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Abstract 
We derive results similar to Bo et al. (2010), but in the case of dynamics of the FX rate driven by a 
general Merton jump-diffusion process. The main results of our paper are as follows: 1) formulas 
for the Esscher transform parameters which ensure that the martingale condition for the dis-
counted foreign exchange rate is a martingale for a general Merton jump-diffusion process are de-
rived; using the values of these parameters we proceed to a risk-neural measure and provide new 
formulas for the distribution of jumps, the mean jump size, and the Poisson Process intensity with 
respect to the measure; pricing formulas for European foreign exchange call options have been 
given as well; 2) obtained formulas are applied to the case of the exponential processes; 3) nu-
merical simulations of European call foreign exchange option prices for different parameters are 
also provided. 
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1. Introduction 
The existing academic literature on the pricing of foreign currency options could be divided into two categories: 
1) both domestic and foreign interest rates were assumed to be constant whereas the spot exchange rate was as-
sumed to be stochastic (see, e.g., Jarrow et al. (1981, [1]); 2) models for pricing foreign currency options incor-

http://www.scirp.org/journal/jmf
http://dx.doi.org/10.4236/jmf.2014.44024
http://dx.doi.org/10.4236/jmf.2014.44024
http://www.scirp.org
mailto:aswish@ucalgary.ca
mailto:mtertych@ucalgary.ca
mailto:maksym.tertychnyi@gmail.com
mailto:winsorhoang@ctsforex.com
http://creativecommons.org/licenses/by/4.0/


A. Swishchuk et al. 
 

 
266 

porate stochastic interest rates, and are based on Merton’s (1973, [2]) stochastic interest rate model for pricing 
equity options (see, e.g., Grabbe 1983, [3]; Adams et al. (1987, [4]). In both cases, this pricing approach did not 
integrate a full-term structure model into the valuation framework. To our knowledge, Amin et al. (1991, [5]) 
were the first to start discussing and building a general framework to price contingent claims on foreign curren-
cies under stochastic interest rates using the Heath et al. (1987) model of term structure. Melino et al. (1991, [6]) 
examined the foreign exchange rate process, (under a deterministic interest rate), underlying observed option 
prices and Rumsey (1991, [7]) considered cross-currency options. Mikkelsen (2001, [8]) investigated simulation 
cross-currency options using market models of interest rates and deterministic volatilities for spot exchange 
rates. Schlogl (2002, [9]) extended market models to a cross-currency framework. Piterbarg (2005, [10]) devel-
oped a model for cross-currency derivatives such as PRDC swaps with calibration for currency options; he used 
neither market models nor stochastic volatility models. In Garman et al. (1983, [11]) and Grabbe (1983, [3]), 
foreign exchange option valuation formulas were derived under the assumption that the exchange rate followed 
a diffusion process with continuous sample paths. Takahashi et al. (2006, [12]) proposed a new approximation 
formula for the valuation of currency options using jump-diffusion stochastic volatility processes for spot ex-
change rates in a stochastic interest rates environment. In particular, they applied the market models developed 
by Brace et al. (1998), Jamshidian (1997, [13]) and Miltersen et al. (1997, [14]) to model the term structure of 
interest rates. Also, Ahn et al. (2007, [15]) derived explicit formulas for European foreign exchange call and put 
options values when the exchange rate dynamics is governed by jump-diffusion processes. Hamilton (1988) was 
the first to investigate the term structure of interest rates by rational-expectations econometric analysis of 
changes in regime. Goutte et al. (2011, [16]) studied foreign exchange rates using a modified Cox-Ingersoll- 
Ross model under a Hamilton Markov regime switching framework. Zhou et al. (2012, [17]) considered an ac-
cessible implementation of interest rate models with regime-switching. Siu et al (2008, [18]) considered pricing 
currency options under a two-factor Markov-modulated stochastic volatility model. Swishchuk and Elliott ap-
plied hidden Markov models for pricing options in [19]. Bo et al. (2010, [20]) discussed a Markov-modulated 
jump-diffusion, (modeled by a compound Poisson Process), for currency option pricing. We noted that currency 
derivatives for domestic and foreign equity markets and for the exchange rate between the domestic currency 
and a fixed foreign currency with constant interest rates were discussed in Bjork (1998, [21]). We also men-
tioned that currency conversion for forward and swap prices with constant domestic and foreign interest rates 
were discussed in Benth et al. (2008, [22]). 

In this article we generalize results in [20] in case when dynamics of FX rate is driven by a general Merton 
jump-diffusion process ([23]). Main results of our research are as follows: 

1) In section 2, we generalize formulas in [20] for Esscher transform parameters assuring that martingale con-
dition for discounted foreign exchange rate is a martingale for a general Merton jump-diffusion process (see 
(30)). Using these values of parameters (see (38), (39)), we proceed to a risk-neural measure and provide new 
formulas for the distribution of jumps ((36)), the mean jump size (see (20)), and the Poisson Process intensity 
with respect to this measure (see (19)). At the end of section 2, pricing formulas for a European call foreign ex-
change option are given (They are similar to those in [20], but the mean jump size and the Poisson Process in-
tensity with respect to the new risk-neutral measure are different). 

2) In section 3, we apply Formulas (18)-(20), (38)-(39) to a particular case of the exponential distribution (see 
(50)) of jumps (see (53)-(55)). 

3) In section 4, we provide numerical simulations of European call foreign exchange option prices for different 
parameters: S K , where S  is the initial spot FX rate, and K  is the strike FX rate for a maturity time T . 

2. Currency Option Pricing for Merton Jump-Diffusion Processes 
Let ( ), , PΩ   be a complete probability space with a probability measure P . Consider a continuous-time,  
finite-state Markov chain { }0t t T

ξ ξ
≤ ≤

=  on ( ), , PΩ   with a state space  , the set of unit vectors  

( )1, , n
ne e ∈   with a rate matrix 1Π . The dynamics of the chain are given by: 

0 0
d ,

t n
t u tu Mξ ξ ξ= + Π + ∈∫                                (1) 

where { }, 0tM M t= ≥  is a n -valued martingale with respect to ( )
0t t T

ξ

≤ ≤
 , the P -augmentation of the  

natural filtration ( )0t t T≤ ≤
 , generated by the Markov chain ξ . Consider a Markov-modulated Merton jump- 
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diffusion which models the dynamics of the spot FX rate, given by the following stochastic differential equation 
(in the sequel SDE, see [20]): 

( )( )d d d 1 d , 0.t t t t t t t tS S t W Z N Zµ σ
− −

= + + − >                        (2) 

Here tµ  is drift parameter; tW  is a Brownian motion, tσ  is the volatility; tN  is a Poisson Process with 
intensity tλ , 1tZ

−
−  is the amplitude of the jumps, given the jump arrival time. The distribution of tZ  has a 

density ( ) ,x xν ∈ . The parameters tµ , tσ , tλ  are modeled using the finite state Markov chain: 

: , , ;

: , , ;

: , , .

n
t t

n
t t

n
t t

µ µ ξ µ

σ σ ξ σ

λ λ ξ λ

+

+

+

= ∈

= ∈

= ∈







                                 (3) 

The solution of (2) is 0e tL
tS S= , (where 0S  is the spot FX rate at time 0t = ). Here tL  is given by the 

formula: 

( )2
0 0 0

1 2 d d log d .
t t t

t s s s s s sL s W Z Nµ σ σ
−

= − + +∫ ∫ ∫                       (4) 

Note, that for the most of well-known distributions (normal, exponential distribution of tZ , etc) tL  is not a 
Lévy process (see definition of Lévy process in [24], the condition L3), since log tZ

−
→ −∞  for small tZ , but  

probability of jumps with even 0 amplitude is a positive constant, depending on a type of distribution. We call 
the process (4) as Merton jump-diffusion process (see [23], section 2, Formulas 2, 3) 

There is more than one equivalent martingale measure for this market driven by a Markov-modulated jump- 
diffusion model. We shall define the regime-switching generalized Esscher transform to determine a specific 
equivalent martingale measure. 

Using Ito’s formula we can derive a stochastic differential equation for the discounted spot FX rate. To define 
the discounted spot FX rate we need to introduce domestic and foreign riskless interest rates for bonds in the 
domestic and foreign currency. 

The domestic and foreign interest rates ( )
0

d
t t T

r
≤ ≤

, ( )
0

f
t t T

r
≤ ≤

 are defined using the Markov chain ( )0t t T
ξ

≤ ≤
 

(see [20]): 

, , ,d d d n
t tr r rξ += ∈  

, , .f f f n
t tr r rξ += ∈  

The discounted spot FX rate is: 

( )( )0
exp d , 0 .

td d f
t s s tS r r s S t T= − ≤ ≤∫                           (5) 

Using (5), the differentiation formula, see Elliott et al. (1982, [25]) and the stochastic differential equation for 
the spot FX rate (2) we find the stochastic differential equation (SDE) for the discounted spot FX rate: 

( ) ( )d d d d .d d d f d d
t t t t t t t t t tS S r r t S W S v Nµ σ
− − − −
= − + + +                      (6) 

To derive the main results consider the log spot FX rate, 

0

log t
t

S
Y

S
 

=  
 

 

Using the differentiation formula: 

,t t tY C J= +  

where ,t tC J  are the continuous and diffusion part of tY . They are given in (7), (8): 
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( )0 0
d d ,

t td f
t s s s s sC r r s Wµ σ= − + +∫ ∫                              (7) 

0
log d .
t

t s sJ Z N
−

= ∫                                            (8) 

Let ( )
0

Y
t t T≤ ≤
  denote the P -augmentation of the natural filtration ( )0t t T≤ ≤

 , generated by Y . For each  
[ ]0,t T∈  set Y

t t T
ξ= ∨   . Let us also define two families of regime switching parameters ( )

0

c
s t T

θ
≤ ≤

,  

( )
0

J
s t T

θ
≤ ≤

: ,m m
t tθ θ ξ=< > , ( )1 , ,m m m n

nθ θ θ= ⊂  , { },m c J= . 

Define a random Esscher transform ,c J
Q Pθ θ

  on t  using these families of parameters ( )
0

c
s t T

θ
≤ ≤

, 
( )

0

J
s t T

θ
≤ ≤

 (see [20] [26] [27] for details): 

( )
( )

,
0 0,

0 0

exp d dd :
d exp d d

c J
c J

t

t tc J
s s s s

t t tc J
s s s s t

C JQL
P C J

θ θ
θ θ

ξ

θ θ

θ θ

−

−

+
= =

 +  

∫ ∫

∫ ∫ 
                     (9) 

The explicit formula for the density ,c J

tLθ θ  of the Esscher transform is given in the following Theorem. A 
similar statement is proven for the log-normal distribution in [20]. The formula below can be obtained by 
another approach, considered by Elliott and Osakwe ([28]). 

Theorem 2.1. For 0 t T≤ ≤  density ,c J

tLθ θ  of Esscher transform defined in (9) is given by: 

( )( ) ( ) )(2,
0 0 0 0

exp d 1 2 d exp log d d 1 d .
Jc J
s

t t t tc c J
t s s s s s s s s sL W s Z N x x sθθ θ θ σ θ σ θ λ ν

− − +

 = − × − − 
 ∫ ∫ ∫ ∫ ∫



     (10) 

In addition, the random Esscher transform density ,c J

tLθ θ  (see (9), (10)) is an exponential ( )0t t T≤ ≤
  mar- 

tingale and admits the following SDE 

( )( )
,

,

d
d 1 d d 1 d .

c J
J Jt t

c J
ct
t t t t tt

t

L
W Z N x x t

L

θ θ
θ θ

θ θ
θ σ λ ν−

− +
−

 = + − − − 
  ∫



                 (11) 

Proof Theorem 2.1. The compound Poisson Process, driving jumps ( )0 1Nt
iZ −∑ , and the Brownian motion 

tW  are independent processes. As a result: 

( )
( )( ) ( )

0 0

2
0 0 0

exp d d

  exp 1 2 d d exp log d .

t tc J
s s s s t

t t tc c J
s s s s s s t s s s t

C J

s W Z N

ξ

ξ ξ

θ θ

θ µ σ θ σ θ

−

− −

 +  
   = − +      

∫ ∫

∫ ∫ ∫



 



 
       (12) 

Let us calculate: 

( )0
exp log d .

t J
s s s tZ N ξθ
− −

 
  ∫   

Write 

( )0
: exp d , log .

t J
t s s s s sN Zα α θ

−
Γ = =∫  

Using the differentiation rule (see [25]) we obtain the following representation of tΓ : 

[ ] ( ) ( )0 0,
e 1 d d ,sJ

t t s st
M x sα ν λΓ = Γ + + Γ −∫ ∫



                        (13) 

where 

[ ] ( ) [ ] ( ) ( )
0, 0,

e 1 d e 1 d ds sJ
t s s st t

M Ns x sα α ν λ
−

= Γ − − Γ −∫ ∫ ∫


 

is a martingale with respect to t
ξ . Using this fact and (13) we obtain: 
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( ) ( )( )( )0 0
exp log d exp d 1 d

J
s

t tJ
s s s t sZ N x x sθξθ λ ν

−

  = −  ∫ ∫ ∫


                    (14) 

We have from the differentiation rule: 

0 d 2 2
0

1e exp d
2

t
s s tu W

su sσ σ∫    =      ∫                             (15) 

where tσ  is the volatility of a market. Substituting (14) and (15) into (12) we obtain: 

( )
( ) ( ) ( ) )(

0 0

22
0 0 0

exp d d

1exp 1 2 d d ) exp d 1 d
2

J
s

t tc J
s s s s t

t t tc c
s s s s s s

C J

s s x x s

ξ

θ

θ θ

θ µ σ θ σ λ ν

−

+

 +  
   = − + −     

∫ ∫

∫ ∫ ∫ ∫


 
           (16) 

Substituting (16) to the expression for ,c J

tLθ θ  in (9) we have: 

( )( ) ( ) ( )(
( ) ( ) )(

( )( )

, 2 2
0 0 0 0

1
2

0 0

2

0 0 0

exp 1 2 d d exp log d exp 1 2 d

1             d exp d 1 d
2

         exp d 1 2 d exp log d

c J

J
s

t t t tc c J c
t s s s s s s s s s s s s

t tc
s s s

t t tc c J
s s s s s s s

L s W Z N s

s x x s

W s Z

θ θ

θ

θ µ σ θ σ θ θ µ σ

θ σ λ ν

θ σ θ σ θ

− −

+

− −

−

= − + × −

  + −    

= − ×

∫ ∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫



( ) )(0
d 1 d .

J
s

t
s sN x x sθλ ν

+

 − − 
 ∫ ∫



    (17) 

If we present ,c J

tLθ θ  in the form , e
c J

tX
tLθ θ =  (see (17)) and and apply differentiation rule we obtain SDE 

(11). It follows from (11) that ,c J

tLθ θ  is a martingale.  
We shall derive the following condition for the discounted spot FX rate ((5)) to be martingale. These condi-

tions will be used to calculate the risk-neutral Esscher transform parameters ( ),

0

c
t t T
θ ∗

≤ ≤
, ( ),

0

J
t t T
θ ∗

≤ ≤
 and give 

to the measure Q . Then we shall use these values to find the no-arbitrage price of European call currency 
derivatives. 

Theorem 2.2. Let the random Esscher transform be defined by (9). Then the martingale condition (for d
tS , 

see (5)) holds if and only if Markov modulated parameters ( ), ,0c J
t t t Tθ θ ≤ ≤  satisfy for all 0 t T≤ ≤  the 

condition: 
2 , , 0f d c J J

t t t t t t tr r kθ θµ θ σ λ− + + + =                            (18) 

where the random Esscher transform intensity ,J
t
θλ  of the Poisson Process and the main percentage jump size 

,J
tkθ  are respectively given by 

( ), d ,
J
sJ

t t x xθθλ λ ν
+

= ∫


                                 (19) 

( ) ( )

( )

1

,
d

1.
d

J
s

J
s

J
t

x x
k

x x

θ

θ

θ

ν

ν
+

+

+

= −
∫
∫




                              (20) 

as long as ( )1 d
J
sx xθ ν

+

+ < +∞∫


. 

Proof of Theorem 2.2. The martingale condition for the discounted spot FX rate d
tS : 

, , .
c J d d

t u uS S t uθ θ   = ≥                                (21) 

To derive such a condition Bayes formula is used: 
,

,

,
,

c J

c J

c J

d
t t u

d
t u

t u

L S
S

L

θ θ

θ θ

θ θ

 
    =   
  










                          (22) 
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taking into account that ,c J

tLθ θ  is a martingale with respect to u , so: 

, , .
c J c J

t u uL Lθ θ θ θ  =  
                                   (23) 

Using Formula (5) for the solution of the SDE for the spot FX rate, we obtain an expression for the discounted 
spot FX rate in the following form: 

( )( )2exp 1 2 d d log d , .
t t td d f d

t u s s s s s s s su u u
S S r r s W Z N t uµ σ σ

−
= − + − + + ≥∫ ∫ ∫           (24) 

Then, using (10), (24) we can rewrite (23) in the following form: 

( )( ) ( ) )(
( )( )

, 2

0 0 0,

2

exp d 1 2 d exp log d d 1 d

                              exp 1 2 d d log d

        

c J
J
s

c J

t t t td d c c Jt
t u u s s s s s s s s su

u

t t tf d
s s s s s s s s uu u u

L S S W s Z N x x s
L

r r s W Z N

θ θ
θ

θ θ
θ σ θ σ θ λ ν

µ σ σ

− − +

−

    = − × − −       

× − + − + + 

∫ ∫ ∫ ∫ ∫

∫ ∫ ∫







 

( ) ( )( ) ( )( )
( )( )( ) ( )( )

2 2                    exp 1 d 1 2 1 d exp d

                              exp d 1 d exp 1 log d .
Jxs

t t td c c f d c
u s s s s s s s s s su u u

t t c
s u s s s uu u

S W s r r s

x x s Z Nθ

θ σ θ σ µ θ σ

λ ν θ
−

  = + − + × − + +   

  × − × +   

∫ ∫ ∫

∫ ∫ ∫


 




 

Using expression for characteristic function of Brownian motion (see (15)) we obtain: 

( ) ( )( )2
exp 1 d 1 2 1 d 1.

t tc c
s s s s s uu u

W sθ σ θ σ  + − + =    
∫ ∫                   (27) 

Using (14) we have: 

( )( ) ( ) ( )1

0
exp 1 log d exp d 1 d .

J
st tc

s s s u su
Z N x x s

θ
θ λ ν

− +

+   + = −       
∫ ∫ ∫



              (28) 

Substituting (27), (28) into (26) we obtain finally: 

( )( ) ( ) )( ( ) ( )

,

,

12
0

  exp d exp d 1 d exp d 1 d .
JJ ss

c J
dt
t uc J

u

t t td f d c
u s s s s s s su u

L
S

L

S r r s x x s x x s

θ θ

θ θ

θθµ θ σ λ ν λ ν
+ +

+

 
 
  

   = − + + × − − −        
∫ ∫ ∫ ∫ ∫

 

 
(29) 

From (29) we get the martingale condition for the discounted spot FX rate: 

( ) ( ) ( )12 d d 0.
J Js sf d c

t t t t t tr r x x x x
θ θµ θ σ λ ν ν

+ +

+ − + + + − =  ∫ ∫
 

                 (30) 

Prove now, that under the Esscher transform the new Poisson Process intensity and the mean jump size are 
given by (19), (20). 

Note that 
0
log d
tJ

t s sL Z N
−

= ∫  is the jump part of Lévy process in the formula (4) for the solution of SDE for 
spot FX rate. We have: 

( ) ( ) ( ),
0

e exp log d d ,
J c J
t

tL
Q s s tZ N L Pθ θ ω ω

−Ω
  =  ∫ ∫                     (31) 

where P  is the initial probability measure, Q  is a new risk-neutral measure. Substituting the density of the 
Esscher transform (10) into (31) we have: 



A. Swishchuk et al. 
 

 
271 

( )( ) ( )( ) ( )( )2

0 0 0 0
e [exp d 1 2 d d 1 exp 1 log d .

J J
t s

t t t tL c c J
Q P s s s s s s P s s sW s x x Z Nθθ σ θ σ λ ν θ

−+

   = − − − +      ∫ ∫ ∫ ∫ ∫


    (32) 

Using (14) we obtain: 

( )( ) ( ) ( )1

0 0
exp 1 log d exp d 1 d

J
st tJ

P s s s sZ N x x s
θ

θ λ ν
− +

+   + = −     
∫ ∫ ∫



               (33) 

Putting (33) to (32) and taking into account characteristic function of Brownian motion (see (15)) we have: 
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     = −            

∫
∫ ∫

∫






                  (34) 

Return to the initial measure P , but with different , ,,J J
t tkθ θλ . We obtain: 

( )( )( ),
, 0

e exp d 1 d .
J
t

tL J
s x x sθ

λ ν λ ν
+

  = −  ∫ ∫





                        (35) 

Formula (19) for the new intensity ,J
t
θλ  of the Poisson Process follows directly from (34), (35). The new 

density of jumps ν  is defined from (34), (35) by the following formula: 
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                             (36) 

Calculate now the new mean jump size given jump arrival with respect to the new measure Q : 

( )( ) ( ) ( ) ( ) ( )
( ) ( )
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,
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1 d 1 d d 1 1.
d
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Ω +
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∫
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∫
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

          (37) 

So, we can rewrite martingale condition for the discounted spot FX rate in the form in (18), where , ,,J J
t tkθ θλ  

are given by (19), (20) respectively.  
Using (30) we have the following formulas for the families of the regime switching parameters satisfying the 

martingale condition (18): 

, 0
2 ,

d f
c t t t
t

t

K r r µ
θ

σ
∗ + − −
=                                      (38) 

( ) ( ) ( )
, ,1, 0: d d ,

J Jt tJ
t

t

K
x x x x

θ θθ ν ν
λ

∗ ∗

+ +

=∗ − =∫ ∫
 

                      (39) 

where 0K  is any constant. Note again, that the choice for these parameters is not unique. 
In the next section we shall apply these Formulas (38), (39) to the exponential distribution of jumps. 
We now proceed to the general formulas for European calls (see [20] [23]). For the European call currency 

options with a strike price K  and the time of expiration T  the price at time zero is given by: 

( ) ( ) ( ), , 0 d,
0 , , , e .

T d fc J s sr r s
T tS K T S Kθ θ ξξ

∗ ∗ − − +∫ Π = −  
                    (40) 

Let ( ),iJ t T  denote the occupation time of ξ  in state ie  over the period [ ], ,t T t T< . We introduce several 
new quantities that will be used in future calculations: 

( ) ( ) ( ), 0
1

1 1d , ,
nT d f d f

t T s s i i i
i

R r r s r r J t T
T t T t =

= − = −
− − ∑∫                   (41) 
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where ( ), : , d
T

i s it
J t T e sξ= ∫ ; 

( )2 2
,

1

1 1d , ;
nT

t T s i it
i

U s J t T
T t T t

σ σ
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− − ∑∫                                  (42) 
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1 , ;
n

J J
t T i i
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2
2
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t T m t T
m

V U
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σ

= +
−

                                                 (45) 

where 2
Jσ  is the variance of the distribution of the jumps. 
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               (46) 

where m  is the number of jumps in the interval [ ],t T , n  is the number of states of the Markov chain ξ . 
From the pricing formula in Merton (1976, [23]) let us define (see [20]) 

( ) ( ) ( )
,

0,
0, 2
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e
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where ( )2
0 0, , 0, ,, , , ,T m T mBS S K T V R  is the standard Black-Scholes price formula (see [21]) with initial spot FX 

rate S , strike price K , risk-free rate r , volatility square 2σ  and time T  to maturity. 
Then, the European style call option pricing formula takes the form (see [20]): 

( ) [ ] ( ) ( ),

0 0 0, 0, 0, 1 2 10,
, , , , ; , , , , , d d ,

J

n T T T n nt
S K T S K T R U J J J J Jθλ ψ

∗
Π = Π ×∫             (48) 

where ( )1 2, , , nJ J Jψ   is the joint probability distribution density for the occupation time, which is deter-
mined by the following characteristic function (see [28]): 

( ){ } ( )( )( ){ } [ ]0exp , , exp diag ,1 ,u J t T u T t ξ  = Π + − ⋅                  (49) 

where 1 n∈  is a vector of ones, ( )1, , nu u u=   is a vector of transform variables, 

( ) ( ) ( ){ }1, : , , , ,nJ t T J t T J t T=  . 

3. Currency Option Pricing for Exponential Processes 
Because of the restriction 0sZ

−
>  we can not consider a double-exponential distribution of jumps (see [29] 

[30]) in 
0
log d
t

s sZ N
−∫ . Let us consider exponential distribution instead. It is defined by the following formula of 

density function: 

( )
0

e x
x

x θν θ −

≥
=                                     (50) 

The mean value of this distribution is: 

( ) 1mean θ
θ

=                                      (51) 
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The variance of this distribution is: 

( ) 2

1var θ
θ

=                                     (52) 

The exponential distribution like the double-exponential distribution has also memorylessness property. 
Let us derive the martingale condition and formulas for the regime-switching Esscher transform parameters in 

case of jumps driven by the exponential distribution. Using the martingale condition for discounted spot FX rate 
(30) we obtain: 

( ) ( )2

1

2 1
0,J J

t t

J J
t tf d c

t t t t t tr r
θ θ

θ θ
µ θ σ λ

θ θ+
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 − + + + − =
  

                   (53) 

where we have such a restriction(and in the sequel): > 1J
tθ − . 

Using (19), (20) the random Esscher transform intensity ,J
t
θλ  of the Poisson Process and the main percen-

tage jump size ,J
tkθ  are respectively given by: 
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J
tJ

t t
θ

θ

θ
λ λ

θ

Γ +
=                                 (54) 

, 1
1.

J
J t

tkθ θ
θ
+

= −                                    (55) 

Using (39) we have the following formula for the families of regime switching Esscher transform parameters 
satisfying martingale condition (53): 
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Let us simplify (56): 

( ) ( )
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1 1
: 1 .J J

t t

J J
t tJ

t
t

K
θ θ

θ θ
θ

λθ θ
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                       (57) 

The formula for ,c
tθ
∗  in this case is the same as in (38). 

With respect to to such values of the regime switching Esscher transform parameters we have from (54), (55), 
(57): 

, ,
0 .J J

t tk K λ∗ ∗=                                 (58) 

when we proceed to a new risk-neutral measure Q  we have the new θ  in (50). Using (36) we obtain: 

.
1J

t

θθ
θ

=
+

                                  (59) 

From (59) we arrive at interesting conclusion: θ  depends on time t . So, now the distribution of jumps 
changes depending on time (it is not the case before for the log double-exponential distribution, where θ  was 
actually a constant, see [20]). So, the compound Poisson Process depends not only on a number of jumps, but on 
moments of time when they arrive in this case. The same statement is true for the mean jump size in (55). But 
the pricing Formulas (40)-(48) are applicable to this case as well. 

In the numerical simulations, we assume that the hidden Markov chain has three states: up, down, side-way, 
and the corresponding rate matrix is calculated using real Forex data for the thirteen-year period: from January 3, 
2000 to November 2013. 

4. Numerical Simulations 
In the Figures 1-3, we shall provide numerical simulations for the case when amplitude of jumps is described by  
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0.5, 5T θ= =  

 
1.0, 5T θ= =  

 
1.5, 5T θ= =  

Figure 1. Option price of European call: 5θ = . 
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0.5, 3.5T θ= =  

 
1.0, 3.5T θ= =  

 
1.5, 3.5T θ= =  

Figure 2. Option price of European call: 3.5θ = . 
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0.5, 2.5T θ= =  

 
1.0, 2.5T θ= =  

 
1.5, 2.5T θ= =  

Figure 3. Option price of European call: 2.5θ = . 
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the exponential distribution. These plots show the dependence of a European call option price on S K , where 
S  is the initial spot FX rate ( 1S =  in our simulations), K  is a strike FX rate for various maturity times T : 
0.5, 1, 1.5 in years and various values of a parameter θ : 2.5, 3.5, 5 in the exponential distribution. Blue line 
stands for the exponential distribution of jumps, red-line is for the dynamics without jumps. From these plots, 
we can make a conclusion that it is important to incorporate a jump risk into the spot FX rate models (described 
by the Black-Scholes equation, without jumps red line on a plot is below the blue line standing for the exponen-
tial distributions of jumps). 
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