the  
reachable set of trajectories is a closed bounded subset of [ ]0,n T× ; see [29].  

b) The state function satisfies the initial condition ( ) 00X X= ∈  being in the initial state ( )0 0s =  . 
c) The process ( )t  is characterized by the pair ( ), rµ , where the vector µ  defines an exponential 

probability density function :sψ + +→  , of transition events, as follows  

( ) ( )
0

e , with d 1,st
s s st t tµψ µ ψ

∞−= =∫                         (1.23) 

for each state s∈ ; and the stochastic transition probability matrix r  governs the actual transition. The 
elements jir  of the transition matrix satisfy the following properties  

1
0 1, 1, , .

S

ss ss
s

r r s s′ ′
′=

′≤ ≤ = ∀ ∈∑                          (1.24) 

When a transition event occurs, the PDP system switches instantaneously from a state j∈ , with dynamic 
function ja , randomly to a new state i∈ , driven by the dynamics function ia . Virtual transitions from the 
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state j  to itself are allowed for this model, that is 0jjr > .  
We have that the time evolution of the PDFs of the states of our PDP model is governed by the following 

Fokker-Planck system [26]  

( ) ( ) ( )( ) ( )
1

, , , , , .
S

t s x s s s js j
j

t x a x t x Q t x sρ α ρ ρ
=

−∂ − ∂ = − ∈∑                (1.25) 

where js j jsQ rµ=  if j s≠ , and ( )1ss s ssQ rµ= − , s∈ , for the scalar process ( )X t  in the state s . We  

have 1 0S
jsj Q

=
=∑ . We consider our PDP process in a finite-time horizon ( )0,T , and we have that  

( ) [ ]
1

, d 1 for all 0, .
S

s
s

t x x t Tρ
=

= ∈∑∫


                        (1.26) 

The initial conditions for the solution of the FP system are given as follows  

( ) ( )
00 , 00, , , .s s sx x x s sρ δ δ= − ∈                        (1.27) 

Next, we consider an objective similar to (1.18) for all states of the system. We have  

( ) ( ) ( ) ( ) ( )2

0
1 1

1, , , d d , d .
2

S ST
s s s s

s s
J t x t x x t g x T x xρ α α ρ ρ

= =

= +∑ ∑∫ ∫ ∫
 

             (1.28) 

This objective corresponds to the expected functional (1.4) on the space n ×  . 
Now, consider the FP optimal control problem of finding sα , s∈ , such that the objective (1.28) is 

minimized subject to the constraint given by (1.25). The solution to this problem is characterized by the solution 
of the corresponding FP optimality system, obtained by the Lagrange principle, consisting of (1.25) and the 
following  

( ) ( ) ( ) ( ) ( )2

1

1, , , , ,
2

S

t s s s x s s sj j
j

q t x a x q t x t x Q q t xα α
=

∂ + ∂ + = −∑                      (1.29) 

( ) ( ), ,s sq T x g x s= ∈                              (1.30) 

( ) ( ), , 0, ,s
s x s

s

a
t x q t x sα

α
 ∂

+ ∂ = ∈ ∂ 
                       (1.31) 

where (1.29)-(1.30) is the adjoint problem and (1.31) represents the optimality condition. 
On the other hand, the HJB optimal control of our PDP model is considered in [29], where the ijq  in [29] 

corresponds to our ijQ . In that reference, the following Hamiltonian for the state s  is derived  

{ }( ) ( ) 2
1

1

1, , , : min , .
2s s

SS
s j s s s x s s js jj A j

H t x u Du a x u Q u
α

α α
= ∈ =

 
= ∂ + + 

 
∑               (1.32) 

Furthermore, in [29] it is proved that the corresponding HJB problem  

{ }( )
( ) ( )

1
, , , 0,

, ,

S
t s s j sj

s s

u H t x u Du

u T x g x s
=

∂ + =

 = ∈ 

                          (1.33) 

admits a unique viscosity solution that is also the classical solution to the adjoint FP Equation (1.29). Hence, 
also in this case the HJB formulation with (1.32) and (1.33) corresponds to the FP approach with (1.29) and 
(1.31), as much as the cost functions su , defined via the minimum of expected functionals correspond to the 
adjoint functions sq . 

5. Conclusion 
In this paper, the connection between the Hamilton-Jacobi-Bellman dynamic programming scheme and a 
recently proposed Fokker-Planck control framework was discussed. It was shown that the two control strategies 
were equivalent in the case of mean cost functionals. To illustrate the connection between the two control 
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strategies, the cases of an Itō stochastic process and of a piecewise-deterministic process were considered. 

Acknowledgements 
We would like to thank the Mathematisches Forschungsinstitut Oberwolfach for the kind hospitality and for 
inspiring this work. 

M. Annunziato would like to thank the support by the European Science Foundation Exchange OPTPDE 
Grant. 

A. Borzì acknowledges the support of the European Union Marie Curie Research Training Network “Multi- 
ITN STRIKE-Novel Methods in Computational Finance”. 

R. Tempone is a member of the KAUST SRI Center for Uncertainty Quantification in Computational Science 
and Engineering. 

F. Nobile acknowledges the support of CADMOS (Center for Advances Modeling and Science). 

Funding 
Supported in part by the European Union under Grant Agreement “Multi-ITN STRIKE-Novel Methods in Com- 
putational Finance”. Fund Project No. 304617 Marie Curie Research Training Network. 

References 
[1] Ghman, I.I. and Skorohod, A.V. (1972) Stochastic Differential Equations. Springer-Verlag, New York. 

http://dx.doi.org/10.1007/978-3-642-88264-7 
[2] Bertsekas, D. (2007) Dynamic Programming and Optimal Control, Vols. I and II. Athena Scientific. 
[3] Fleming, W.H. and Soner, H.M. (2006) Controlled Markov Processes and Viscosity Solutions. Springer-Verlag, Berlin. 
[4] Annunziato, M. and Borzì, A. (2010) Optimal Control of Probability Density Functions of Stochastic Processes. Ma-

thematical Modelling and Analysis, 15, 393-407. http://dx.doi.org/10.3846/1392-6292.2010.15.393-407 
[5] Annunziato, M. and Borzì, A. (2013) A Fokker-Planck Control Framework for Multidimensional Stochastic Processes. 

Journal of Computational and Applied Mathematics, 237, 487-507. http://dx.doi.org/10.1016/j.cam.2012.06.019 
[6] Cox, D.R. and Miller, H.D. (2001) The Theory of Stochastic Processes. Chapman & Hall/CRC, London. 
[7] Fleming, W.H. and Rishel, R.W. (1975) Deterministic and Stochastic Optimal Control. Springer-Verlag, Berlin. 

http://dx.doi.org/10.1007/978-1-4612-6380-7 
[8] Borkar, V.S. (2005) Controlled Diffusion Processes. Probability Surveys, 2, 213-244. 

http://dx.doi.org/10.1214/154957805100000131 
[9] Falcone, M. (2008) Numerical Solution of Dynamic Programming Equations. In: Bardi, M. and Dolcetta, I.C., Eds., 

Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhauser. 
[10] Kushner, H.J. (1990) Numerical Methods for Stochastic Control Problems in Continuous Time. SIAM Journal on Con-

trol and Optimization, 28, 999-1048. http://dx.doi.org/10.1137/0328056 
[11] Forbes, M.G., Guay, M. and Forbes, J.F. (2004) Control Design for First-Order Processes: Shaping the Probability 

Density of the Process State. Journal of Process Control, 14, 399-410.  
http://dx.doi.org/10.1016/j.jprocont.2003.07.002 

[12] Jumarie, G. (1992) Tracking Control of Nonlinear Stochastic Systems by Using Path Cross-Entropy and Fokker-Planck 
Equation. International Journal of Systems Science, 23, 1101-1114. http://dx.doi.org/10.1080/00207729208949368 

[13] Kárný, M. (1996) Towards Fully Probabilistic Control Design. Automatica, 32, 1719-1722.  
http://dx.doi.org/10.1016/S0005-1098(96)80009-4 

[14] Wang, H. (1999) Robust Control of the Output Probability Density Functions for Multivariable Stochastic Systems 
with Guaranteed Stability. IEEE Transactions on Automatic Control, 44, 2103-2107.  
http://dx.doi.org/10.1109/9.802925 

[15] Primak, S., Kontorovich, V. and Lyandres, V. (2004) Stochastic Methods and Their Applications to Communications. 
John Wiley & Sons, Chichester.  

[16] Risken, R. (1996) The Fokker-Planck Equation: Methods of Solution and Applications. Springer, Berlin.  
[17] Lions, J.L. (1983) On the Hamilton-Jacobi-Bellman Equations. Acta Applicandae Mathematica, 1, 17-41.  

http://dx.doi.org/10.1007/BF02433840 
[18] Crandall, M., Ishii, H. and Lions, P.L. (1992) User’s Guide to Viscosity Solutions of Second Order Partial Differential 

http://dx.doi.org/10.1007/978-3-642-88264-7
http://dx.doi.org/10.3846/1392-6292.2010.15.393-407
http://dx.doi.org/10.1016/j.cam.2012.06.019
http://dx.doi.org/10.1007/978-1-4612-6380-7
http://dx.doi.org/10.1214/154957805100000131
http://dx.doi.org/10.1137/0328056
http://dx.doi.org/10.1016/j.jprocont.2003.07.002
http://dx.doi.org/10.1080/00207729208949368
http://dx.doi.org/10.1016/S0005-1098(96)80009-4
http://dx.doi.org/10.1109/9.802925
http://dx.doi.org/10.1007/BF02433840


M. Annunziato et al. 
 

 
2484 

Equations. Bulletin of the American Mathematical Society, 27, 1-67.  
http://dx.doi.org/10.1090/S0273-0979-1992-00266-5 

[19] Le Bris, C. and Lions, P.L. (2008) Existence and Uniqueness of Solutions to Fokker-Planck Type Equations with Irre-
gular Coefficients. Communications in Partial Differential Equations, 33, 1272-1317. 

[20] Aronson, D.G. (1968) Non-Negative Solutions of Linear Parabolic Equations. Annali della Scuola Normale Superiore 
di Pisa. Classe di Scienze, 22, 607-694.  

[21] Bogachev, V., Da Prato, G. and Röckner, M. (2010) Existence and Uniqueness of Solutions for Fokker-Planck Equa-
tions on Hilbert Spaces. Journal of Evolution Equations, 10, 487-509. http://dx.doi.org/10.1007/s00028-010-0058-y 

[22] Lions, J.L. (1971) Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin.  
[23] Lachapelle, A., Salomon, J. and Turinici, G. (2010) Computation of Mean Field Equilibria in Economics. Mathemati-

cal Models and Methods in Applied Sciences, 20, 567-588. http://dx.doi.org/10.1142/S0218202510004349 
[24] Carlier, G. and Salomon, J. (2008) A Monotonic Algorithm for the Optimal Control of the Fokker-Planck Equation. 

IEEE Conference on Decision and Control, CDC 2008, Cancun, 9-11 December 2008, 269-273.  
[25] Davis, M.H.A. (1984) Piecewise-Deterministic Markov Processes: A General Class of Non-Diffusion Stochastic Mod-

els. Journal of the Royal Statistical Society. Series B (Methodological), 46, 353-388.  
[26] Annunziato, M. (2008) Analysis of Upwind Method for Piecewise Deterministic Markov Processes. Computational 

Methods in Applied Mathematics, 8, 3-20.  
[27] Capuzzo Dolcetta, I. and Evans, L.C. (1984) Optimal Switching for Ordinary Differential Equations. SIAM Journal on 

Control and Optimization, 22, 143-161. http://dx.doi.org/10.1137/0322011 
[28] Annunziato, M. and Borzì, A. (2014) Optimal Control of a Class of Piecewise Deterministic Processes. European 

Journal of Applied Mathematics, 25, 1-25. http://dx.doi.org/10.1017/S0956792513000259 
[29] Moresino, F., Pourtallier, O. and Tidball, M. (1988) Using Viscosity Solution for Approximations in Piecewise Deter-

ministic Control Systems. Report RR-3687-HAL-INRIA, Sophia-Antipolis. 
 

http://dx.doi.org/10.1090/S0273-0979-1992-00266-5
http://dx.doi.org/10.1007/s00028-010-0058-y
http://dx.doi.org/10.1142/S0218202510004349
http://dx.doi.org/10.1137/0322011
http://dx.doi.org/10.1017/S0956792513000259


http://www.scirp.org/
http://www.scirp.org/
http://papersubmission.scirp.org/paper/showAddPaper?journalID=478&utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ABB/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AM/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJPS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AJAC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/AS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/CE/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ENG/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/FNS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/Health/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCC/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JCT/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JEP/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/JMP/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/ME/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/NS/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
http://www.scirp.org/journal/PSYCH/?utm_source=pdfpaper&utm_campaign=papersubmission&utm_medium=pdfpaper
mailto:submit@scirp.org

	On the Connection between the Hamilton-Jacobi-Bellman and the Fokker-Planck Control Frameworks
	Abstract
	Keywords
	1. Introduction
	2. The HJB Framework
	3. The Fokker-Planck Formulation
	4. Illustrative Examples
	4.1. Controlled Itō Stochastic Process
	4.2. Controlled Piecewise Deterministic Process

	5. Conclusion
	Acknowledgements
	Funding
	References

