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Abstract 
A major limitation of expression profiling is caused by the large number of variables assessed 
compared to relatively small sample sizes. In this study, we developed a multinomial Probit Baye-
sian model which utilizes the double exponential prior to induce shrinkage and reduce the num-
ber of covariates in the model [1]. A hierarchical Sparse Bayesian Generalized Linear Model 
(SBGLM) was developed in order to facilitate Gibbs sampling which takes into account the pro-
gressive nature of the response variable. The method was evaluated using a published dataset 
(GSE6099) which contained 99 prostate cancer cell types in four different progressive stages [2]. 
Initially, 398 genes were selected using ordinal logistic regression with a cutoff value of 0.05 after 
Benjamini and Hochberg FDR correction. The dataset was randomly divided into training (N = 50) 
and test (N = 49) groups such that each group contained equal number of each cancer subtype. In 
order to obtain more robust results we performed 50 re-samplings of the training and test groups. 
Using the top ten genes obtained from SBGLM, we were able to achieve an average classification 
accuracy of 85% and 80% in training and test groups, respectively. To functionally evaluate the 
model performance, we used a literature mining approach called Geneset Cohesion Analysis Tool 
[3]. Examination of the top 100 genes produced an average functional cohesion p-value of 0.007 
compared to 0.047 and 0.131 produced by classical multi-category logistic regression and Random 
Forest approaches, respectively. In addition, 96 percent of the SBGLM runs resulted in a GCAT li-
terature cohesion p-value smaller than 0.047. Taken together, these results suggest that sparse 
Bayesian Multinomial Probit model applied to cancer progression data allows for better subclass 
prediction and produces more functionally relevant gene sets. 
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1. Introduction 
As data collection technologies evolve, the number of covariates which can be measured in experiments increase. 
For example, modern microarray experiments can measure the expression levels of several thousand genes si-
multaneously. Since the number of samples is typically much smaller than the number of covariates, it is chal-
lenging to identify important genes among the large amount of data points [4]. Many univariate analysis ap-
proaches have been applied to select important genes from microarray experiments such as t-test [5], regression 
modeling [6], mixture model [7] and non-parametric methods [8] [9]. However, since most complex traits are 
polygenic, a single variable analysis can only detect a very small portion of the relevant variation and may not 
be powerful enough to identify weaker interactions between the variables [10]. 

In order to address limitations of single covariate analysis methods, several approaches have been developed 
for simultaneous analysis of multiple covariates [11]-[13]. In linear regression framework, the least square me-
thod is used to obtain estimate of parameters. The ordinary least square estimates obtained are not quite satis-
factory mainly due to poor accuracy of prediction resulting from high variances of estimates and the large num-
ber of covariates with respect to small sample size [14]. It is preferred to select a smaller subset of covariates, 
sometimes referred to as feature selection, which offer the strongest effect and discriminating power. A standard 
method used to improve the parameter estimation, prediction, and classification is subset selection and its va-
riants such as backward elimination, forward and stepwise selections. These methods are all discrete processes 
and can be highly inconsistent, meaning that a small change in the data can result in very different models 
[14]-[16]. In addition, these approaches are computationally expensive and unstable when sample sizes are 
much smaller than the number of covariates [14] [15]. Moreover in this setting, over-fitting is a major concern 
and may result in failure to identify important predictors. Thus, the data structure of typical microarray experi-
ments makes it difficult to use traditional multivariate regression analysis [10]. Given the aforementioned draw-
backs, several groups have developed methods to simultaneously analyze a large number of covariates [15]-[19]. 
It has been proposed that prediction accuracy can be improved by setting the unimportant covariates to zero and 
thus obtaining more accurate prediction for the significant covariates [14]. 

Various methods such as K-nearest neighbor classifiers [8], linear discriminant analysis [20], and classifica-
tion trees [8] have been used for multi-class cancer classification and discovery [21]-[23]. However in all these 
methods, gene selection and classification are treated as two distinct steps that can limit their performance. One 
alternative to deal with these situations is using Generalized Linear Models (GLM) [24]-[27]. Researchers have 
used GLM methodology extensively when the response variable is not continuous. But for typical microarray 
experiments, procedures to obtain maximum likelihood estimates of parameters will become computationally 
intensive and sometimes intractable. In addition maximization process may not converge to the maximum like-
lihood estimates and predictors may have large estimated variances which results in poor prediction accuracy 
[28]. In order to avoid over-fitting and improve model accuracy, models which impose sparsity in terms of va-
riables (genes) are desirable [14]. Least Absolute Shrinkage and Selection Operator (LASSO) is a well-known 
method for inducing sparseness in the model while highlighting the relevant variables [14] [16] [29]. In addition 
to its remarkable sparsity properties, LASSO provides a solution to a robust optimization problem [30]. A Baye-
sian LASSO method was proposed by [1] [24] in which double exponential prior is used on parameters in order 
to impose sparsity in the model. 

In this article, we integrate double exponential prior distribution into the Bayesian generalized linear model 
framework to induce sparseness in situations where the number of parameters to be predicted exceeds the num-
ber of samples. The model developed can be used to analyze multi-category phenotypes such as progressive 
stages of cancer with different link functions such as Probit and logistic. We used Probit link function to asso-
ciate probability of belonging to one category of phenotype to the linear combination of covariates. In step one, 
we derive the fully conditional distributions for all parameters in a multi-level hierarchical model in order to per- 
form the fully Bayesian treatment of the problem. In the second step, the Markov Chain Monte Carlo (MCMC) 
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method [31] [32] based on Gibbs sampling algorithm is used to estimate all the parameters. This model takes 
into account the ordinal nature of the response variable. We applied and evaluated our model to a publicly 
available prostate cancer progression dataset [2]. The goals of the study are to test if a hierarchical Sparse Baye-
sian Generalized Linear Model (SBGLM) can: 1) Identify a smaller number of genes with high discriminating 
power; 2) Obtain high classification accuracy; 3) Identify more biologically relevant genes related to the pheno-
type under study. 

2. Methods 
In many biomedical research applications, dichotomous or multi-level outcome variables are desired. In these 
situations, the simple linear regression model which is designed for continuous outcome variables is not appro-
priate due to heteroscedasticity and non-normal errors. Furthermore, there is no guarantee that the model will 
predict legitimate responses (e.g. 1, 2, 3, and 4 in polytomous response variable with 4 levels). Generalized li-
near models (GLM) provide a way to address these situations [25]-[27]. Let y1, y2, ⋅⋅⋅, yn represent the observed 
response variables which can take values 1, 2, 3, ⋅⋅⋅, k where k is the number of categories of the ordinal re-
sponse variable. In addition, let wij represent the value of covariate “j” in sample “i”. In the case of gene expres-
sion analysis, gene expression levels are measured for each sample and wij represents expression level of gene j 
in ith sample. We implemented GLM for ordinal response in Bayesian framework by utilizing link functions and 
careful introduction of latent variables [33]. In Bayesian framework joint distribution of all parameters is pro-
portional to likelihood multiplied by prior distributions on the parameters. More specifically in Bayesian Multi-
nomial Probit Model, likelihood function is defined as in formula (1) in which ijπ  is the probability that sam-
ple i is from jth category where j ranges from 1 to k and k is the number of ordinal categories of response variable 
[33]. In formula (1), ( )iI y j=  is an indicator function having value one if the sample i’s response variable is 
in category j and zero otherwise. It should be noted that each sample contributes one value in the inner product 
to the Equation (1) since the indicator function returns value of zero if j is not equal to the category of outcome 
for the sample. 

( ) ( )
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In order to be able to find the posterior distributions of parameters, we integrated the likelihood function mul-
tiplied by joint prior distributions of all parameters. However, the model as set up this way makes the integration 
intractable. As explained in [33], in order to be able to set up the Gibbs sampler and incorporate regression pa-
rameters into the model, we introduce “n” independent latent variables 1 2, , , nl l l  with ( )T~ ,1i il N w θ . In this 
formula, T

iw  is the vector of gene expressions for individual i. The following relationship is established be-
tween response variable and its corresponding latent variable [33]. 
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In order to insure that the thresholds are identifiable, following the guidelines of [33] we fix 2τ  at zero and 
1τ  and 1kτ +  are defined according to equation above. In the context of GLM, we use nonlinear link functions 

to associate the nonlinear, non-continuous response variable to the linear predictor T
iw θ . Using the relations 

defined above, the probability of each sample being in category j ( )1, 2, ,j k=   is derived in Equation (3) in 
which Φ  represents cumulative distribution function of standard normal distribution and ijπ  is the probabili-
ty of sample i being from category j [33]. 

( ) ( ) ( )T
1 1 1Φ ;ij i i j j i ij ij ijP y j P l wζ τ τ θ π ζ ζ+ + −= ≤ = ≤ = − = −                 (3) 

In this way, the linear predictor T
iw θ  is linked to the multi-category response variable iy . The function that 

links the linear predictor to the response variable is called a link function and in the multinomial Probit model, 
this link function is cumulative distribution of standard normal density as defined above [26] [33]. 
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2.1. Bayesian Hierarchical Model and Prior Distributions 
A sparse Bayesian ordinal Probit model was implemented which takes into account ordinal nature of cancer 
progression stages and can accommodate large number of covariates. In the continuation of step one, we used 
independent double exponential prior distributions on jθ  as follows [1] [10]. jθ  is the parameter associated 
with gene j. This prior distribution has a spike at zero and light tails which enables us to incorporate sparsity in 
terms of number of covariates used in the model [10] [16]. 

( ) e
2

j
j

λ θλπ θ λ −=                                       (4) 

Double exponential distribution can be represented as scale mixture of normal with an exponential mixing 
density [1] [10] [16] [24]. This hierarchical representation will be used in order to be able to set up the Gibbs 
sampler. 
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Having ( )T~ ,1i iz N w θ , the following hierarchical prior distribution is used to set up the Gibbs sampler in 
which “p” is the number of covariates(genes) in the model. 

( )~ 0, ; ~ Exp ; 1, ,
2j j j jN j pλθ η η η   = 

 
                    (6) 

Defining the parameters as above, the hierarchical representation of the model is as follows. ( )T~ ,1i il N wθ θ ,  

( )~  0,j j jNθ η η , and ~ Exp
2j
λη  

 
 

. We also assume uniform priors on thresholds and we will find their  

fully conditional posterior distribution alongside other parameters. Using the above mixture representation for 
the parameters and defining prior distributions, we obtain the following fully conditional posterior distributions 
that will be used in a simple Gibbs sampling algorithm. 

( )TΩ ~ DTN ,1i il w θ                                     (7) 

In formula (7), DTN stands for doubly truncated normal distribution and Ω  represents vector of model pa-
rameters plus data. For observation “i” with yi = r, li must be sampled from normal distribution defined above 
truncated between rτ  and 1rτ +  in each iteration of the algorithm. 

( ) ( )1 1T 1 T T 1Ω ~ ,MVN W W T W L W W Tθ
− −− − + +  

                (8) 

Fully conditional posterior distribution of vector of model parameters is multivariate normal distribution with 
mean vector and variance covariance matrix as specified where ( )1 2diag , , , pT η η η=  . In (8), W is the n × p 
design matrix in which ijw  represents expression level of gene j in ith sample and p is the number of genes 
(covariates) in the model and [ ]T1 2, , , nL l l l=   and “n” is the number of samples. 

The fully conditional distribution of hyper-parameters , 1, ,j j pη =  , are inverse-Gaussian distribution with  

location 
j

λ
θ

 and scale λ . In each iteration of the Gibbs sampling, jη  is sampled from the inverse Gaussian  

distribution defined in Equation (9). 

1 ~ inv-Gaussian ,j
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θ

−
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                           (9) 

In the case of multinomial response, we assign independent uniform priors to thresholds and thus the fully 
conditional distribution for thresholds is uniform distribution and we need to sample them in each iteration of 
Gibbs sampling alongside other parameters in the model [33]. 
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Using Equation (10), the conditional posterior distribution of 𝜏𝜏𝑠𝑠 can be seen to be ( )1 2Uniform ,δ δ  in 
which { }{ }1 1max max 1 ,i i i sl y sδ τ −= = −  and { }{ }2 min min , .i i i sl y sδ τ= =  It should be noted that I() is in-
dicator function and its value is one if its argument is true and is zero otherwise. 

2.2. Dataset and Feature Selection 
The method was applied to a published dataset on prostate cancer progression downloaded from Gene Expres-
sion Omnibus at NCBI (GSE6099) [2]. The data set contains gene expression values for 20,000 probes and 101 
samples corresponding to five prostate cancer progressive stages (subtypes): Benign, prostatic intraepithelial 
neoplasia (PIN), Proliferative inflammatory atrophy (PIA), localized prostate cancer (PCA), and metastatic 
prostate cancer (MET) [2]. Since there were only two samples for PIA, we removed these samples from further 
analysis. Probes with null values in more than 10% of the samples were removed from the data set. For the re-
maining probes, the null values were imputed by using the mean value of the probe across samples with non-null 
values. Before applying our model to this data set, for each gene we performed logistic regression for ordinal 
response. This method enables us to take into account ordinal nature of response variable in the analysis and 
preparation of gene list used as input to the model. Genes were ranked based on the p-value associated with the 
hypothesis 0 : 0iH θ =  from the most significant to least significant. In here iθ  is the parameter associated 
with gene i. We performed Benjamini and Hochberg FDR correction [34]. An FDR cutoff value of 0.05 resulted 
in a list of 398 genes. Thus, the input to our model was 398 covariates (genes) for 99 samples corresponding to 
four different prostate cancer subtypes. The Gibbs sampling algorithm was implemented in R software and the 
program ran for 60 k iterations and the first 20 k was discarded as burn-in. 

3. Evaluation 
The dataset was randomly divided into training (N = 50) and test (N = 49) groups such that each group con-
tained an equal number of prostate cancer subtypes Benign, PIN, PCA and MET. Genes were ranked based on 
posterior mean of parameters and the top 10 or 50 genes obtained from the model were used for classification. In 
order to make the model more robust we performed 50 re-samplings on selection of training and test groups and 
re-ran the model. The average performance of SBGLM was compared to two well-known classification methods: 
Support Vector Machine (SVM) and Random Forrest. SVM was implemented in R software using Kernlab li-
brary [35] and Random Forest was implemented in R using Random Forest library [36]. 

4. Results 
Figure 1 shows an example of the mean of posterior distribution of θs associated with 398 genes in a single run 
of SBGLM. The majority of the θs were between 1 and −1, and relatively few genes had θs > ±2. We used the 
top 10 or 50 genes to test the classification accuracy of the SBGLM on 50 resampled training and test groups. 
Each training and test group had an equal number of the four prostate cancer subtypes: Benign, prostatic intra-
epithelial neoplasia (PIN), localized prostate cancer (PCA), and metastatic prostate cancer (MET). We found 
that the average overall classification accuracy of the SBGLM was 80.4% and 82.3% when using 10 and 50 
marker genes, respectively (Table 1). 

The performance of SBGLM approach was compared to two well-known classification methods, SVM and 
Random Forest [37] when using top 10 or top 50 genes from 398 input genes. We found that the overall accura-
cy of SBGLM was substantially better than SVM and was comparable, albeit slightly lower, to Random Forrest 
when using either 10 or 50 marker genes. It is important to note that the feature selection for SVM and Random 
Forests was based on the p-values of the ordinal linear regression model (top 10 and top 50 from the 398 input 
genes). These results indicate that a small subset of the 398 input genes is better for predicting prostate cancer 
progression. 

Next, we examined the performance of SBGLM with regard to classifying the different subtypes of prostate 
cancer in comparison to SVM and Random Forrest (Table 2). When using 10 marker genes, SBGLM classified 
all four subtypes of prostate cancer more accurately than SVM, and it performed better than Random Forrest for 
classifying Benign, PIN, and PCA. Interestingly however, when using 50 marker genes, SBGLM performed  
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Figure 1. Posterior mean of θs associated with gene 1 to 
gene 398.                                         

 
Table 1. Overall average accuracy of SBGLM, SVM and Random 
Forest using 10 and 50 marker genes.                          

 Gene Number 

Model P = 10 P = 50 

SBGLM 80.4% 82.3% 

SVM 53.6% 67% 

Random Forest 83% 84.6% 

 
Table 2. Average classification accuracy of prostate cancer sub-
types in the test group using SBGLM, SVM and Random Forrest 
with 10 and 50 marker genes.                               

 Model 

Sample type SBGLM SVM Random Forest 

10 marker genes   

Benign 95.1 84.4 91.1 

PIN 61.7 0.09 61.4 

PCA 86.9 37.4 86.7 

MET 56 55.3 82.8 
   

50 marker genes   

Benign 99.6 90.1 96.8 

PIN 53.4 38.2 52 

PCA 65.4 45.8 84.8 

MET 95.4 81.8 83.6 

 
better than Random Forrest at classifying Benign, PIN and MET. These results indicate that the performance of 
SBGLM is comparable to Random Forrest in classifying subtypes of prostate cancer, although the results for 
both methods are sensitive to the number of selected marker genes. 

Since the results of SBGLM were comparable to Random Forrest, we next asked if SBGLM gene rankings 
were more or less relevant to the biological mechanisms associated with prostate cancer progression. As a first 
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step in evaluating the biological relevance for the top ranked genes in the models, we used a literature based 
method called Geneset Cohesion Analysis Tool (GCAT) [3]. GCAT is a web-based tool that determines the 
functional coherence p-values of gene sets based on latent semantic analysis of Medline abstracts [3]. Table 3 
shows the average GCAT literature derived p-values (LPv) for the top 100 genes obtained from 50 runs of 
SBGLM and Random Forrest as well as the top 100 genes based on the p-value rank ordering of single gene 
analysis using ordinal logistic regression. We found that on average, SBGLM produced more functionally cohe-
sive gene list (LPv = 0.007) compared classical logistic regression (LPv = to 0.047) and Random Forest (LPv = 
0.131). Notably, 96% of the runs had smaller LPv than 0.047, produced by linear regression p-value ranking. 
We next manually evaluated the functional association between the top ranked genes in each model with pros-
tate cancer biology. For this comparison, the median run for each model was chosen. We found that 6 out of 10 
genes ranked by SBGLM has some association with prostate cancer (data not shown), whereas only 3 out of the 
top 10 genes ranked by SVM and Random Forrest had associations with prostate cancer (data not shown). Based 
on these results, we conclude that although SBGLM produces comparable classification accuracy as Random 
Forrest, it identifies more biologically relevant gene markers. 

5. Discussion 
Complex diseases and biological processes are caused by interaction of multiple genes (gene products). Hence, 
current approaches which rely on single variable analysis have limited utility in understanding molecular me-
chanisms and identification of genetic biomarkers for classification of diseases [5] [21]-[23]. Moreover, most 
genomic approaches collect data for a much larger set of gene variables compared to the number of samples be-
ing investigated. Therefore, highly regularized approaches, such as penalized regression models, are needed to 
identify non-zero coefficients, enhance model predictability and avoid over-fitting [28]. Lastly, continuous re-
sponse variables which are a requirement of linear regression methods are not applicable to response variables 
(phenotypes) that are dichotomous or polytomous. To address these limitations, we developed a sparse Bayesian 
multinomial model and evaluated its performance using prostate cancer gene expression data. We found that the 
SBGLM classification accuracy of prostate cancer subtypes were comparable to Random Forrest. However, 
SBGLM identified more biologically relevant gene sets (Table 3). Based on these results, we posit that SBGLM 
may be a better approach to simultaneously identify marker genes for classifications as well as gaining insights 
into the molecular mechanisms of the phenotype under investigation. Interestingly, using fewer genes, SBGLM 
had very good discrimination performance for classifying benign (99.6% accuracy) versus metastatic prostate 
cancer (95.4% accuracy), but the model discrimination was weaker for PIN and PCA (Table 2). These results 
are consistent with the previous observation that PIN and PCA share markedly similar expression signatures [2]. 
We found that increasing the number of marker genes to 50 does not improve discrimination between PIN and 
PCA, suggesting that different molecular mechanisms may underlie the progression of PIN to PCA. 

Random Forests are an ensemble method for classification that has been shown to have good performance in 
many bioinformatic applications. However, Random Forrest is prone to over-fitting in datasets with noisy clas-
sification tasks. In addition, it is very hard to interpret the classifications made by Random Forests. Furthermore, 
if data contain categorical variables with different number of levels, Random Forest favors variables with more 
levels, making the variable importance measures unreliable [38]. 

It is important to note that the classification accuracy of all three models were compared using a selected set 
of 398 genes which were obtained based on p-value of single gene analysis using an ordinal regression model. 
Hence, this biases the initial gene selection process. It is possible that some biologically relevant genes to the 
prostate cancer progression might have been missed by this analysis due to low signal. One way to perform an 
initial gene selection could be to consider gene pathway information as described previously by others [39]. Our  
 

Table 3. Literature based functional cohesion p-values (LPv) 
of the top 100 genes obtained from three different models.      

Model GCAT LPv 

SBGLM 0.007 

Classical Logistic regression 0.047 

Random Forest 0.131 
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future plan is to evaluate SBGLM performance using pathway driven feature selection methods while consider-
ing more complex variance-covariance matrix structure which takes into account gene-gene interactions. Also, 
future work will investigate using different link functions and their effects on the model performance. Lastly, we 
plan to extend the model to other sparse models which use specialized prior distributions with heavier tails that 
might offer more robustness properties. 
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