
Journal of Mathematical Finance, 2014, 4, 255-264 
Published Online August 2014 in SciRes. http://www.scirp.org/journal/jmf 
http://dx.doi.org/10.4236/jmf.2014.44023   

How to cite this paper: Guéant, O. (2014) Execution and Block Trade Pricing with Optimal Constant Rate of Participation. 
Journal of Mathematical Finance, 4, 255-264. http://dx.doi.org/10.4236/jmf.2014.44023  

 
 

Execution and Block Trade Pricing with 
Optimal Constant Rate of Participation 
Olivier Guéant 
Université Paris-Diderot, Paris, France 
Email: gueant@math.univ-paris-diderot.fr  
 
Received 29 May 2014; revised 30 June 2014; accepted 14 July 2014 

 
Copyright © 2014 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
When executing their orders, different strategies are proposed to investors by brokers and in-
vestment banks. Most orders are executed using VWAP algorithms. Other basic execution strate-
gies include POV (also called PVol)—for percentage of volume, IS—Implementation Shortfall, or 
Target Close. In this article dedicated to POV strategies, we develop a liquidation model in which a 
trader is constrained to liquidate a portfolio with a constant participation rate to the market. Con-
sidering the functional forms commonly used by practitioners for market impact functions, we 
obtain a closed-form expression for the optimal participation rate. Also, we develop a mi-
cro-founded risk-liquidity premium that allows better assessing the costs and risks of execution 
processes and giving a price to a large block of shares. We also provide a thorough comparison 
between IS strategies and POV strategies in terms of risk-liquidity premium. 
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1. Introduction 
Stock traders buy and sell large quantities of shares and cannot ignore the significant impact their orders have on 
the market. In practice, traders face a trade-off between price risks on one hand and both execution costs and 
market impacts on the other hand. Traders liquidating too fast indeed incur high execution costs but being too 
slow exposes the trader to possible adverse price fluctuations, effectively leading to liquidation at lower-than- 
expected prices. For that reason, traders usually split their large orders into smaller ones to be executed progres-
sively. Research on optimal execution—or optimal liquidation—mainly focuses on this issue of optimally split-
ting those large orders. 

To provide an optimal rhythm for the liquidation process, the most classical framework is the one developed 
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by Almgren and Chriss in their seminal papers [1]-[3]. This framework has largely been used and enriched ei-
ther to better fit real market conditions or to enlarge the scope of modeling possibilities: Black-Scholes dynam-
ics for the price has been considered1, attempts to generalize the model to take account of stochastic volatility 
and liquidity were made [4], and discussions on the optimization criterions and their consequences on optimal 
strategies are also in the literature (see for instance [5]-[8]). The CARA (or mean-variance) framework is pre-
dominant in the literature and it has been studied for instance in [9], and in [10] that also considers block trade 
pricing. Very interesting results in the case of IARA and DARA utility functions are presented in [11]. Follow-
ing the seminal paper by Obizhaeva and Wang [12], many authors also tried to model market impact in a differ-
ent fashion, using transient market impact models. Eventually, the literature recently went beyond the question 
of the optimal rhythm and focused on the tactical layer, i.e. on the actual way to proceed, using for instance dark 
pools [13]-[15] or limit orders [16]-[18]. 

Most of the articles in the literature, be they dedicated to the strategic layer (optimal scheduling) or to the tac-
tical layer (liquidation over short slices of time), focus on IS strategies2. In this article, we consider strategies 
constrained to have a constant rate of participation to the market. These execution strategies, called POV or 
PVol strategies, are more common in practice than IS strategies, although they are suboptimal. Strangely, they 
are not dealt with in the literature and the goal of this paper is to fill in the blank. Instead of choosing a trading 
curve of Almgren-Chriss-like models for IS strategies, we optimize one single parameter: the participation rate. 
Noticeably, for most functional forms used in practice for the execution cost function, the optimal participation 
rate can be found in a closed form. This is interesting for at least three reasons. First, for trading, an optimal par-
ticipation rate is easy to communicate on and does not need any complex tool to be used in practice as opposed 
to the trading curves of most IS strategies. Second, the formula obtained is a function of risk aversion and it can 
then be inverted to implicit risk aversion from traders’ behavior. Third, the closed-form formula obtained for the 
optimal participation rate allows writing a closed-form expression for the risk-liquidity premium of a block trade. 
In effect, transactions involving large blocks of shares cannot be based on Mark-to-Market (MtM) prices and we 
provide a micro-founded risk-liquidity premium to be added or subtracted to MtM values. Risk-liquidity premia 
being already known for IS strategies (see [10]), we provide a comparison between POV-based liquidity premia 
and IS-based liquidity premia. 

In Section 1, we present the setup of the model. In Section 2, we compute a closed-form expression for the 
optimal participation rate of a POV strategy and the associated risk-liquidity premium. We then discuss the re-
sults and analyze the influence of the parameters. In Section 3, we provide numerical examples to illustrate our 
model. 

2. Setup of the Model 
Let us fix a probability space ( ), ,Ω    equipped with a filtration ( )t t +∈

  satisfying the usual conditions.  
We assume that all stochastic processes are defined on ( )( ), , ,t t +∈

Ω


   . 

We consider a trader with a portfolio containing 0 0q >  shares of a given stock3 and we assume that he is 
willing to unwind his portfolio. The velocity at which liquidation is carried out depends on market conditions. 
Among them, market volume usually has an important role and we introduce a market volume process ( )t t

V
+∈  

assumed to be continuous, deterministic,4 and such that 0V∃ > , 0V > , t +∀ ∈ , tV V V≤ ≤ . 
To model liquidation, we introduce an inventory process ( )t t

q
+∈  by: 

0 0
,      d ,

t
t st q q v s+∀ ∈ = − ∫  

where the strategy ( )s s
v

+∈  belongs to one of the following admissible sets: 
• Either: 

 

 

1For short periods of time there is no real difference between Bachelier and Black-Scholes models. 
2We ignore here the literature on VWAP strategies that are rather orthogonal to the classical literature on optimal execution. 
3The case 0 0q <  can be treated using the same tools. 
4The assumption of a deterministic dynamics may seem odd. Practitioners usually consider market volume curves determined statistically to 
account for the daily seasonality of market volume. A multiplicative factor may then be added depending on the expected market activity, 
but it is usually deterministic. 
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( ){ }IS, 00
, progressively measurable, , 0, d  . . ,

T
T t t st

v t v v s q a s
+∈

= ∀ ≥ =∫


  

if one wants to model liquidation using an IS strategy over the time window [ ]0,T . This is the classical 
Almgren-Chriss framework [1]-[3] (see also [9] [10]). 
• Or: 

( )
0

0

POV
d

= , 0, 0, 1 ,t
s

t t tt
V s q

v t v V
ρ

ρ ρ
+  ∈  ≤ 

  

 
 ∃ > ∀ ≥ = 
  ∫



  

if one wants to model a POV strategy in which the volume traded by the trader is assumed to be proportional to 
the market volume process: the participation rate being ρ . 

In both cases, the problem faced by the trader is a trade-off between price risk, encouraging trading fast, and 
execution cost/market impact, encouraging unwinding the position slowly. 

We consider that trades impact market prices in two distinct ways. Firstly, there is a permanent market impact 
(assumed to be linear5) that imposes a drift to the price process ( )t t

S
+∈ : 

d d d ,      0, 0.t t tS W kv t kσ σ= − > ≥  

Secondly, the price obtained by the trader at time t  is not tS  because of what is usually called instantane-
ous market impact (or execution costs). To model this, we introduce a function ( ),L C +∈    verifying the 
following hypotheses6: 
• ( )0 0L = , 
• L  is increasing, 
• L  is strictly convex, 

• ( )
lim

L
ρ

ρ
ρ→+∞ = +∞ . 

This allows to define the cash process ( )t t
X

+∈  as: 

0
d ,

t s
t s s s s

s

v
X v S V L v s

V
ψ

  
= − −     
∫  

where the execution cost is divided into two parts: a linear part that represents a fixed cost ( )0ψ ≥  per share— 
linked to the bid-ask spread for instance, and a strictly convex part modeled by L . 

One of the main goal of this paper is to maximize over POVv∈  the objective function, 

( ) ( )exp ,TJ v Xγ= − −    

where T  is such that 00
d

T
sv s q=∫  and 0γ >  is the absolute risk aversion parameter of the trader. 

3. Solution of the Problem and Block Trade Pricing 
3.1. Optimal Participation Rate 
To solve our optimization problem, a first step consists in computing the value of the cash process during the li-
quidation process: 

Proposition 1 Let us consider 0ρ >  and T  implicitly defined by 00
d

T
sV s qρ =∫ . 

Let us then consider POVv∈  defined by t +∀ ∈ , 1t t t Tv Vρ ≤= . 
We have: 

( )2
0 0 0 0 0 0

d d
2

T T
T s tt

LkX q S q q q V s W
ρ

ψ σρ
ρ

= − − − + ∫ ∫  

 

 

5See [19]. 
6We want to cover the cases ( ) 1L φρ ηρ +=  for 0η >  and 0φ > . 
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In particular, TX  is normally distributed with mean, 

( )2
0 0 0 0 02

Lkq S q q q
ρ

ψ
ρ

− − −  

and variance, 

( )2
2 2

0
d d

T T
st

V s tσ ρ ∫ ∫ . 

Proof: 
By definition, 

( )

( ) ( )

0 00 0 0 0 0 0 0

2 2
0 0 0 00 0

d d d d d d d

     d d .
2

T T T T T T Ts
T s s s s T T s s s s s s

s

T T
T s s s

vX v S s V L s v s q S q S k v q s q W L V s v s
V

kq S q q L V s q W q

ψ σ ρ ψ

ρ σ ψ

 
= − − = − − + − − 

 

= − − − + −

∫ ∫ ∫ ∫ ∫ ∫ ∫

∫ ∫
 

Now, 

0 0 0 0
d d d d ,

t T t T
t s s s st

q q V s V s V s V sρ ρ ρ ρ= − = − =∫ ∫ ∫ ∫  

and therefore, 

( )2
0 0 0 0 0 0

d d .
2

T T
T s tt

LkX q S q q q V s W
ρ

ψ σρ
ρ

= − − − + ∫ ∫  

Since ( )t t
q  is deterministic, we obtain that TX  is normally distributed with mean, 

( )2
0 0 0 0 02

Lkq S q q q
ρ

ψ
ρ

− − −  

and variance, 

( )2
2 2

0
d d .

T T
st

V s tσ ρ ∫ ∫  

This proposition allows to write the objective function J  in closed-form: 
Proposition 2 Let us consider 0ρ >  and T  implicitly defined by 00

d
T

sV s qρ =∫ . 
Let us then consider POVv∈  defined by t +∀ ∈ , 1t t t Tv Vρ ≤= . 

( ) ( ) ( )2
2 2 2

0 0 0 0 0 0
exp d d .

2 2
T T

st

LkJ v q S q q q V s t
ρ γγ ψ σ ρ
ρ

  
= − − − − − −     

∫ ∫  

Proof: 
Using Proposition 1, we know that: 

( ) [ ] [ ]

( ) ( )

2

2
2 2 2

0 0 0 0 0 0

exp exp
2

                            exp d d .
2 2

T T T

T T
st

X X X

Lkq S q q q V s t

γγ γ

ρ γγ ψ σ ρ
ρ

 
− − = − − −    

 
  

= − − − − − −     
∫ ∫

  

 

A consequence of this proposition is that the problem boils down to minimizing: 

( )2
2 2

0 00 0

 
( ) d d ,  where  satisfies d .

2
T T T

s st

L q V s t T V s qρ γρ σ ρ ρ
ρ

∗
+ →

+ =∫ ∫ ∫





 :
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Proposition 3 There exists 0ρ∗ >  such that   has a global minimum in ρ∗ . 
Proof: 
To prove this results, we just need to prove that ( ) ( )0lim limρ ρρ ρ→ →+∞= = +∞  . 

We know that L has superlinear growth. Hence 
( )

0lim
L

qρ

ρ
ρ→+∞ = +∞  and therefore ( )limρ ρ→+∞ = +∞ . 

As far as the limit in 0 is concerned, let us notice that: 

( )
32

2
0

d d .
3

T T
st

TV s t V≥∫ ∫  

Also, 

( )
2 2

2 0 0
2 2 2

0

.
d

T
s

q q
V TV s

ρ = ≥

∫
 

Hence, 

( )
22

2
020

d d .
3

T T
st

VV s t T
V ρρ →≥ → +∞∫ ∫  

This gives ( )0limρ ρ→ = +∞ . 
Proposition 3 only states that there exists an optimal rate of participation. Interestingly, when one considers 

the execution cost functions used in practice and approximates the volume curve by a flat volume curve, there is 
a unique constant participation rate that can be obtained in closed-form: 

Proposition 4 Let us consider the special case where: 
• the execution function L  is given by ( ) 1L φρ ηρ += , 
• the market volume is assumed to be constant: tV V= . 

Then, there is a unique participation rate minimizing   given by: 
1

22 1
0 .

6
q
V

φγσρ
ηφ

+
∗  
=  
 

 

Proof: 
In the special case we consider, we can simplify the expression for  : 

( ) ( ) 3
2 2 2

0 .
2 3

L Tq V
ρ γρ σ ρ
ρ

= +  

Now, since 0q VTρ= , we have: 

( )
3

2 0
0 .

6
q

q
V

φ γρ ηρ σ
ρ

= +  

This function clearly has a minimum at ρ∗  given by the first order condition: 
2

1 2 0
2 ,

6
q

V
φ γηφρ σ

ρ
∗ −

∗=  

i.e.: 
1

22 1
0 .

6
q
V

φγσρ
ηφ

+
∗  
=  
 

 

The expression we obtained in Proposition 4 for the optimal participation rate allows carrying out compara-
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tive statics. However, before going into comparative statics, several general remarks deserve to be made. First, 
the formula for ρ∗  is not bounded by 1. This is natural because we considered a constant participation rate 
with respect to the market volume that does not take into account our own volume. Second, most of the literature 
does not say anything about the value of the risk aversion parameter γ . We see our closed-form formula as a 
way to implicit γ  from traders’ behavior. Then the formula is useful to be coherent across stocks. Third, the 
optimal participation rate does not depend on ψ , nor on k . Both the linear part of the execution cost and the 
(linear) permanent market impact have indeed to be paid independently of the participation rate. 
Now, concerning the other parameters, we have the following results: 
• When the risk aversion parameter γ  increases, the trader has an incentive to execute faster to reduce price 

risk. 
• The same reasoning applies to σ . If volatility increases, the trader wants to trade faster. 
• Since a trader with a larger inventory is exposed to more price risk, the optimal participation rate has to be 

an increasing function of 0q . 
• V  measures the overall liquidity of the stock. The instantaneous volume executed by the trader is  

1
2 1

2 1
06

V q V
φφ
φγσρ

ηφ

+
∗ + 

=  
 

 and this expression is increasing with V . It means that the more liquid the stock,  

the more volume we trade per unit of time. 
• η  is a scale parameter for the execution costs paid by the trader. If η  increases, the trader liquidates more 

slowly. 
• φ  measures the convexity of the execution cost function. As long as we are in the relevant case 1ρ∗ ≤ , the 

above expression for the optimal participation rate is a decreasing function of φ . It means that the more 
convex L  is, the slower the liquidation process. This is in line with the intuition. 

3.2. Block Trade Pricing and Risk-Liquidity Premium 
In addition to the closed form expression for the optimal participation rate, an important question is the total cost 
of liquidation when one uses the optimal participation rate. The framework we develop allows to give a price to 
a block trade of 0 0q >  shares and hence to give a price to liquidity. This is done using the notion of certainty 
equivalent, or equivalently using indifference pricing—since we are in a CARA framework. We implicitly de-
fine the price ( )0P q  of a block trade with 0 0q >  shares through the certainty equivalent of TX : 

( ) ( )( )
POV

0exp exp .sup T
v

X P qγ γ
∈

− − = − −  


  

This gives: 

( ) ( )2
0 0 0 0 0 0

inf .
2
kP q q S q q

ρ
ψ ρ

>
= − − −   

The risk-liquidity premium, is then: 

( ) ( ) ( )2
POV 0 0 0 0 0 0 0

inf .
2
kq q S P q q q

ρ
ψ ρ

>
= − = + +   

Under the hypotheses of Proposition 4, we obtain the price of a block trade in closed-form. 
Proposition 5 Let us consider the special case where: 

• the execution function L  is given by ( ) 1L φρ ηρ += , 
• the market volume is assumed to be constant: tV V= . 

Then: 

( ) ( )
1 1 32 2 1

1 10
0 0 0 0 01 .

2 6
q

P q q S q k q
V

φ
φφ

φ φγσψ φ η
φ

++
+ + 

= − − − +  
 

 

Proof: 
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( ) ( )
3

2 0
0 0inf

6
q

q
V

φ
ρ

γρ ρ ηρ σ
ρ

∗ ∗
> ∗= = +  . 

If we plug the expression for ρ∗  into this equation we get: 

1 1 32 1
1 1

0 06
q q

V

φ
φφ

φ φ φγσηρ η
φ

++
∗ + + 

=  
 

 

and 

1 1 33 2 1
2 1 10

06 6
q

q
VV

φ
φφ

φ φγ γσσ φη
φρ

++
+ +

∗

 
=  

 
 

Hence, 

( ) ( )
1 1 32 2 1

1 10
0 0 0 0 01 .

2 6
q

P q q S q k q
V

φ
φφ

φ φγσψ φ η
φ

++
+ + 

= − − − +  
 

 

This proposition allows to write the risk-liquidity premium as: 

( )
1 1 3 1 1 32 2 21 1

1 1 1 10
POV 0 0 0 02 6 6

q
q k q q q

V V

φ φ
φ φφ φ

φ φ φ φγσ γσψ η ϕη
φ φ

+ ++ +
+ + + +   

= + + +   
   

  

The first term corresponds to unavoidable costs, independent of any optimization, linked to permanent market 
impact. The second and third term corresponds to the execution costs paid when using the optimal constant par-
ticipation rate ρ∗ . The fourth term corresponds to market risk and it is an implicit cost that should be priced 
when large blocks of shares are traded. This risk-liquidity premium depends on the parameters in the following 
way: 
• The higher the risk aversion γ , the higher the risk-liquidity premium. This is not surprising and almost a 

direct consequence of the definition of the risk-liquidity premium. The more risk adverse a trader is, the 
higher risk-liquidity premium he should quote to compensate for the risk. 

• Similarly, the more volatile the market, the higher the risk-liquidity premium. In a highly volatile market, the 
trader quotes a high risk-liquidity premium to compensate for price risk. 

• Due to convexity and superlinearity in liquidation cost, the last two terms exhibit a convex (increasing) and 
superlinear behavior with respect to 0q . This is also the case of the first term linked to permanent market 
impact. 

• As far as V  is concerned, the more liquid a market, the lower the risk-liquidity premium. 
• The higher the execution costs (i.e. the higher η ), the higher the risk-liquidity premium. 
• With respect to the degree of convexity φ  of the execution cost function L , the risk-liquidity premium 

turns out to be decreasing as long as 1ρ∗ ≤ . 
Interestingly, we can compare the risk-liquidity premium obtained when liquidation is constrained to be at 

constant participation rate (POV strategy), and when there is no constraint (IS strategy). In [10], the risk-liquid- 
ity premium in the case of a time-unconstrained IS strategy is given by: 

( ) ( ) ( )
IS,

2 1 1 32 1
2 1 1

IS 0 0 0 0 0 0

11lim log inf exp .
2 1 3 2T

TT v

kq q S X q q q
V

φ
φφ

φ φφ γσγ ψ η
γ φ φ

++
+ +

→+∞ ∈

+   = − − − = + +      +   



  

The only difference is obviously in the terms linked to the optimization of the liquidation process. Because 
the liquidation strategy is unconstrained, the last term in the expression of ( )IS 0q  is lesser than the last two 
terms of ( )POV 0q . Interestingly, we can bound from below the ratio of the liquidity premia: 
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Proposition 6 

( )
( )

( )IS 0 1

POV 0

elog 31 3 0.86
1 3 2 3

q
q

φ
φφ

φ
++

≥ ≥ ≥
+





 

Proof: 

( )
( )

( )

( )

( )

( )

2 21 1 3 1 1 32 21 1
2 1 1 1 1
0 0 0 0

IS 0 1

1 1 3 1 1 32 2 2POV 0 1 1
1 1 1 10

0 0 0

1 1
2 1 3 2 1 3 2 1 3 .

1 3
1 1

2 6 6

k q q q q
q V V
q qk q q q

V V

φ φ
φ φφ φ

φ φ φ φ
φ
φ

φ φ
φ φφ φ

φ φ φ φ

φ φγσ γσψ η η
φ φ φ φ φ

φ
γσ γσψ φ η φ η
φ φ

+ +
+ +

+ + + +

+

+ +
+ +

+ + + +

+ +   
+ +    + + +   = ≥ =

+
   

+ + + +   
   





 

Let us define ( ) 11 3
1 3

g
φ
φφφ

φ
++

=
+

 for 0φ > . g  is a U -shaped function, the minimum being reached at φ∗   

implicitly defined by: 

( )
( )

( )
( )( )

1
2

log 323 0
1 3 11 3

g
φ

φφ
φ φφ

∗

∗∗ +
∗ ∗∗

 
 ′ = − + = + + +  .

 

This gives ( )
( )

2 log 3
3log 3 2

φ∗ −
=

−
. Now, ( ) ( ) ( )elog 3

2 3
g gφ φ∗≥ =  and this proves the result. 

The above Proposition means in practice that the gain in going from a POV execution strategy to an IS 
execution strategy is bounded from above by 14%  in terms of risk-liquidity premium7. Interestingly, 0.7φ∗

  
and this is close to the value usually considered by practitioners. 

4. Numerical Examples 
To exemplify our model, we compute optimal participation rates and risk-liquidity premia for 6 liquidation cases 
involving Total, Axa and Danone, using a market impact model calibrated on real transaction data. 

For each stock, we consider two trades representing respectively 10%  and 15%  of the average daily vo-
lume. The input data table is Table 1 below8: 

As far as risk aversion is concerned, we consider 63 10γ −= × . 
The resulting optimal participation rate ρ∗  is given in Table 2, along with the POV-based premium POV  

and the IS-based premium IS . For the POV-based premium, we decompose it into three parts according to the 
definition of the risk-liquidity premium: 

( )
1 1 3 1 1 32 2 21 1

1 1 1 10
POV 0 0 0 0

permanent market impact instantaneous market impact risk

.
2 6 6
q

q k q q q
V V

φ φ
φ φφ φ

φ φ φ φγσ γσψ η φη
φ φ

+ ++ +
+ + + +   

= + + +   
   

 

  

We see that the permanent market impact component represents a large part of the POV-based premium. 
Hence, there is only little difference in terms of costs between a POV strategy and an IS strategy for the stocks 
we consider and for the level of risk aversion we consider. 

5. Conclusion 
Instead of optimizing over all liquidation trading curves for a time-unconstrained IS strategy, this paper deals 
with the optimal rhythm to liquidate a portfolio using a constant participation rate (POV strategy). We showed 
that for most functional forms used in practice for the execution cost function L, a closed-form expression was  

 

 

7This bound depends obviously on our assumptions. 
8We round figures to ease readability. 
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Table 1. Value of the parameters. 

 Total Axa Danone 

Price 40 13 50 

Average daily volume (in million shares) 4 7 1.7 

Annualized volatility 18% 22% 18% 

η  0.116 0.046 0.145 

φ  0.63 0.63 0.63 

ψ  0.002 0.0007 0.003 

k  75.8 10−×  71.9 10−×  62.7 10−×  

 
Table 2. Results. 

 Total Total Axa Axa Danone Danone 

0q  (with respect to ADV) 10% 15% 10% 15% 10% 15% 

Optimal participation rate 17.1% 28.1% 13.7% 22.5% 11.6% 19.1% 

Perm. m.i. component (bps) 29.0 43.5 51.2 76.8 45.9 68.8 

Inst. m.i. component (bps) 10.1 13.6 10.7 14.4 8.0 10.8 

Risk component (bps) 6.0 8.2 6.4 8.7 4.7 6.4 

POV-based premium (bps) 45.1 65.3 68.3 99.9 58.6 86.0 

IS-based premium (bps) 43.0 62.4 66.0 96.8 57.0 83.8 

 
available for the optimal participation rate. We then derived the price of a block trade in this framework and 
discussed the difference between the risk-liquidity premium quoted by a trader who traded at the optimal con-
stant participation rate and the risk-liquidity premium quoted by a trader using the classical trading curve of an 
Almgren-Chriss like model. 
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