Comparison of Outlier Techniques Based on Simulated Data

Adaku C. Obikee ${ }^{1 *}$, Godday U. Ebuh ${ }^{2}$, Happiness O. Obiora-Ilouno ${ }^{1}$
${ }^{1}$ Department of Statistics, Faculty of Physical Sciences, Nnamdi Azikiwe University, Awka, Nigeria
${ }^{2}$ Monetary \& Policy Department, Central Bank of Nigeria, Abuja, Nigeria
Email: ${ }^{\text {pobikeeadaku@yahoo.com, ablegod007@yahoo.com, obiorailounoho@yahoo.com }}$

Received 5 June 2014; revised 8 July 2014; accepted 18 July 2014
Copyright © 2014 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

This research work employed a simulation study to evaluate six outlier techniques: \boldsymbol{t}-Statistic, Modified Z-Statistic, Cancer Outlier Profile Analysis (COPA), Outlier Sum-Statistic (OS), Outlier Robust \boldsymbol{t}-Statistic (ORT), and the Truncated Outlier Robust \boldsymbol{t}-Statistic (TORT) with the aim of determining the technique that has a higher power of detecting and handling outliers in terms of their P-values, true positives, false positives, False Discovery Rate (FDR) and their corresponding Receiver Operating Characteristic (ROC) curves. From the result of the analysis, it was revealed that $O S$ was the best technique followed by COPA, t, ORT, TORT and Z respectively in terms of their P-values. The result of the False Discovery Rate (FDR) shows that OS is the best technique followed by COPA, t, ORT, TORT and Z. In terms of their ROC curves, t-Statistic and OS have the largest Area under the ROC Curve (AUC) which indicates better sensitivity and specificity and is more significant followed by COPA and ORT with the equal significant AUC while Z and TORT have the least AUC which is not significant.

Keywords

Area under the ROC Curve, Reference Line, Sensitivity, Specificity, P-Value, False Discovery Rate (FDR), Simulation

1. Introduction

In statistics, an outlier is an observation that is numerically distant from the rest of the data. [1] Grubbs (1969) defined an outlier as an observation that appears to deviate markedly from other members of the sample in which it occurs. [2] Hawkins (1980) formally defined the concept of an outlier as "an observation which de-

[^0]viates so much from the other observations so as to arouse suspicions that it was generated by a different mechanism". Outliers are also referred to as abnormalities, discordants, deviants, or anomalies in data mining and statistics literature [3] (Aggarwal, 2005). Outliers can also be defined in a closed bound: For example, if Q_{1} and Q_{3} are the lower and upper quartiles of a sample, then one can define an outlier to be any observation outside the range: $\left[Q_{1}-k\left(Q_{3}-Q_{1}\right), Q_{3}+k\left(Q_{3}-Q_{1}\right)\right]$ for some constant k [4] (Barnett and Lewis, 1994). Outliers can occur by chance in any distribution, but they are often indicative either of measurement error or that the population has a heavy-tailed distribution. Outliers provide interesting case studies. They should always be identified and discussed. They should never be ignored, or "swept under the rug". In any scientific research, full disclosure is the ethical approach, including a disclosure and discussion of the outliers.

In many analyses, outliers are the most interesting things. Outliers often provide valuable insight into particular observations. Knowing why an observation is an outlier is very important. For example, outlier identification is a key part of quality control. The box plot and the histogram can also be useful graphical tools in checking the normality assumption and in identifying potential outliers. While statistical methods are used to identify outliers, non-statistical theory (subject matter) is needed to explain why outliers are the way that they are.

In sampling of data, some data points will be farther away from the sample mean than what is deemed reasonable. This can be due to incidental errors or flaws in the theory that generated an assumed family of probability distributions or it may be that some observations are far from the center of the data. Outlier points can therefore indicate faulty data, erroneous procedures, or areas where a certain theory might not be valid. Outliers can occur by chance in any distribution, but they are often indicative either of measurement error or that the population has a heavy-tailed distribution. In the former case one wishes to discard them or use statistics that are robust to outliers, while in the latter case they indicate that the distribution has high kurtosis.

Hence, this study is set out to evaluate six different outlier techniques using their P-values, true positives, false positives, FDRs and their corresponding Receiver Operating Characteristics ROC Curves using a simulated data.

Researchers that have similar work in this regards include [5] Dudoit et al. (2002), [6] Troyanskaya et al. (2002), [7] Tomlins et al. (2005), [8] Efron et al. (2001), [9] Iglewicz and Hoaglin (2010), [10] Lyons et al. (2004), [11] Tibshirani and Hastie (2006), [12] Benjamini and Hochberg(1995), [13] Wu (2007), [14] June (2012), [15] Fonseca (2004), [16] MacDonald and Ghosh (2006), [17] Jianhua (2008), [18] Heng(2008), [19] Ghosh (2009), [20] Lin-An et al. (2010), [21] Ghosh (2010), [22] Filmoser et al. (2008) and [23] Keita et al. (2013)

2. Method of Analysis

The six outlier methods include: The Modified Z-statistic, t-Statistic, OS, COPA, ORT and TORT.
This paper considers a 2 -class data for detecting outliers. Let $x_{i j}$ be the expression values for the normal group for $i=1,2, \cdots, n_{1}$ and $j=1,2, \cdots, p$ the number of sample groups and let $y_{i j}$ be the expression values for the disease group and $i=1, \cdots, n_{2}$ and $j=1,2, \cdots, p$. Where $n_{1}+n_{2}=n$.

The standard Z-statistic for 1 sample test is

$$
\begin{equation*}
Z=\frac{y_{i}-\bar{y}}{s} \tag{1}
\end{equation*}
$$

Iglewicz and Hoaglin (2010) recommend using the modified Z-score

$$
\begin{equation*}
M Z_{i}=\frac{0.6745\left(y_{i}-\tilde{y}\right)}{\mathrm{MAD}} \quad i=1,2,3, \cdots, n \tag{2}
\end{equation*}
$$

With MAD denoting the median absolute deviation, y_{i} are the observed values and \tilde{y} denoting the median Med $_{i}$.
These authors recommended that modified Z-scores with an absolute value of greater than 3.5 be labeled as potential outliers. i.e.

$$
\begin{equation*}
M Z_{i}=\left|\frac{y_{i}-\text { Med }_{i}}{\text { Mad }_{i}} \cdot 0.6745\right|>3.5 \tag{3}
\end{equation*}
$$

The t-Statistic for a two sample test by Dudoit et al. (2002) and Troyanskaya et al. (2002) is given as:

$$
\begin{equation*}
t=\frac{\bar{Y}_{i}-\bar{X}_{i}}{S \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}} \quad i=1,2,3, \cdots, n \tag{4}
\end{equation*}
$$

Here, \bar{x}_{i} and \bar{y}_{i} are the sample means for i in the normal group and the disease group respectively. The denominator is the pooled standard deviation for the variable i.
Tomlins (2005) defined the COPA statistic, which is the $r^{\text {th }}$ percentile of standardized samples in the disease group. The COPA statistic has the formula:

$$
\begin{gather*}
C_{i}=\frac{q_{r}\left(y_{i j}-\operatorname{Med}_{i}\right)}{\operatorname{Mad}_{i}} \quad i=1,2,3, \cdots, n \text { and } j=1, \cdots, p \tag{5}\\
\quad \operatorname{for}\left(y_{i j}: 1 \geq i \geq n_{2}\right)
\end{gather*}
$$

where q_{r} is the $r^{\text {th }}$ percentile of the data, Medi i_{i} is the median of all values for i, and Madi $_{i}$ is the median absolute deviation of all expressions for i, n is the number observations and p is the number of sample group. The choice of r is subjective. Obviously, the COPA statistic C_{i} only utilizes a single value ($y_{i}: 1 \leq i \leq n_{2}$).

According to Tibshirirani and Hastie (2006),

$$
\begin{equation*}
\mathrm{OS}_{i}=\frac{\sum_{i \epsilon \sigma_{i}}\left(y_{i j}-\operatorname{Med}_{i}\right)}{\operatorname{Mad}_{i}} \tag{6}
\end{equation*}
$$

where $O_{i} \varepsilon\left(Q_{1}-I Q R, Q_{3}+I Q R\right), \quad i=1,2,3, \cdots, n$ and $j=1, \cdots, p \quad Q_{1}, Q_{3}$ and $I Q R$ are the first quartile, third quartile and the interquartile range of all expressions for i respectively, n is the number observations and p is the number of sample groups. Outlier-sum statistic defines outliers in the disease group based on the pooled sample for i

Accordingly, Wu (2007) defined Outlier Robust t-Statistic ORT as:

$$
\begin{equation*}
\mathrm{ORT}_{i}=\frac{\sum_{i \varepsilon_{0}}\left(Y_{i j}-\operatorname{Med}_{i}^{c}\right)}{\operatorname{Median}\left\{\left|X_{i j}-\operatorname{Med}_{i}^{c}\right|_{j \leq n_{1}}\left|Y_{i j}-\operatorname{Med}_{i}^{d}\right|_{j \leq n_{2}}\right\}} \quad i=1,2,3, \cdots, n \text { and } j=1, \cdots, p \tag{7}
\end{equation*}
$$

where $\operatorname{Med}_{i}^{c}=\operatorname{Median}\left(X_{i j}: 1 \leq j \leq n_{1}\right), \operatorname{Med}_{i}^{d}=\operatorname{Median}\left(Y_{i j}: 1 \leq j \leq n_{2}\right)$ and $O_{i} \varepsilon\left(Q_{1}-\mathrm{IQR}, Q_{3}+\mathrm{IQR}\right)$.
The statistic ORT concentrates on the outlier set O_{i}. However, it uses all the values from disease group.
According to June (2012), TORT is given as:

$$
\begin{equation*}
\operatorname{TORT}_{\mathrm{i}}=\frac{\sum_{i \delta_{o i}}\left(Y_{i j}-\operatorname{Med}_{i}^{c}\right)}{\operatorname{Median}\left\{\left|X_{i j}-\operatorname{Med}_{i}^{c}\right|_{i \leq n_{1}}\left|Y_{i j}-\operatorname{Med}_{i}^{o i}\right|_{i \leq n_{2}}\right\}} \quad i=1,2,3, \cdots, n \text { and } j=1, \cdots, p \tag{8}
\end{equation*}
$$

where $\operatorname{Med}_{i}^{c}=\operatorname{Median}\left(X_{i j}: 1 \leq j \leq n_{1}\right), \operatorname{Med}_{i}^{o}=$ Mediano $_{i}$ and $O_{i} \varepsilon\left(Q_{1}-\mathrm{IQR}, Q_{3}+\mathrm{IQR}\right)$
The false discovery rate can be calculated using the modified formula:

$$
\begin{equation*}
\mathrm{FDR}=\frac{\mathrm{FP}}{\mathrm{FP}+\mathrm{TP}} \tag{9}
\end{equation*}
$$

where FP and TP are the False Positive (Specificity) and the True Positive (Sensitivity).
Quartiles: The $1^{\text {st }}$ quartiles $Q_{1}, 2^{\text {nd }}$ quartiles, the $3^{\text {rd }}$ quartiles Q_{3} and the Interquartile Range IQR of each of the sample the simulated data were calculated for analysis. The quartiles can be calculated using the modified formula:

$$
\begin{equation*}
L_{y}=n \cdot \frac{y}{100} \tag{10}
\end{equation*}
$$

where L_{y} is the required quartile, y is the percentile of the require quartile and n is the number of observation.

- First quartile $\left(\right.$ designated $\left.Q_{1}\right)=$ lower quartile $=$ splits lowest 25% of data $=25$ th percentile.
- Second quartile $\left(\right.$ designated $\left.Q_{2}\right)=$ median $=$ cuts data set in half $=50$ th percentile.
- Third quartile (designated Q_{3}) = upper quartile $=$ splits highest 25% of data, or lowest $75 \%=75$ th percentile. The difference between the upper and lower quartiles is called the interquartile range IQR.
Area under the ROC Curve (AUC): The area under the ROC curve AUC can be estimated using the modified formula:

$$
\begin{equation*}
\mathrm{AUC}=\phi\left(\frac{\mu_{x}-\mu_{y}}{\sqrt{\sigma_{x}^{2}+\sigma_{y}^{2}}}\right) \tag{11}
\end{equation*}
$$

where μ_{x} and μ_{y} are the mean of the specificities and the sensitivities. σ_{x}^{2} and σ_{y}^{2} are the standard deviations of the specificities and sensitivities.
a) The smallest cutoff value is the minimum observed test value minus 1 , and the largest cutoff value is the maximum observed test value plus 1 . All the other cutoff values are the averages of two consecutive ordered observed test values.
b) Null Hypothesis: Significant/True Area under the ROC Curve $(A U C)=0.5$.

3. Data Simulation and Application

Table 1 is random numbers generated from a normal distribution with parameters-sample size $n=27$, the mean $=$ 30.96 and the standard deviation $=10.58$ given that $k=10$. Where k is the number of simulations for each sample.

Table 1. Simulated data for the disease group.

c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}
46.1566	24.9042	46.9927	29.8675	25.2785	30.8228	22.7533	24.363	29.6894	13.9009
21.2799	34.1291	42.1188	31.4932	33.6757	18.2723	22.1952	49.3525	46.2031	49.671
47.1303	30.5768	30.518	45.4015	32.3025	23.9524	16.9939	40.0623	10.4986	34.2949
23.587	36.1635	31.943	32.0898	27.8432	10.0288	28.203	25.4455	36.9601	33.8601
32.5036	46.7256	28.132	29.1522	51.0953	30.5528	34.111	20.3037	41.3478	34.1312
39.3499	49.8787	22.8948	17.7508	33.7767	16.7141	47.7882	18.4173	24.499	24.9916
27.7979	27.2112	23.5745	22.0293	19.0153	37.9887	46.8897	32.489	41.2158	35.2746
31.4778	9.0139	23.6648	24.9898	31.9895	22.7037	32.1337	32.9346	27.7642	30.2984
26.1055	35.3076	33.2336	19.5483	32.9811	0.0334	24.751	68.7353	46.6003	14.3416
22.3024	32.34	26.1644	31.9692	33.0355	36.1969	18.5346	27.057	22.5413	34.9285
43.4464	30.52	18.1058	52.6543	35.5163	31.2813	20.1885	46.8498	15.0211	47.8509
22.2347	46.3877	19.7343	39.3903	19.5559	35.2009	25.0462	13.1057	35.0454	30.5387
47.6567	35.0258	23.2739	30.2782	32.4309	37.329	22.0514	38.6589	27.3124	25.0089
21.5468	26.4474	23.743	37.6406	33.1798	54.0146	37.2806	49.7954	16.1582	34.0969
48.2125	51.6615	30.1362	20.0116	29.284	48.7878	28.5845	34.9387	45.9698	29.2652
17.2076	50.856	14.453	18.2815	16.194	24.1627	28.8266	30.7418	41.5284	18.059
35.814	27.5266	20.5512	39.6783	31.3153	31.1173	36.2106	39.5762	46.0828	44.6502
34.1454	33.6547	33.7583	36.9679	23.2741	24.6134	27.161	37.796	17.8681	23.8681
27.8934	30.6502	22.5171	29.3292	32.4533	25.1776	29.9907	37.0937	36.4184	46.3087
30.988	35.2074	5.5657	51.0641	38.3618	26.2849	19.7737	26.8203	27.8187	7.8091
20.2051	29.3838	29.7345	37.2696	23.3611	17.3978	14.072	36.5702	33.102	32.488
39.5522	33.4252	37.0668	34.7706	27.7956	32.3243	30.6686	41.1511	21.3142	38.1397
35.3807	16.0406	40	36.8218	36.9183	31.8882	31.9571	24.1956	39.3912	27.1038
44.7964	22.1245	48.5002	42.257	19.9956	13.4868	50.2396	24.393	32.73	34.6324
28.535	58.7351	20.1339	44.5558	33.7764	26.7785	30.5453	39.9822	40.4087	37.8987
15.32	25.1028	32.6341	43.7344	28.3943	38.3414	11.665	20.4557	41.0132	27.5981
44.5328	40.3318	32.3106	25.3015	24.2536	20.2293	46.9336	33.98	31.2518	28.6054

Table 2 is computed parameters from the 10 simulated data. Here the mean, standard deviation, $1^{\text {st }}$ quartile $\left(Q_{1}\right)$, median, $3^{\text {rd }}$ quartile $\left(Q_{3}\right)$ and the interquartile range (IQR) of each of the 10 simulated data were computed and the mean is the average of the data. StDev is the standard deviation. Q_{1} is the $1^{\text {st }}$ quarter or the $25^{\text {th }}$ percentile of the data. Median is the middle value or the $2^{\text {nd }}$ quartile or the $50^{\text {th }}$ percentile of the data. Q_{3} is the $3^{\text {rd }}$ quartile or the $75^{\text {th }}$ percentile of the data. IQR is the difference between the Q_{3} and Q_{1} i.e., $\mathrm{IQR}=Q_{3}-Q_{1}$.

Table 3 is random numbers generated from a normal distribution with parameters-sample size $n=27$, the mean $=30$ and the standard deviation $=5.46$ with $k=10$.

Table 2. Computed parameters from the disease group.

Variable	Mean	StDev	$\boldsymbol{Q}_{\mathbf{1}}$	Median	$\boldsymbol{Q}_{\mathbf{3}}$	$\mathbf{I Q R}$
x	32.41	10.25	22.30	31.48	43.45	21.14
h	34.05	11.23	27.21	33.43	40.33	13.12
k	28.20	9.70	22.52	28.13	33.23	10.72
l	33.49	9.70	25.30	32.09	39.68	14.38
o	29.89	27.24	24.25	31.99	33.68	9.42
p	29.62	11.40	20.23	26.78	35.20	14.97
r	33.90	11.74	22.05	28.58	34.11	12.06
w	32.44	10.47	24.39	33.98	39.98	15.59
z	31.10		25.01	32.10	41.22	16.72

Table 3. Simulated data for the normal group.

c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}	c_{7}	c_{8}	c_{9}	c_{10}
32.8692	30.7918	37.2667	16.7622	30.1366	41.7429	22.3522	40.3443	40.8101	29.0347
31.2128	35.0388	42.047	25.5956	23.9902	37.5143	27.3502	33.8674	26.7182	30.17
26.8548	19.9477	28.7859	36.2742	33.7429	35.2647	33.0093	33.8347	30.177	25.0604
28.3882	31.514	20.7621	24.3379	26.3542	32.3002	36.1576	24.9404	28.5576	39.2902
36.6662	30.297	38.2554	31.6718	32.3266	24.9395	36.9424	30.6826	29.9622	48.4579
26.6789	24.8178	32.3347	29.5581	30.8839	34.3397	33.6549	35.1657	31.1464	28.1627
21.545	31.0153	34.2887	27.2154	38.5984	24.7763	27.3764	24.1752	40.6695	42.4859
24.1657	27.1545	34.7675	30.6038	22.5373	33.1506	21.4981	22.4504	40.6367	27.2556
28.5745	34.6841	39.1893	27.9174	32.9548	29.8816	28.3716	34.9552	20.3387	29.917
34.1356	27.1955	35.3834	32.0297	36.2353	23.8584	22.5997	35.8457	26.1652	28.1878
30.6207	36.3776	22.2232	37.488	24.1201	31.908	22.647	24.0633	31.8018	39.9472
28.1189	43.1577	28.1693	22.5995	23.482	18.6995	42.8021	40.0288	35.2402	38.9854
25.6035	31.0938	23.8768	20.4452	36.7756	25.4246	21.3635	28.1414	35.3096	29.555
21.2667	43.2111	22.849	41.8452	35.296	30.3376	40.7888	24.0153	18.9364	24.2351
24.0752	28.0961	26.8861	27.4234	32.2276	23.5675	24.8017	30.1957	29.3453	34.6046
35.9706	30.977	21.9998	24.034	30.5767	25.7669	35.9832	37.6228	22.4463	30.0228
30.8747	16.9055	28.5309	26.1719	22.9281	39.2016	21.9753	30.829	33.1866	34.1112
27.7715	35.1348	32.7291	36.4564	30.2984	41.7592	35.1538	33.751	34.8372	34.1248
28.6439	31.1899	27.4617	36.4554	26.8265	24.9297	25.6044	20.2664	21.662	38.6479
24.5744	32.6061	17.7682	33.5074	42.5921	28.2345	34.5526	29.9673	31.0932	22.2289
38.0338	34.2826	30.6231	30.2866	33.7578	34.7125	20.2292	27.3069	35.8389	23.4028
34.2659	44.6651	16.1165	31.541	24.5278	35.8873	23.3711	20.5715	33.6894	28.5468
30.753	28.6222	37.3659	25.6089	24.0786	33.2956	21.4613	31.2423	24.4339	28.9205
37.6636	36.7431	37.1959	23.0103	28.9785	28.5097	28.8184	34.9921	33.7258	33.6018
41.7951	23.519	37.6545	25.959	24.1875	27.8784	32.629	30.366	28.4286	37.4612
33.925	28.6911	29.451	27.8078	33.4418	19.7654	34.997	28.4154	41.6175	21.2209
24.6987	28.8511	20.9158	28.4334	33.0239	36.3741	32.0921	28.7408	28.0413	40.8146

A. C. Obikee et al.

Table 4 is computed parameters from the normal group samples.
Table 5 contains calculated Modified Z-Statistic, COPA and OS from the first sample of the disease group. From the table, Y_{1} are the values of the first simulated data from the sample. Q_{1} of $Y_{1}=22.3$ is the first quartile of Y_{1}, Med $_{1}=31.5$ is the median and $2^{\text {nd }}$ quarter of $Y_{1} . Q_{3}$ of $Y_{1}=43.45$ is the third quartile of Y_{1} and IQR of $Y_{1}=$ 21.14 is the interquartile range of Y_{1}.

Table 4. Computed parameters from the normal group samples.

Variable	Mean	StDev	Q_{1}	Median	Q_{3}	IQR
$c 1$	29.99	5.31	25.60	28.64	34.14	8.53
$c 2$	31.35	6.42	28.10	31.02	35.04	6.94
$c 3$	29.81	7.19	22.85	29.45	37.20	14.35
$c 4$	28.93	5.70	25.60	27.92	32.03	6.43
$c 5$	30.18	6.39	24.19	30.58	33.74	9.56
$c 6$	30.52	6.64	24.94	30.34	35.26	10.33
$c 7$	29.21	25.57	24.94	28.37	35.00	12.40
$c 8$	30.25	6.82	26.72	30.37	34.96	10.01
$c 9$	32.16		28.16	30.02	35.24	8.52
$c 10$				38.65	10.49	

Table 5. Calculated Modified Z, COPA and OS.

Y_{1}	Med 1	$\begin{gathered} Q_{1} \text { of } \\ Y_{1} \end{gathered}$	$\begin{gathered} Q_{3} \text { of } \\ Y_{1} \end{gathered}$	IQR of Y_{1}	$\begin{gathered} Y_{1^{-}} \\ \text {Med } 1 \end{gathered}$	$Y_{1}-$ Med $_{1}$	Mad_{1}	$\begin{gathered} \left(Y_{1}-\text { Med }_{1} /\right. \\ \text { Mad } \left._{1}\right) \\ =M^{\prime} \end{gathered}$	COPA1	Constant 1	$M^{\prime} \times$ Constant 1	$\begin{gathered} Z- \\ \text { Value } \\ 1 \end{gathered}$	Outliers 1	$M^{\prime} 1$ of O_{1}	OS1
46.1566	31.48	22.3	43.45	21.14	14.6766	14.6766	9.18	1.59876	-1.7603	0.6745	1.07836	0	46.1566	. 59876	1.39
21.2799	31.48				-10.2	10.2001	9.18	-1.11112		0.6745	0.74945		47.1303	-1.1111	
47.1303	31.48				15.6503	15.6503	9.18	1.70483		0.6745	1.1499		47.6567	1.76217	
23.587	31.48				-7.893	7.893	9.18	-0.8598		0.6745	0.57994		48.2125	-0.8598	
32.5036	31.48				1.0236	1.0236	9.18	0.1115		0.6745	0.07521				
39.3499	31.48				7.8699	7.8699	9.18	0.85729		0.6745	0.57824				
27.7979	31.48				-3.6821	3.6821	9.18	-0.4011		0.6745	0.27054				
31.4778	31.48				-0.0022	0.0022	9.18	-0.00024		0.6745	0.00016				
26.1055	31.48				-5.3745	5.3745	9.18	-0.58546		0.6745	0.39489				
22.3024	31.48				-9.1776	9.1776	9.18	-0.99974		0.6745	0.67432				
43.4464	31.48				11.9664	11.9664	9.18	1.30353		0.6745	0.87923				
22.2347	31.48				-9.2453	9.2453	9.18	-1.00711		0.6745	0.6793				
47.6567	31.48				16.1767	16.1767	9.18	1.76217		0.6745	1.18858				
21.5468	31.48				-9.9332	9.9332	9.18	-1.08205		0.6745	0.72984				
48.2125	31.48				16.7325	16.7325	9.18	1.82271		0.6745	1.22942				
17.2076	31.48				-14.272	14.2724	9.18	-1.55473		0.6745	1.04866				
35.814	31.48				4.334	4.334	9.18	0.47211		0.6745	0.31844				
34.1454	31.48				2.6654	2.6654	9.18	0.29035		0.6745	0.19584				
27.8934	31.48				-3.5866	3.5866	9.18	-0.3907		0.6745	0.26353				
30.988	31.48				-0.492	0.492	9.18	-0.05359		0.6745	0.03615				
20.2051	31.48				-11.275	11.2749	9.18	-1.2282		0.6745	0.82842				
39.5522	31.48				8.0722	8.0722	9.18	0.87932		0.6745	0.5931				
35.3807	31.48				3.9007	3.9007	9.18	0.42491		0.6745	0.2866				
44.7964	31.48				13.3164	13.3164	9.18	1.45059		0.6745	0.97842				
28.535	31.48				-2.945	2.945	9.18	-0.32081		0.6745	0.21638				
15.32	31.48				-16.16	16.16	9.18	-1.76035		0.6745	1.18736				
44.5328	31.48				13.0528	13.0528	9.18	1.42187			0.95905				

$\left(Y_{1}-\right.$ Med $\left._{1}\right)$ is the deviation of each of the simulated value of Y_{1} from the median of Y_{1}.
$\mid Y_{1}-$ Med $_{1} \mid$ is the absolute of the values calculated in $\left(Y_{1}-\right.$ Med $\left._{1}\right) . M a d_{1}=9.18$ is the median of the absolute values in $\mid Y_{1}-$ Med $_{1} \mid$. Each value in Y_{1} is first standardized by centering and putting all the values on the same scale which facilitates comparison across the values i.e. $\frac{Y_{1}-M e d_{1}}{\operatorname{Mad}_{1}}=M^{\prime}$ is the centered value for comparison. The choice of COPA is based on the M^{\prime} corresponding to any value in Y_{1} that is less than $n_{1}=27$ the total number of values in Y_{1}. Here, COPA value is -1.7603 corresponding to 15.32 in Y_{1} which is less than 27 . The use of the constant (75) the $r^{\text {th }}$ percentile to multiply M^{\prime} was ignored since it will not affect the order of the values.

The Z-Value $=0$ is calculated by multiplying M^{\prime} by a constant 0.6745 and the choice of Z is based on any of $0.6745 \times M^{\prime}$ that is greater than 3.5 in absolute value. i.e.

$$
Z=\text { any of }\left|\frac{Y_{1}-\text { Med }_{1}}{M a d_{1}} \cdot 0.6745\right|>3.5
$$

OS $=1.4$ is calculated by summing up all the M^{\prime} corresponding to the outlier set in Y_{1}.

3.1. Two Sample t-test and Confidence Interval

Here, a two sample t-test was conducted to obtain the t-values, confidence interval and its corresponding P-values using the sample means and standard deviations from both the disease and normal group samples of the simulated data assuming equal variances.

Table 6 is the parameters from both the normal group and the disease group data used for the two-sample t-Test.

The Test Difference $=m u(1)-m u(2)$.
Estimate for difference: 4.00000 .
95\% CI for difference: (-0.31762 ; 8.31762).
t-test of difference $=0($ vs not $=0): t$-value $=1.86, P$-value $=0.069 \mathrm{df}=52$.
Both use Pooled StDev = 7.9057.
From the t-test above, sample 1 is the first sample from the disease group with parameters: $n=27$, mean $=32$, standard deviation $=10$ and squared error $=1.9$. Sample 2 also is the first sample from the normal group with parameters: $n=27$, mean $=28$, standard deviation $=5$ and squared error $=0.96, \mathrm{mu}(1)-\mathrm{mu}(2)$ is the difference between the mean of sample 1 and the mean of sample 2 and this is equal to 4 . From the test also, we are 95% confident that the mean will lie between the interval (-0.31762 ; 8.31762).

The test hypothesis is:

$H_{o}: \operatorname{mu}(1)=\operatorname{mu}(2)$.
vs
$H_{1}: \operatorname{mu}(1) \neq \operatorname{mu}(2)$.
t-value $=1.86, P$-value $=0.069$. The degree of freedom $d f$ is calculated by adding the two sample sizes and subtracting 2 from it. i.e. $\left(n_{1}+n_{2}\right)-2$.

Therefore $d f=((27+27)-2)=52$ with a pooled standard deviation of 7.9057 which is the square root of the pooled sample variances of the two samples assuming equal variances i.e. homogeneity of variances and since the P-value $=0.069$ is greater than the significant level $\alpha=0.05$, hence H_{o} is rejected which implies that the mean $\neq 0$.

Table 7 shows calculated ORT and TORT. ORT and TORT utilizes information from both the normal and the disease group sample.

From Table 16, Y_{1} represents the values of the first simulated data from the first sample regarded as the disease group. $Q_{1}=22.3$ is the first quartile of $Y_{1}, \operatorname{Medd}_{1}=31.5$ is the median of the disease group $Y_{1} . Q_{3}=43.45$ is

Table 6. Two-sample t-test and confidence interval for sample 1.

Sample	N	Mean	StDev	SE Mean
1	27	32.0	10.0	1.9
2	27	28.00	5.00	0.96

Table 7. Calculated ORT and TORT.

$\stackrel{\sim}{7}$	$\begin{aligned} & \underset{0}{7} \\ & 0 \\ & \vdots \end{aligned}$	$\begin{aligned} & \underset{\sim}{z} \\ & 0 \\ & \infty \end{aligned}$		$\begin{aligned} & \underset{Z}{x} \\ & \text { N } \end{aligned}$	$\begin{aligned} & E \\ & E \\ & E \end{aligned}$				$\begin{aligned} & \vec{o} \\ & \stackrel{y}{x} \end{aligned}$	*	$\begin{aligned} & \stackrel{\rightharpoonup}{\overleftarrow{N}} \\ & \stackrel{\pi}{0} \end{aligned}$	$\begin{aligned} & \bar{y} \\ & \text { y } \end{aligned}$					$\begin{aligned} & \underset{\sim}{\mid} \\ & \text { In } \end{aligned}$	E O H
46.1566	22.3	43.5	21.1	31.48	9.18	46.157	47.394	1.2369	0.541	33.9	26.47	3.939	36.155	2.13112	19.6866	0.5444999 .2377	2.303	39.0762
21.2799						47.13	47.394	0.2632		22.2	26.47		36.1554	2.13112	20.6603	0.571439 .6946		
47.1303						47.657	47.394	0.2632		26.5	26.47		36.1554	2.13112	21.1867	0.5859899 .9416		
23.587						48.213	47.394	0.819		30.4	26.47		36.155	2.13112	21.7425	0.60136210 .2024		
32.5036										25.9								
39.3499										33.2								
27.7979										30.3								
31.4778										35.8								
26.1055										31.4								
22.3024										22.9								
43.4464										26.6								
22.2347										30.8								
47.6567										28.1								
21.5468										34.8								
48.2125										24.3								
17.2076										32.9								
35.814										30.7								
34.1454										26.3								
27.8934										21.8								
30.988										31.5								
20.2051										25.8								
39.5522										26.1								
35.3807										22.8								
44.7964										19.3								
28.535										26.3								
15.32										21.6								
44.5328										25.8								

the third quartile of the disease group and $\mathrm{IQR}=21.14$ is the interquartile range of the disease group Y_{1} and Madd $1=9.18$ is the median absolute deviation of the disease group. Outliers1 are the outliers from the disease group. ORT concentrates on only the outlier set O_{i} from the disease group. Medo1=47.39 is the median of the outlier set O_{i} from the disease group.

In order to standardize and put the outliers on the same scale for comparison across the outliers,
|Outliers1-Medo1 \mid is computed which is the deviation of each outlier point from the median of the outlier set O_{i} in absolute value. Mado1 $=0.5411$ is the median absolute deviation of the outlier set which is calculated as: Mado1 $=$ median \mid Outliers - Med $_{o} \mid$.
X_{1} are the values of the first simulated data from the second sample regarded as the normal or control group. Medc1=26.5 is the median of the control group X_{1} and Mado1 $=3.39$ is the median absolute deviation of the control group. $($ Madd $1 \times$ Madc1 $)=36.1554$ is the product of the median absolute deviation of the disease group and the median absolute deviation of the control group. Madc1 \times Mado1 $=2.1311$ is the product of the median absolute deviation of the control group and the median absolute deviation of the outlier set O_{i}
(Outliers1-Medc1) is the deviation of the outliers from the median of the control group.

These values were calculated to facilitate comparison across the two samples.
The value for ORT $=2.303$ is obtained by dividing (Outliers1 - Medc1) by (Madd $1 \times$ Madc1) while the value for TORT $=39.08$ is obtained by diving (Outliers $1-$ Medc1) by Madc $1 \times$ Mado1.

Table 8 shows the summary of the computed values of all the simulated data by the six outlier methods. From the table, we have 80 samples of the simulated data from the disease group. The value for each of the outlier method Z, t-distribution, COPA, OS, ORT and TORT was calculated for each sample for comparison among the outlier methods.

Table 9 shows the computed P-values. Here, P-values were computed for all the values computed by the outlier methods. The P-values were generated from the standard normal Z-distribution and t-distribution. This is based on the assumption that the Modified Z-Statistic, COPA and OS are assumed to follow a normal distribution while the t-Statistic, ORT and TORT are assumed to follow a t-distribution.

Table 8. Summary of computed values for the various outlier techniques.

SAMPLES	Z-VALUE	t-VALUE	COPA	OS	ORT	TORT
Y_{1}	0	1.86	-1.76034	1.39	2.30328	39.076
Y_{2}	0	2.49	-3.92618	12.7434	5.55294	10.952
Y_{3}	0	0.43	-3.27801	0.8372	0.60208	3.157
Y_{4}	0	3.72	-2.01955	5.5686	0.2825	2.523
Y_{5}	0	2.25	-4.39303	5.3134	1.41896	0
Y_{6}	0	0.43	-4.08301	0.8769	0.15131	0.045
Y_{7}	0	0.89	-2.64926	9.4938	2.73361	20.423
Y_{8}	0	2	-2.91553	11.0079	4.33481	21.073
Y_{9}	0	1.99	-2.78486	2.0928	1.39099	43.629
Y_{10}	0	1.86	-4.58225	4.025	1.96214	6.286
Y_{11}	0	-0.52	-2.97241	2.7904	0.71192	4.745
Y_{12}	0	1.13	-3.10803	4.0509	1.2525	0
Y_{13}	0	0	-3.4866	3.0625	0.78095	0.213
Y_{14}	0	-0.43	-2.55996	0.0082	-0.26098	-0.099
Y_{15}	0	-1.04	-2.46655	1.2416	0.11346	0.043
Y_{16}	0	1.1	-2.17537	-3.2457	-0.77117	-1.65
Y_{17}	0	-0.45	-2.15159	3.3852	0.39417	0.628
Y_{18}	0	1.04	-3.28757	4.8094	2.51337	5.166
Y_{19}	0	0.96	-2.86551	-6.1141	-0.95734	-0.87
Y_{20}	0	0.67	-2.74892	-4.727	-1.27434	-2.597
Y_{21}	0	1.1	-1.74513	3.2357	0.93583	0
Y_{22}	0	1.13	-3.85211	6.5117	2.32341	11.295
Y_{23}	0	1.13	-2.01992	-1.8813	-0.14041	-0.561
Y_{24}	0	0	-3.08141	0.7643	0.2648	-0.223
Y_{25}	0	-0.6	-1.67968	2.8426	0.49957	0
Y_{26}	0	1.13	-1.37521	4.6342	1.04703	632.674
Y_{27}	0	0.98	-1.06263	4.4619	0.7465	4.463
Y_{28}	0	1.69	-1.72721	4.2818	1.61369	46.904
Y_{29}	0	2.82	-1.0534	9.4872	3.49909	167.496
Y_{30}	0	2.1	-1.26181	9.0953	9.18679	5.497
Y_{31}	0	0.89	-1	3.8121	1.09248	0
Y_{32}	0	-0.98	-4.48556	-8.0926	-1.80663	-4.113
Y_{33}	0	0.5	-1.2577	-2.8623	-0.73876	0
Y_{34}	0	-2.4	-2.06076	-3.9971	-2.42707	-22.154
Y_{35}	0	-2.08	-2.70112	-7.4548	-2.9424	-56.16

Continued

Y_{36}	0	-1.22	-1.24659	0	0	0
Y_{37}	0	-1.69	-1.25708	0	0	0
Y_{38}	0	0.6	-1.93532	0	0	0
Y_{39}	0	-2.93	-3.52858	-9.1664	-3.43498	-3.257
Y_{40}	0	-2	-0.91637	-2.8195	-0.82398	0
Y_{41}	0	0.41	-3.36643	-2.0476	-2.86471	-17.903
Y_{42}	0	0.56	-3.4781	-3.4781	-1.64245	0
Y_{43}	0	0.49	-5.07365	-5.0737	-1.14229	0
Y_{44}	0	2.44	0.8284	4.1342	0.71059	119.372
Y_{45}	0	1.56	1.56	-8.3637	-1.80281	-166.776
Y_{46}	0	0.96	-1.55075	0.4615	0.57185	0.198
Y_{47}	0	4.41	-2.49374	0	0	0
Y_{48}	0	2.82	-2.63485	0	0	0
Y_{49}	0	0.46	0.46	-5.2878	-1.41388	-33.607
Y_{50}	0	0.46	-2.5987	-2.5987	-0.56607	0
Y_{51}	0	-2.39	-2.10795	-7.8008	-3.68414	-21.252
Y_{52}	0	-2.44	-1.66542	-2.3363	-0.44473	0
Y_{53}	0	-0.98	-0.50455	-5.1537	-1.15351	-24.42
Y_{54}	0	1.47	-2.52821	-11.2182	-2.54795	-2.425
Y_{55}	0	0	-2.70932	-14.1094	-1.79082	-4.729
Y_{56}	0	-0.43	-2.17732	-10.2926	-2.1721	-7.973
Y_{57}	0	0.49	-1.09271	-2.754	-1.03836	-11.2
Y_{58}	0	0.91	-3.42848	-9.9813	-2.53859	-6.818
Y_{59}	0	-1.82	-1.90071	-9.737	-2.27291	-7.208
Y_{60}	0	-0.91	-1.14792	-7.0358	-1.90352	-3.406
Y_{61}	0	3.49	-0.11938	0.0865	1.08222	1.604
Y_{62}	0	2.73	-1	-4.3347	0.35235	0.515
Y_{63}	0	0.48	-1.16752	-6.618	-1.47642	-5.356
Y_{64}	0	0	-1.75915	9.3197	1.79452	0
Y_{65}	0	0.38	-1.34253	8.3705	2.23081	23.572
Y_{66}	0	2.19	-1.71693	7.8552	0.11634	0.145
Y_{67}	0	3.36	-3.68369	-3.3687	0.22073	0.489
Y_{68}	0	2.88	-0.84967	-2.4492	-0.42245	0
Y_{69}	0	-0.85	-1.41307	-6.2249	-1.54908	-10.655
Y_{70}	0	2.98	-1.86298	-2.0592	-0.02425	-0.005
Y_{71}	0	0	-1.44536	3.4758	0.47375	0
Y_{72}	0	0	-1.44536	3.4758	0.47375	0
Y_{73}	0	-0.46	-0.52618	-5.313	-1.01075	-6.144
Y_{74}	0	-0.8	-4.23945	-11.4121	-1.23036	-0.389
Y_{75}	0	-0.43	-2.88634	-2.8863	-0.47865	0
Y_{76}	0	1.84	1.08439	1.0844	0.61602	0.741
Y_{77}	0	-0.37	-2.32299	-9.2371	-2.65121	-4.663
Y_{78}	0	-0.49	-0.14608	0	0	0
Y_{79}	0	0.86	-1.01972	-2.8507	-0.3255	0
Y_{80}	0	0.43	-2.21624	-2.2162	-0.3952	0

Table 9. Summary of computed P-values for the various outlier techniques.

Z	T	COPA	OS	ORT	TORT
1	0.069	0.0784	0.1645	0.0295	0.0001
1	0.016	0.0001	0.0001	0.0001	0.0001
1	0.672	0.001	0.4025	0.5523	0.004
1	0	0.0434	0.0001	0.7798	0.0181
1	0.028	0.0001	0.0001	0.1678	1
1	0.669	0.0001	0.3805	0.8809	0.9645
1	0.377	0.0081	0.0001	0.111	0.0001
1	0.051	0.0036	0.0001	0.0002	0.0001
1	0.052	0.0054	0.0364	0.176	0.0001
1	0.069	0.0001	0.0001	0.0605	0.0001
1	0.606	0.003	0.0053	0.4829	0.0001
1	0.265	0.0019	0.0001	0.2215	1
1	1	0.0005	0.0022	0.4419	0.833
1	0.672	0.0052	0.9935	0.7962	0.9219
1	0.304	0.0136	0.2144	0.9105	0.966
1	0.276	0.00031	0.0012	0.4476	0.111
1	0.658	0.0314	0.0007	0.6967	0.5355
1	0.304	0.001	0.0001	0.0185	0.0001
1	0.341	0.0042	0.0001	0.3472	0.3923
1	0.67	0.006	0.0001	0.2138	0.0153
1	0.276	0.081	0.0012	0.358	1
1	0.265	0.0001	0.0001	0.0282	0.0001
1	0.265	0.0434	0.0599	0.8594	0.5796
1	1	0.0021	0.4447	0.7933	0.8253
1	0.548	0.093	0.0045	0.6216	1
1	0.265	0.1691	0.0001	0.3047	0.0001
1	0.333	0.2879	0.0001	0.4621	0.0001
1	0.097	0.0841	0.0001	0.1187	0.0001
1	0.007	0.2922	0.0001	0.0017	0.0001
1	0.041	0.207	0.0001	0.0001	0.0001
1	0.377	0.2922	0.0001	0.2846	1
1	0.333	1	0.0001	0.0824	0.0003
1	0.616	0.2085	0.0042	0.4667	1
1	0.02	0.0393	0.0001	0.0225	0.0001
1	0.043	0.0069	0.0001	0.0068	0.0001
1	0.226	0.2125	1	1	1
1	0.097	0.287	1	1	1
1	0.548	0.053	1	1	1

Continued					
1	0.005	0.0004	0.0001	0.002	0.0031
1	0.051	0.3595	0.0048	0.4174	1
1	0.68	0.0008	0.0406	0.0082	0.0001
1	0.575	0.0005	0.0005	0.1125	1
1	0.627	0.0001	0.0001	0.2637	1
1	0.018	0.4074	0.0001	0.4837	0.0001
1	0.125	0.1188	0.0001	0.083	0.0001
1	0.341	0.121	0.6444	0.5723	0.8446
1	0	0.0126	1	1	1
1	0.007	0.0084	1	1	1
1	0.65	0.6455	0.0001	0.1693	0.0001
1	0.65	0.0094	0.0094	0.5762	1
1	0.02	0.035	0.0001	0.0011	1
1	0.018	0.0958	0.0195	0.6602	1
1	0.333	0.6139	0.0001	0.2592	0.0001
1	0.149	0.0115	0.0001	0.0171	0.022
1	1	0.0067	0.0001	0.055	0.0001
1	0.668	0.0293	0.0001	0.0392	0.0001
1	0.627	0.2745	0.0059	0.3087	0.0001
1	0.366	0.0006	0.0001	0.0175	0.0001
1	0.074	0.0573	0.0001	0.0315	0.0001
1	0.366	0.251	0.0001	0.0681	0.0022
1	0.001	0.905	0.9311	0.2891	0.1208
1	0.009	0.2922	0.0001	0.7274	0.6109
1	0.633	0.243	0.0001	0.1518	0.0001
1	1	0.0786	0.0001	0.0844	1
1	0.704	0.1794	0.0001	0.0345	0.0001
1	0.033	0.086	0.0001	0.9083	0.8856
1	0.001	0.0002	0.0008	0.827	0.5237
1	0.006	0.3955	0.0143	0.6762	1
1	0.398	0.1576	0.0001	0.1335	0.0001
1	0.004	0.0625	0.0395	0.9808	0.9681
1	1	0.1484	0.0005	0.6396	1
1	1	0.1484	0.0005	0.6396	1
1	0.648	0.5988	0.0001	0.3215	0.0001
1	0.429	0.0001	0.0001	0.2296	0.8345
1	0.668	0.0039	0.0039	0.6362	1
1	0.072	0.2782	0.2782	0.5432	0.8235
1	0.716	0.0202	0.0001	0.0135	0.0004
1	0.627	0.8839	1	1	1
1	0.392	0.3079	0.0044	0.7474	1
1	0.668	0.0267	0.0267	0.6959	1

From Table 18, we observed that all the outlier methods have equal maximum P-value of 1 (one). Modified Z has a minimum P-value of 1 (one), t and COPA have a minimum P-value of 0 (Zero) while OS, ORT and TORT have the least minimum P-value of 0.0001 . Modified Z has 80 true positives and 0 false positives, t-Statistic has 61 true positives and 19 False Positives, COPA has 39 true positives and 41 false positives, OS has 16 true positives and 64 false positives, ORT has 62 true positives and 18 false positives while TORT has 42 true positives and 38 false positives. The Mean of the P-values of the different outlier methods were computed giving the following results: $Z=1, \mathrm{t}=0.360188$, $\mathrm{COPA}=0.144847$, $\mathrm{OS}=0.134311$, $\mathrm{ORT}=0.388911$ and TORT $=0.472614$. From these values, we can see that OS has the least minimum P-value, least number of true positives and the least average P-value followed by COPA, followed by t, followed by ORT, followed by TORT while Z has the highest maximum P-value, highest true positive rate and the highest average P-Value. Since OS has the least average P-value, it implies that OS performs better than the other methods. Based on this, OS has a higher detection power than the rest of the other methods followed by COPA, t, ORT, TORT and Z .

Table 10 shows the ranking of the P-values computed by the various outlier techniques in an ascending order. The P-values and the Ranks were used in computing the False Discovery Rate FDR for the various outlier techniques

From Table 11, the true positives are the false null hypothesis (Type II error). These are the probabilities of accepting the null hypothesis given that the null hypothesis is false and should be rejected. These true positives are P-values that are greater than the given significant level of $\alpha=0.05$. The blank cells in the table are the False Positives.

From Table 12, the false positives are the true null hypothesis (Type I error). These are the probabilities of rejecting the null hypothesis given that the null hypothesis is true and should be accepted. These False Positives are P-values that are less than the given significant level $\alpha=0.05$. The blank spaces in the table are the false null hypothesis.

Table 13 shows the FDR computed by the various outlier techniques. The P-values and the rank of the P-values were used in computing the False Discovery Rate (FDR). We can observed that all the outlier methods have equal minimum FDR of 0 (zero) except Z-Statistic with minimum FDR of 160.506 . Modified Z has the highest maximum FDR of 160.506 followed by TORT $=114.838$, $\mathrm{OS}=84.819$, $\mathrm{ORT}=83.962, t$-Statistic $=$ 81.806 while COPA has the least maximum FDR of 79.25 .

The Mean of the FDRs of the different outlier techniques were computed giving the following results: $Z=$ 160.506, $t=42.6748813$, COPA $=13.8631125, \mathrm{OS}=11.4017125$, $\mathrm{ORT}=45.64245$ and TORT $=48.4732125$. From results obtained, we observed that OS has the least average FDR and minimum FDR. Since OS has the least error rate, it implies that OS performs better than the other methods. Based on this, OS has a highest detection power with a smaller FDR followed by COPA, t, ORT, TORT and Z .

From Figure 1, we can see the performance of the FDRs of the various outlier methods. From the plot, we can see that the FDR of Z has the highest point at 160 constantly at the peak of the plot folllowed by the FDR of TORT, t and ORT. COPA has its highest point at the middle of the plot while OS has its points clustered at the floor of the plot. Based on these observations, we can see that OS performs better than the other methods in terms of having a smaller error rate (FDR) and therefore has the highest detection power follwed by COPA, ORT, t, TORT and Z .

3.2. Comparison Based on ROC Curves

The sensitivities were plotted against the specificities at different thresholds to compare the behaviour of the outlier methods. The ROC Curves were plotted for $n=27$ and $k=6, n=27$ and $k=10, n=27$ and $k=16, n=27$ and $k=25$. Where k is the numbers simulations. Larger area under the ROC curves indicates better sensitivity and specificity. An ROC curve along the diagonal line indicates a random-guess. The test result variable(s): Z, t, COPA, OS, ORT, TORT has at least one tie between the positive actual state group and the negative actual state group.
a) The smallest cutoff value is the minimum observed test value minus 1 , and the largest cutoff value is the maximum observed test value plus 1 . All the other cutoff values are the averages of two consecutive ordered observed test values.

Table 10. Summary of ranks of the P-values for various outlier techniques.

Z	T	COPA	OS	ORT	TORT
39.5	23.5	45	66	15	15.5
39.5	11	4	21.5	1.5	15.5
39.5	70.5	15.5	70	53	35
39.5	1.5	40.5	21.5	66	37
39.5	16	4	21.5	30	68
39.5	68	4	69	71	53
39.5	47.5	28	21.5	25	15.5
39.5	20.5	20	21.5	3	15.5
39.5	22	24	62	32	15.5
39.5	23.5	4	21.5	20	15.5
39.5	55	19	56	50	15.5
39.5	33.5	17	21.5	34	68
39.5	77.5	11.5	50	46	48
39.5	70.5	23	74	68	52
39.5	38.5	33	67	73	54
39.5	36.5	9	48.5	47	39
39.5	64	37	46	63	43
39.5	38.5	15.5	21.5	12	15.5
39.5	43.5	22	21.5	43	41
39.5	69	25	21.5	33	36
39.5	36.5	47	48.5	44	68
39.5	33.5	4	21.5	14	15.5
39.5	33.5	40.5	65	70	44
39.5	77.5	18	71	67	47
39.5	52.5	50	54	56	68
39.5	33.5	57	21.5	40	15.5
39.5	41	67	21.5	48	15.5
39.5	27.5	48	21.5	27	15.5
39.5	8.5	69	21.5	5	15.5
39.5	18	59	21.5	1.5	15.5
39.5	47.5	69	21.5	38	68
39.5	41	80	21.5	22	31
39.5	56	60	52	49	68
39.5	14.5	39	21.5	13	15.5
39.5	19	27	21.5	7	15.5
39.5	31	61	77.5	77.5	68
39.5	27.5	66	77.5	77.5	68
39.5	52.5	42	77.5	77.5	68
39.5	6	10	21.5	6	34

Continued

39.5	20.5	72	55	45	68
39.5	72	14	64	8	15.5
39.5	54	11.5	44	26	68
39.5	58	4	21.5	37	68
39.5	12.5	74	21.5	51	15.5
39.5	29	52	21.5	23	15.5
39.5	43.5	53	72	54	50
39.5	1.5	32	77.5	77.5	68
39.5	8.5	29	77.5	77.5	68
39.5	62.5	77	21.5	31	15.5
39.5	62.5	30	58	55	68
39.5	14.5	38	21.5	4	68
39.5	12.5	51	60	60	68
39.5	41	76	21.5	36	15.5
39.5	30	31	21.5	10	38
39.5	77.5	26	21.5	19	15.5
39.5	66	36	21.5	18	15.5
39.5	58	64	57	41	15.5
39.5	45.5	13	21.5	11	15.5
39.5	26	43	21.5	16	15.5
39.5	45.5	63	21.5	21	33
39.5	3.5	79	73	39	40
39.5	10	69	21.5	64	45
39.5	60	62	21.5	29	15.5
39.5	77.5	46	21.5	24	68
39.5	73	58	21.5	17	15.5
39.5	17	49	21.5	72	51
39.5	3.5	8	47	69	42
39.5	7	73	59	61	68
39.5	50	56	21.5	28	15.5
39.5	5	44	63	74	55
39.5	77.5	54.5	44	58.5	68
39.5	77.5	54.5	44	58.5	68
39.5	61	75	21.5	42	15.5
39.5	51	4	21.5	35	49
39.5	66	21	51	57	68
39.5	25	65	68	52	46
39.5	74	34	21.5	9	32
39.5	58	78	77.5	77.5	68
39.5	49	71	53	65	68
39.5	66	35	61	62	68

Table 11. Summary of calculated True Positives (TP) for various outlier techniques.

TP of Z	TP of T	TP of COPA	TP of OS	TP of ORT	TP of TORT
1	0.07	0.08	0.06	0.55	1
1	0.67	0.08	0.44	0.78	0.96
1	0.67	0.09	0.16	0.17	1
1	0.38	0.17	0.4	0.88	0.83
1	0.05	0.29	0.38	0.11	0.92
1	0.05	0.08	0.99	0.18	0.97
1	0.07	0.29	0.21	0.06	0.11
1	0.61	0.21	1	0.48	0.54
1	0.27	0.29	1	0.22	0.39
1	1	1	1	0.44	1
1	0.67	0.21	0.64	0.8	0.58
1	0.3	0.21	1	0.91	0.83
1	0.28	0.29	1	0.45	1
1	0.66	0.05	0.93	0.7	1
1	0.3	0.36	0.28	0.35	1
1	0.34	0.41	1	0.21	1
1	0.67	0.12		0.36	1
1	0.28	0.12		0.86	1
1	0.27	0.65		0.79	1
1	0.27	0.1		0.62	1
1	1	0.61		0.3	1
1	0.55	0.27		0.46	0.84
1	0.27	0.06		0.12	1
1	0.33	0.25		0.28	1
1	0.1	0.91		0.08	1
1	0.38	0.29		0.47	1
1	0.33	0.24		1	1
1	0.62	0.08		1	0.12
1	1	0.18		1	0.61
1	1	0.09		0.42	1
1	0.65	0.4		0.11	0.89
1	0.43	0.16		0.26	0.52
1	0.67	0.06		0.48	1
1	0.07	0.15		0.08	0.97
1	0.72	0.15		0.57	1
1	0.63	0.6		1	1
1	0.39	0.28		1	0.83
1	0.67	0.88		0.17	1
1	0.23	0.31		0.58	0.82

Continued			
1	0.1	0.66	1
1	0.55	0.26	1
1	0.05	0.06	1
1	0.68	0.31	
1	0.58	0.07	
1	0.63	0.29	
1	0.13	0.73	
1	0.34	0.15	
1	0.65	0.08	
1	0.65	0.91	
1	0.33	0.83	
1	0.15	0.68	
1	1	0.13	
1	0.67	0.98	
1	0.63	0.64	
1	0.37	0.64	
1	0.07	0.32	
1	0.37	0.23	
1	0.63	0.64	
1	1	0.54	
1	0.7	1	
1	0.4	0.75	
1		0.7	
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			

Table 12. Summary of calculated False Positives (FP) for various outlier techniques.

FP of \boldsymbol{Z}	FP of T	FP of COPA	FP of OS	FP of ORT	FP of TORT
0	0.02	0	0	0.03	0
0	0	0	0	0	0
0	0.03	0.04	0	0	0
0	0.01	0	0	0.02	0.02
0	0.04	0	0	0.03	0
0	0.02	0.01	0.04	0	0
0	0.04	0	0	0	0
0	0.01	0.01	0.01	0.02	0
0	0.02	0	0	0.01	0
0	0	0	0	0	0
0	0.01	0	0	0.01	0.02
0	0.02	0	0	0.02	0
0	0.02	0.01	0	0.04	0
0	0	0.01	0	0.02	0
0	0.01	0	0	0.03	0
0	0.03	0.03	0	0	0
0	0	0	0	0.03	0
0	0.01	0	0	0.01	0
0	0	0.01	0		0
0		0	0		0
0		0.04	0		0
0		0	0		0
0		0.04	0		0
0		0.01	0		0
0		0	0		0
0		0	0		0
0		0	0		0.02
0		0	0		0
0		0.01	0		0
0		0.01	0		0
0		0.01	0.04		0
0		0.04	0		0
0		0.01	0		0
0		0.01	0		0
0		0.03	0		0
0		0	0		0
0		0	0.01		0
0		0	0		0
0		0	0.02		

Continued

0	0.02	0
0	0.03	0
0		0
0		0
0		0.01
0		0
0		0
0		0
0		0
0		0
0		0
0		0
0		0
0		0
0		0.01
0		0
0		0.04
0		0
0		0
0		0
0		0
0		0
0		0
		0
0		0.03

0
0
0
0
0
0
0
0
0
0
0
0
0
0

Table 13. Summary of computed False Discovery Rate (FDR) for various outlier techniques.

FDR OF Z	FDR OF T	FDR OF COPA	FDR OF OS	FDR OF ORT	FDR OF TORT
160.506	18.885	11.271	15.37	12.68	0
160.506	11.527	0	0	0	0
160.506	60.252	0	36.229	65.792	3.427
160.506	0	6.262	0	74.927	93.235
160.506	11.888	0	0	35.927	114.838
160.506	62.468	0	34.916	78.58	0
160.506	50.72	2.264	0	27.896	0
160.506	15.463	0	0	0	0
160.506	14.409	2.642	4.09	35.663	0
160.506	18.885	0	0	19.02	0
160.506	70.316	0	1.132	60.864	93.235
160.506	51.099	0	0	41.024	109.629
160.506	81.806	0	0	60.643	112.169
160.506	60.252	2.757	84.819	74.588	113.885
160.506	49.403	1.921	19.872	79.033	17.882
160.506	48.636	0	0	60.702	79.619
160.506	65.381	5.141	0	70.444	0
160.506	49.403	0	0	10.567	60.307
160.506	49.554	0	0	51.605	3.522
160.506	61.562	2.536	0	40.345	93.235
160.506	48.636	10.791	0	51.873	0
160.506	51.099	0	0	13.586	83.573
160.506	51.099	6.262	5.852	77.891	111.962
160.506	81.806	0	39.29	74.755	93.235
160.506	66.419	11.412	0	70.193	0
160.506	51.099	18.909	0	47.55	0
160.506	51.029	27.442	0	60.758	0
160.506	23.055	10.567	0	28.178	0
160.506	7.459	26.646	0	0	0
160.506	14.089	22.566	0	0	93.235
160.506	50.72	26.646	0	46.716	0
160.506	51.029	79.25	0	23.055	93.235
160.506	70.193	22.19	0	60.812	0
160.506	8.745	6.503	0	9.754	0
160.506	13.347	2.348	0	9.057	93.235
160.506	47.039	21.826	81.806	81.806	93.235
160.506	23.055	27.858	81.806	81.806	93.235
160.506	66.419	7.548	81.806	81.806	0
160.506	10.567	0	0	0	93.235
160.506	15.463	31.7	0	59.173	0

Continued

160.506	59.878	0	3.963	7.925	93.235
160.506	68.096	0	0	26.823	93.235
160.506	68.866	0	0	44.551	0
160.506	10.144	35.127	0	59.671	0
160.506	28.421	14.631	0	22.052	106.512
160.506	49.554	14.355	56.356	66.922	93.235
160.506	0	1.981	81.806	81.806	93.235
160.506	7.459	2.186	81.806	81.806	0
160.506	65.936	53.519	0	34.768	93.235
160.506	65.936	2.113	1.093	66.858	93.235
160.506	8.745	6.674	0	0	93.235
160.506	10.144	12.431	2.113	69.74	0
160.506	51.029	50.887	0	45.789	3.337
160.506	31.7	2.045	0	12.68	0
160.506	81.806	2.438	0	20.021	0
160.506	64.361	5.283	0	14.089	0
160.506	68.866	26.747	1.112	47.937	0
160.506	51.556	0	0	11.527	0
160.506	17.069	8.847	0	11.888	0
160.506	51.556	25.159	0	21.133	19.02
160.506	0	73.03	80.77	47.144	85.942
160.506	6.34	26.646	0	72.316	0
160.506	66.57	24.542	0	32.793	93.235
160.506	81.806	11.026	0	21.133	0
160.506	60.795	19.676	0	11.188	110.639
160.506	11.188	11.645	0	80.131	78.495
160.506	0	0	0	76.264	93.235
160.506	9.057	34.74	1.075	70.675	0
160.506	50.72	18.114	0	29.436	111.815
160.506	0	8.645	4.025	83.962	93.235
160.506	81.806	17.45	0	69.361	93.235
160.506	81.806	17.45	0	69.361	0
160.506	67.557	50.72	0	48.305	107.392
160.506	53.455	0	0	41.663	93.235
160.506	64.361	0	0	71.186	113.017
160.506	17.752	27.311	26.106	65.838	0
160.506	61.686	3.729	0	7.044	93.235
160.506	68.866	71.528	81.806	81.806	93.235
160.506	50.461	27.682	0	73.154	93.235
160.506	64.361	5.434	3.118	71.581	0
160.506	42.674813	13.863113	11.401713	45.64245	48.473213

Figure 1. Plot of the FDRs.
b) Null hypothesis: Significant/True Area under the ROC Curve (AUC) $=0.5$.

From the Figure 2, we can observe that for a smaller $k=6, T$ and OS have a larger Area Under the ROC Curve AUC with values 0.813 and 0.750 which indicate better sensitivity and specificity and are significant. COPA and ORT have equal AUC with point 0.563 followed by Z with point 0.500 while TORT has the least AUC of 0.375 which is not significant.

Table 14 shows the ROC curves analysis for $n=27$ and $k=6$, the area under the ROC curve (AUC) and the confidence interval for all the test variables.

From Figure 3, we can observe that for a smaller $k=10, T$ and OS have a larger Area Under the ROC Curve AUC with values 0.781 and 0.719 which indicate better sensitivity and specificity and are significant. COPA and ORT have equal significant AUC with point 0.594 followed by Z with point 0.500 which is on the refference line while TORT has the least AUC of 0.438 which is not significant.

Table 15 shows the ROC curves analysis for $n=27$ and $k=10$, the area under the ROC curve (AUC) and the confidence interval for all the test variables.

From Figure 4, we can observe that for bigger $k=16, T$ and OS have a larger Area Under the ROC Curve AUC with values 0.804 and 0.732 which indicate better sensitivity and specificity and are more significant. COPA and ORT have better significant AUC with points 0.536 and .0518 followed by Z with point 0.500 which is on the refference line while TORT has the least AUC of 0.429 which is not significant.

Table 16 shows the ROC curves analysis for $n=27$ and $k=16$, the area under the ROC curve (AUC) and the confidence interval for all the test variables.

From Figure 5, we can observe that for a bigger $k=25, t$ and OS have a larger Area Under the ROC Curve AUC with values 0.828 and 0.734 which indicate better sensitivity and specificity and are more significant. COPA has a better significant AUC with points 0.563 followed by Z and ORT which have equal AUC with point 0.500 while TORT has the least AUC of 0.438 which is not significant.

Table 17 shows the ROC curves analysis for $n=27$ and $k=20$, the area under the ROC curve (AUC) and the confidence interval for all the test variables.

Table 18 is a summary of all the findings in the analysis for all the outlier techniques on the bases of their P-values, false positives, true positives, false discovery rates and their corresponding ROC curves.

Figure 2. ROC curve when $n=27$ and $k=6$.

Figure 3. ROC curve when $n=27$ and $k=10$.

Figure 4. ROC curve when $n=27$ and $k=16$.

Figure 5. ROC curve when $n=27$ and $k=25$.
Table 14. ROC curve when $n=27$ and $k=6$ area under the curve.

Test Result Variable(s)	Area	Std. Error ${ }^{\text {a }}$	Asymptotic Sig. ${ }^{\text {b }}$	Asymptotic 95\% Confidence Interval	
			Lower Bound	Upper Bound	
T	0.500	0.270	1.000	0.000	1.000
COPA	0.813	0.198	0.247	0.000	1.000
OS	0.563	0.261	0.817	0.000	1.000
ORT	0.750	0.563	0.282	0.355	0.000
TORT	0.375	0.246	0.643	0.000	1.000

Table 15. ROC curve when $n=27$ and $k=10$ area under the curve.

Test Result Variable(s)	Area	Std. Error ${ }^{\text {a }}$	Asymptotic Sig. ${ }^{\text {b }}$	Asymptotic 95\% Confidence Interval	
Z	0.500	0.239	1.000	Lower Bound	Upper Bound
T	0.781	0.166	0.240	0.031	0.969
COPA	0.594	0.229	0.695	0.000	10.000
OS	0.719	0.251	0.361	0.076	10.000
ORT	0.594	0.273	0.695	0.000	10.000
TORT	0.438		0.794	0.000	10.000

Table 16. ROC curve when $n=27$ and $k=16$ area under the curve.

Test Result Variable(s)	Area	Std. Error $^{\text {a }}$	Asymptotic Sig. ${ }^{\text {b }}$	Asymptotic 95\% Confidence Interval	
			Lower Bound	Upper Bound	
T	0.500	0.225	1.000	0.059	0.941
COPA	0.804	0.147	0.177	0.000	1.000
OS	0.536	0.207	0.874	0.130	0.942
ORT	0.732	0.240	0.302	0.000	1.000
TORT	0.429	0.202	0.937	0.000	1.000

Table 17. ROC curve when $n=27$ and $k=25$ area under the curve.

Test Result Variable(s)	Area	Std. Error ${ }^{\text {a }}$	Asymptotic Sig. ${ }^{\text {b }}$	Asymptotic 95\% Confidence Interval	
			Lower Bound	Upper Bound	
T	0.500	0.222	1.000	0.064	0.936
COPA	0.828	0.130	0.140	0.000	10.000
OS	0.563	0.208	0.779	0.155	0.970
ORT	0.734	0.239	0.292	0.000	1.000
TORT	0.500	0.260	10.000	0.000	1.000

Table 18. Summary of findings for the various outlier techniques.

DESCRIPTIVES $\begin{array}{r}\text { OUTLIER } \\ \text { TECHNIQUES }\end{array}$						
	Modified Z	t-Statistic	COPA	OS	ORT	TORT
Maximum P-Value	1	1	1	1	1	1
Minimum P-Value	1	0	0	0.0001	0.0001	0.0001
Mean P-Value	1	0.360	0.145	0.134	0.389	0.473
True Positives	80	61	39	16	62	42
False Positives	0	19	41	64	18	38
Minimum FDR	160.506	0	0	0	0	0
Maximum FDR	160.506	81.806	79.25	84.819	83.962	114.838
Mean FDR	160.506	42.675	13.863	11.402	45.642	48.473
$\begin{gathered} \text { True(Significant) AUC }=0.5 \text { AUC } \\ \text { of ROC curve for } k=6 \end{gathered}$	0.500	0.813	0.563	0.750	0.563	0.375
AUC of ROC curve for $k=10$	0.500	0.781	0.594	0.719	0.594	0.438
AUC of ROC curve for $k=16$	0.500	0.804	0.536	0.732	0.518	0.429
AUC of ROC curve for $k=25$	0.500	0.828	0.563	0.734	0.500	0.438

4. Conclusion

The performance of the various outlier methods-Z, T, COPA, OS, ORT and TORT has been statistically studied using simulated data to evaluate which of these methods has the highest power of detecting and handling outliers in terms of their P-Values, true positives, false positives, false discovery rate FDR and their corresponding ROC curves.

The result of their P-values showed that all the outlier methods have equal maximum P-value. Modified Z has the highest minimum P-Value followed by T and COPA while OS, ORT and TORT have the least minimum P-Value. Modified Z has the highest true positives rate followed by ORT, t-Statistic, TORT, COPA, while OS has the least true positives rate. Z has the highest average P-Value followed by TORT, ORT, T, COPA while OS has the least average P-Value. Based on these results, OS performed better than the methods followed by COPA, T, ORT, TORT and Z in terms of their P-Values. When comparison was made on the FDRs, OS also performs the best by having the smallest FDR followed by COPA, T, ORT, TORT and Z.

In terms of their ROC curves, for a smaller $k=6$ and $10, T$ and OS have the largest Area Under the ROC Curve AUC which indicate a better sensitivity and specificity and are significant. COPA and ORT have equal significant AUC followed by Z with insignificant AUC while TORT has the least AUC which is not significant. Also for larger $k=16$ and 25, T and OS still have the largest Area Under the ROC Curve AUC which indicate better sensitivity and specificity and are more significant. COPA and ORT have better significant AUC followed by Z with insignificant AUC while TORT has the least AUC which is still not significant. Based on the above results so far obtained from this analysis, it is obvious that the Outlier Sum Statistic OS has more power of detecting and handling outliers with a smaller False Discovery Rate (FDR) followed by COPA, T, ORT, TORT and Z.

References

[1] Grubbs, F.E. (1969) Procedures for Detecting Outlying Observations in Samples. Technometrics, 11, 1-21. http://dx.doi.org/10.1080/00401706.1969.10490657
[2] Hawkins, D. (1980) Identification of Outliers. Chapman and Hall, Kluwer Academic Publishers, Boston/Dordrecht/ London.
[3] Aggarwal, C.C. (2005) On Abnormality Detection in Spuriously Populated Data Streams. SIAM Conference on Data Mining. Kluwer Academic Publishers Boston/Dordrech/London.
[4] Barnett, V. and Lewis, T. (1994) Outliers in Statistical Data. 3rd Edition, John Wiley \& Sons, Kluwer Academic Publishers, Boston/Dordrecht/London.
[5] Dudoit, S., Yang, Y., Callow, M. and Speed, T. (2002) Statistical Methods for Identifying Differentially Expressed Genes in Replicated DNA Microarray Experiments. Statistica Sinica, 12, 111-139.
[6] Troyanskaya, O.G., Garber, M.E., Brown, P.O., Botstein, D. and Altman, R.B. (2002) Nonparametric Methods for Identifying Differentially Expressed Genes in Microarray Data. Bioinformatics, 18, 1454-1461. http://dx.doi.org/10.1093/bioinformatics/18.11.1454
[7] Tomlins, S., Rhodes, D., Perner, S., Dhanasekaran, S., Mehra, R., Sun, X., Varambally, S., Cao, X., Tchinda, J., Kuefer, R., et al. (2005) Recurrent Fusion of TMPRSS2 and ETS Transcription Factor Genes in Prostate Cancer. Science, 310, 644-648. http://dx.doi.org/10.1126/science. 1117679
[8] Efron, B., Tibshirani, R., Storey, J. and Tusher, V. (2001) Empirical Bayes Analysis of a Microarray Experiment. Journal of the American Statistical Association, 96, 1151-1160. http://dx.doi.org/10.1198/016214501753382129
[9] Iglewicz, B. and Hoaglin, D.C. (2010) Detection of Outliers. Engineering Statistical Handbook, 1.3.5.17. Database Systems Group.
[10] Lyons-Weiler, J., Patel, S., Becich, M. and Godfrey, T. (2004) Tests for Finding Complex Patterns of Differential Expression in Cancers: Towards Individualized Medicine. Bioinformatics, 5, 1-9.
[11] Tibshirani, R. and Hastie, R. (2006) Outlier Sums Statistic for Differential Gene Expression Analysis. Biostatistics, 8, 2-8. http://dx.doi.org/10.1093/biostatistics/kxl005
[12] Benjamini, Y. and Hochberg, Y. (1995) Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B, 57, 289-300.
[13] Wu, B. (2007) Cancer Outlier Differential Gene Expression Detection. Biostatistics, 8, 566-575. http://dx.doi.org/10.1093/biostatistics/kxl029
[14] Luo, J. (2012) Truncated Outlier Robust T-Statistic for Outlier Detection. Open Journal of Statistics, 2, 120-123. http://dx.doi.org/10.4236/ojs.2012.21013
[15] Fonseca, R., Barlogie, B., Bataille, R., Bastard, C., Bergsagel, P.L., Chesi, M., et al. (2004) Genetics and Cytogenetics of Multiple Myelom: A Workshop Report. Cancer Research, 64, 1546-1558. http://dx.doi.org/10.1158/0008-5472.CAN-03-2876
[16] MacDonald, J.W. and Ghosh, D. (2006) Copa-Cancer Outlier Profile Analysis. Bioinformatics, 22, 2950-2951. http://dx.doi.org/10.1093/bioinformatics/btl433
[17] Hu, J. (2008) Cancer Outlier Detection Based on Likelihood Ratio Test. Bioinformatics, 24, 2193-2199. http://dx.doi.org/10.1093/bioinformatics/btn372
[18] Lian, H. (2008) MOST: Detecting Cancer Differential Gene Expression. Biostatistics, 9, 411-418. http://dx.doi.org/10.1093/biostatistics/kxm042
[19] Ghosh, D. (2009) Genomic Outlier Profile Analysis: Mixture Models, Null Hypotheses, and Nonparametric Estimation. Biostatistics, 10, 60-69. http://dx.doi.org/10.1093/biostatistics/kxn015
[20] Chen, L.A., Chen, D.T. and Chan, W. (2010) The Distribution-Based P-value for the Outlier Sum in Differential Gene Expression Analysis. Biometrika, 97, 246-253. http://dx.doi.org/10.1093/biomet/asp075
[21] Ghosh, D. (2010) Discrete Nonparametric Algorithms for Outlier Detection with Genomic Data. Journal of Biopharmaceutical Statistics, 20, 193-208. http://dx.doi.org/10.1080/10543400903572704
[22] Filmoser, P., Maronna, R. and Werner, M. (2008) Outlier Identification in High Dimensions. Computational Statistics and Data Analysis, 52, 1694-1711.
[23] Mori, K., Oura, T., Noma, H. and Matsui, S. (2013) Cancer Outlier Analysis Based on Mixture Modeling of Gene Expression Data. Computational and Mathematical Methods in Medicine, 2013, Article ID: 693901. http://dx.doi.org/10.1155/2013/693901

Scientific Research Publishing (SCIRP) is one of the largest Open Access journal publishers. It is currently publishing more than 200 open access, online, peer-reviewed journals covering a wide range of academic disciplines. SCIRP serves the worldwide academic communities and contributes to the progress and application of science with its publication.

Other selected journals from SCIRP are listed as below. Submit your manuscript to us via either submit@scirp.org or Online Submission Portal.

[^0]: *Corresponding author.

