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Abstract 
The Rayleigh-Taylor instability in stratified plasma has been investigated in the presence of com-
bined effect of horizontal and vertical magnetic field. The linear growth rate has been derived for 
the case where plasma with exponential density distribution is confined between two rigid planes 
by solving the linear MHD equations into normal mode. Some special cases have been particula-
rized to explain the roles the variables of the problem play; numerical solutions have been made 
and some stability diagrams are plotted and discussed. The results show that, the growth rate 
depends on the horizontal and vertical components of magnetic field and also depends on the 
parameter λ λ∗ = DL  ( λ  is constant and DL  is the density-scale length). The maximum instabil-

ity happens at 0 5λ∗ = − .  and to get more stability model we select λ∗  such that it is different 
than 0 5λ∗ = − . . The vertical magnetic field component have a greater effect than the horizontal 
magnetic field component in the case of large wavelength, while in the case of short wavelength, 
the horizontal magnetic field components have greater effect than the vertical magnetic field 
component. 
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1. Introduction 
It is well-known that, plasma is a hot ionized gas consisting of approximately equal numbers of positively 
charged ions and negatively charged electrons. The characteristics of plasmas are significantly different from 
those of ordinary neutral gases so that plasmas are considered a distinct fourth state of matter. There are numer-
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ous everyday uses for plasmas, for example, fluorescent lights and neon signs work because of plasma. Circuit 
features on micro-processor chips in computers also contain plasma. Even the exhaust that is emitted during 
rocket launches is actually plasma, not gas. Plasma is also used to manufacture industrial diamonds and super-
conducting films. Plasma is also a key technology in the development of alternative energy sources. Nuclear fu-
sion, which is plasma based, is one of the most promising candidates for the energy needs of the future when 
fossil fuels finally run out. One of the important models rises in hydrodynamic plasma called the Rayleigh- 
Taylor instability (RTI) problem [1] [2]. RTI can occur when dense plasma is supported against the gravity. 
Studies on RTI show that this instability is troublesome because it obstructs the realization of ICF [3] [4]. In as-
trophysics, this instability is related to the stellar structure and evolution [5] [6]. Hence, it is important to under-
stand the physical mechanisms that can affect such instability, especially its suppression as well as the details of 
this instability. Such knowledge will aid our understanding of the origin of white dwarfs and type-Ia supernovas. 

Also, it is well-known that, the plasmas are strongly influenced by magnetic fields (where the plasma para-
meters may vary with the application of magnetic field), where the behavior of plasmas in the presence of a 
magnetic field is among the oldest problems in plasma physics. It has been central in plasma fusion research 
since the early experiments on plasma confinement by a magnetic field in the 1950s, and it has remained great 
interest in plasma fusion studies that use contemporary sophisticated devices [7]. It is also an important problem 
for many plasma discharges used in processing semiconductor materials where the application of a magnetic 
field results in enhancement of some desirable features of specific plasma sources [8]. The linear growth rate of 
RTI has been obtained by Goldston and Rutherford [9] under fixed boundary conditions. The hydromagnetic 
stability of a magnetized plasma of variable density is of considerable importance in several astrophysical situa-
tions, e.g. in theories of sunspot magnetic fields, heating of solar corona and the stability of stellar atmospheres 
in magnetic fields. Ariel [10] investigated the stability of an inviscid compressible fluid of variable density in 
the presence of a uniform vertical magnetic field and viscous plasma has been investigated by Bhatia [11]. The 
instability of stratified plasmas in the presence of horizontal magnetic field of compressible plasmas is studied 
by Bhimsen [12]. The RTI of a plasma layer in the presence of a horizontal magnetic field is investigated, taking 
into account the effects of Hall-currents and an arbitrarily large density gradient by Ariel [13]. The effects of ho-
rizontal magnetic field, Hall currents and viscosity have been studied on the RTI of an incompressible infinitely 
conducting stratified plasma by Ahsan and Bhatia [14]. The effect of horizontal magnetic field of Hall currents 
have been investigated on the RTI of a finitely conducting stratified partially ionized plasma by Aiyub and Bha-
tia [15]. The instability of stratified plasmas in the presence of horizontal magnetic field of incompressible 
plasmas with the effect of a transverse velocity shear was studied by Wu et al. [16]. The effect horizontal mag-
netic field on RTI of a plasma layer in the presence of quantum mechanism was studied by Jintao et al. [17]. The 
effects of vertical magnetic field in the presence of quantum mechanism on RTI inviscous and viscous plasma 
were studied by Hoshoudy [18] [19]. The effects of magnetic field gradient on the Rayleigh-Taylor instability 
(RTI) with continuous magnetic field and density profiles were analytically investigated by Yang et al. [20]. The 
analytically and numerically investigated stabilization of the linear growth of the RTI from density gradients, 
magnetic fields, and quantum effects, in an ideal incompressible magnetized plasma was studied by Wang et al. 
[21]. Because of the great scientific interest in magnetized plasma problem, it is attempted to discuss the RTI 
problem of a stratified plasma layer in the presence of an variable magnetic field, where this problem corres-
ponds physically (in astrophysics) to the RTI of an equatorial section of a planetary magnetosphere or of a stel-
lar atmosphere where the magnetic field are perpendicular or parallels to gravity. In all the above-mentioned 
studies the behaviour of growth rates is considered in the presence of a variable magnetic field in x −  direction 
only or in z −  direction only. Here, the effect of magnetic field in both x −  and z −  direction on RTI prob-
lem for a finite thickness layer of incompressible plasmas are studied. The dispersion relation is obtained ana-
lytically and numerically analyzed. 

2. Linearized Equations 
We consider the strata of incompressible and inviscous plasma as a fluid of electrons and immobile ions. The 
plasma is immersed in a magnetic field, where the relevant liner perturbation equations may be written as (Refs. 
[9]-[17]) 

( ) ( )1
0 1 1 0 1 1 0

0

1p B B B B
t

ρ ρ
µ

∂
 = − + + ∇× × + ∇× × ∂





U g∇ ,                   (1) 
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1 0∇⋅ =


U                                                (2) 

( )1
1 0t

∂
= × ×

∂



  B U B∇                                        (3) 

( )1
1 0 0

t
ρ

ρ
∂

+ ⋅ =
∂

 

U ∇                                       (4) 

Here 1



U , 1p , 1p  and 1ρ , are the perturbations in the velocity 


U , pressure p , magnetic field 


B , and 
density ρ , respectively. While ( )1 1 1 1, ,x y zu u u=



U , ( )1 1 1 1, ,x y zB B B=


B , ( )0,0, g= −
g  and the fluid is ar-

ranged in horizontal strata, then 0ρ  is a function of the vertical coordinate z  only (i.e. ( )0 0 zρ ρ= ) and  
( ) ( )0 0 0x x z zB z B z= +



 

B e e . Then the system of Equations (1)-(4) become: 

( ) ( )01 1 1
0 1 0

0

1 xx x z
z z

B zu B Bp B B z
t x z z x

ρ
µ

∂ ∂ ∂ ∂∂   = − + + −  ∂ ∂ ∂ ∂ ∂   
,                      (5) 

( ) ( )1 1 11 1
0 0 0

0

1y y yx x
x z

u B BB Bp B z B z
t y x y z y

ρ
µ

∂  ∂ ∂    ∂ ∂∂  = − + − − + −    ∂ ∂ ∂ ∂ ∂ ∂     
,             (6) 

( ) ( )0 11 1
0 1 0 1

0

1 x xz z
x x

B z Bu Bp B B z g
t z z x z

ρ ρ
µ

∂ ∂∂ ∂∂   = − + − + − −  ∂ ∂ ∂ ∂ ∂   
,                (7) 

11 1 0yx zuu u
x y z

∂∂ ∂
+ + =

∂ ∂ ∂
,                                                   (8) 

( )

( ) ( ) ( )( )

( ) ( )( )

( ) ( )( ) ( )

1
0 0 1 0 1

11
1 1 1 0 0 1

1
0 1 0 1 0

,

, , , ,

.

y
x z x x z

y
x y z x z y

y
x z z x z

u
B z B z u B z u

y z

u
B B B B z B z u

t t x z

u
B z u B z u B z

x y

 ∂  ∂
− + −  ∂ ∂  

 ∂ ∂ ∂ ∂ = = −  ∂ ∂ ∂ ∂  
 ∂ ∂ − −  ∂ ∂  



B
         (9) 

( )01
1

d
0

dz

z
u

t z
ρρ∂

+ =
∂

.                                                   (10) 

If we assume that the perturbation in any physical quantity takes the form:  

( ) ( ) ( ){ }1 1, , , exp x yx y z t z i k x k y tψ ψ ω= + − ,                           (11) 

where xk  and yk  are horizontal components of the wave-number vector k  such that 2 2 2
x yk k= +k  and ω  

(may be complex ( )r iω ω γ= + ) is the frequency of perturbations or the rate at which the system departs from 
equilibrium. Using the Expression (11) in the system of Equations (5) - (10), we have: 

( ) ( ) ( )0 1
0 1 1 1 0 1

0

1 x x
x x z z x z

B z B z
i u ik p B B z ik B

z z
ρ ω

µ
 ∂ ∂  − = − + + −  ∂ ∂   

,                  (12) 

( ) ( ) ( )1
0 1 1 0 1 1 0 1

0

1 y
y y x x y y x z y z

B z
i u ik p iB z k B k B B z ik B

z
ρ ω

µ

 ∂   − = − + − + −    ∂    
,         (13) 

( ) ( ) ( )0 11
0 1 1 1 0 1

0

1 x x
z x x x z

B z B zpi u g B B z ik B
z z z

ρ ω ρ
µ

 ∂ ∂ ∂  − = − − + − + −  ∂ ∂ ∂   
,             (14) 

1
1 1 0z

x x y y
uik u ik u
z

∂
+ + =

∂
                                                    (15) 
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{ }

( ) ( ) ( )( )

( ) ( )( )
( ) ( )( ) ( )

0 1 0 1 0 1

1 1 1 0 1 0 1

0 1 0 1 0 1

,

, , , ,

.

y x y z x x z

x y z x x y z y

x x z z x y z y

ik B z u B z u B z u
z

i B B B ik B z u B z u
z

ik B z u B z u ik B z u

ω

 ∂  − + −  ∂  
 ∂ − = −  ∂  
  − −  
 

               (16) 

0
1 1

d
0

dzi u
z
ρ

ωρ− + =                                          (17) 

Eliminating some variables from the system of Equations (12) - (17) we have: 

( ) ( ) ( ) ( ) { }
2 4 3 2
0 201 1 1

0 0 0 04 3 2
0 0

2 2 20 01
0 1

d ( )d d d1 4 2
dd d d

d dd
  0,

d d d

z z z z
z x x z

z
z

B z B zu u uB z ik B z B z A
zz z z

uB k C g u
z z z

ρ ω
µ µ

ρ ρ
ω ρ ω

  + + + +  
  

      + + − − + =      
      

     (18) 

where, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

22
0 0 0 02 2 2 2

0 0 0 0 02
0

3 2
0 0 0 0 02 2

0 0 03 2

2
0 020

0 0 02

d d d d1 3 2 3
d d dd

d d d d d
2 2

d d dd d1
d d

2 2 2
d

z z z x
x x z z x x z

x z z z z
x x z z

x x
x z x z

B z B z B z B z
A k B z B z k B z ik B z B z

z z zz

B z B z B z B z B z
k B z B z k B z

z z zz z
B

B z B
ik B z k B z B z

z

µ

µ

     = − + + − + +   
     

− + + −

=
+ − +

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2
0 0 0

2

3 3
0 0 0 0 02 2

0 0 0 02 3 3
0

d d d
d d d d

d d d d d1 1 .
d d dd d

z x z

z z x z x
x x x z x z

z B z B z B z
z z z z

B z B z B z B z B z
c k B z ik B z B z B z

z z zk z zµ

 
 
 
   +     
    = + + − −         

 

(19) 

3. A Continuously Stratified Plasma Layer 
In this section we consider the case of incompressible continuously stratified plasma layer of thickness h  units 
confined between two rigid boundaries, in which the density and magnetic field distribution are given, respec-
tively, by ( ) ( ) ( )0 0 0 exp Dz z Lρ ρ= , ( ) ( ) ( )0 0 0 exp 2x x DB z B z L=  and ( ) ( ) ( )0 0 0 exp 2z z DB z B z L=  where 

( )0 0ρ , ( )0 0xB  and ( )0 0zB  and DL  (the density-scale length) are constants, then Equation (18) takes the 
form: 

{ }
4 3 2

2 2 2 2 2 2 21 1 1
4 3 2 2

2 2 2 2 2 2 1
2 2

2 2 2 2

3d d d2 5
d d 4 d

d1 1 5  2
d4 4

  

z x
z z z x x z

x z z x

x

x f fz z z
f f x D f f x f f

D DD

z
x f f x D f f

D D D

x f
D

iku u uik L k k
L Lz z L z

uk k ik L k
L zL L

gk k i
L

υ υ
υ υ υ υ ω υ υ

ω υ υ υ υ

ω υ

   + + + − + − +  
   

     + − + − + −    
     

− + − − 12 3

1 1 0,
4z xx f f z

DD

k u
Lk L

υ υ
   − =  
   

        (20) 

where 
( )
( )

2
02

0 0

0
0x

x
f

B
υ

µ ρ
=  and 

( )
( )

2
02

0 0

0
0z

z
f

B
υ

µ ρ
=  are Alfvén velocity. Now, if we choose 1zu  in the form  
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( )1
πsin expz

nu z z
h

λ =  
 

 and by substituting in Equation (26), we will have an equation in both πsin n z
h

 
 
 

 

and πcos n z
h

 
 
 

. Then coefficients both πsin n z
h

 
 
 

 and πcos n z
h

 
 
 

, respectively, are given by:  

{ }
4 2 2

2 4 2 2 2

2
2 2 2 2 2 2

2

2 2 2 2 2
2

π π 2 π6 3

35 π  
4

1  
4

z z z x

z x
x z

x z

f f x D f f
D

x f f
x f f

DD

x f f
D D

n n nik L
h h L h

ik nk k
L hL

k k
L L

λυ λ λ υ υ υ λ

υ υ
ω υ υ λ

λ ω υ υ

           + − + + −        
           

      + − + − + −     
      

 
+ − + − + 

 
2

2

2 2 2 2
2 3

5 2
4

1 1  0,
4

z x

x z x

x D f f
D

x f x f f
D DD

ik L k
L

gk k ik
L Lk L

υ υ

ω υ υ υ

   −  
   

   − + − − − =  
   

                    (21) 

22 2
2 2 2 2 2 2 2 2

2

2
2 2 2 2 2 2 2

2 2

2π 5 π4 2 3
4

1 1 6 π 5  2 3 2
4 4

z
z x z

x z z x

f
f x f f

DD

x f f x f f
D DD D

n nk k
h L hL

nk k ik k
L L hL L

υ
λυ λ λ ω υ υ λ

λω υ υ υ υ λ

             − + − + − + −         
            

        + − + − + + − + −             
0.

   = 
  

  (22) 

Now, we define the dimensionless quantities: 
2 22 2

2 2 2 2 2 2 2
2 2 2 2 2 2

1 22
2 2 2 0

2 2

,    ,    ,    ,     ,

e
,    ,    .

x z
x z

f f
f f D

pe pe D pe D D

D pe
pe D e

hL h
L L L

gk k L g
L m

υ υωω ω ω λ λ
ω ω ω

ρ
ω

ω

∗ ∗ ∗ ∗ ∗

∗ ∗

= = = = =

 
= = =  

 

              (23) 

Then Equations (21) and (22), respectively, take the form: 

{ }
2

2 2 2 2 2

4 2 2 2
4 2 2 2 2 2 2

2
2

π

π π π 5 π 1  6 2 3
4 4

π  2 3

x

z

x f

f

n k k
h

n n n nk k
h h h h

n
h

λ λ ω ω

λ λ λ λ λ λ ω

λ λ

∗ ∗ ∗ ∗ ∗ ∗
∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗

   + − − −  
   

                + + − + − + − − + −                                  

  + −    

2
2 2 2 2π 5 12 0.

4 4
3

x zx f f
n k k ik k g
h

λ λ ω ω∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗

        + − + − + − − =                   

  (24) 

{ }
2

2 2 2 2 2 2
2

2
2 2

2

1 π2 1 2 2 2
4

π 5  6 6 2 2 0.
4

x z

x z

x f f

x f f

nk k
h

n k ik
h

λ ω ω λ λ ω

λ λ ω ω

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗

∗ ∗ ∗ ∗ ∗ ∗
∗

    + − + + + − −   
     

     + + − + − =    
     

                               (25) 

Now, we put r iω ω γ∗ ∗= +  and for 0rω
∗ =  (stable oscillations), then Equations (24) and (25) may be given 

by: 
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{ }
2

2 2 2 2 2

4 2 2 2
4 2 2 2 2 2 2

2

π

π π π 5 π 1  6 2 3
4 4

π  2 3

x

z

x f

f

nk k
h

n n n nk k
h h h h

n
h

λ λ γ ω

λ λ λ λ λ λ ω

λ λ

∗ ∗ ∗ ∗ ∗
∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗
∗

    + − + − −        
                + + − + − + − − + −                                  

 + − 


2 2
2 2 2 2π 5 12 0,

4 4
3

x zx f f
n k k ik k g
h

λ λ ω ω∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗

          + − + − + − − =                        

   (26) 

{ } { }
2

2 2 2 2 2 2

2
2 2

1 π2 1 2 2 2
4

π 5  6 6 2 2 0
4

.

x z

x z

x f f

x f f

nk k
h

n k ik
h

λ γ ω λ λ ω

λ λ ω ω

∗ ∗ ∗ ∗ ∗ ∗ ∗
∗

∗ ∗ ∗ ∗ ∗ ∗
∗

     + − − + + + − −   
     

     + + − + − =    
     

                              (27) 

To discuss the role of parameter’s problem we consider the next special cases from Equations (26) and (27). 
(i) In the case of 2 2 0

x zf fω ω∗ ∗= = .  
From Equation (27) we get 0.5λ∗ = − , and substituting in Equation (26) we find that the square normalized 

growth rate given by: 
2

2
2

2
Goldston and Rutherford 1 π

4

k g
n k
h

γ
∗ ∗

∗
∗

=
 + + 
 

,                          (28) 

This case is considered by Goldston and Rutherford (see Ref. [9]), which represents an exponentially growing 
perturbation (instability case). 

(ii) In the case of 2 20,  0
z xf fω ω∗ ∗= ≠ . 

A second time, from Equation (27) we get 0.5λ∗ = − , and substituting in Equation (26), then the square 
normalized growth rate given by:  

2
2 2 2

2
2

horizont magnetic field 1 π
4

xx f
k g k
n k
h

γ ω
∗ ∗

∗ ∗

∗
∗

= −
 + + 
 

.                     (29) 

This case studied in Refs. ([16] [17]). It is clarified that, the horizontal magnetic field has stabilizing effect on 
RTI problem. This influence is obvious from Equations (28) and (29), where,  

2 2
horizont magnetic field Goldston and Rutherford

γ γ< . Also, one can see that the square normalized growth rate decreases as  

2

xf
ω∗  increases and the system arrives to complete stability case at 

2

2 2 2
2 2

1 π
4

x
x

c x f
x f

n
hk k

g k
ω

ω

∗
∗ ∗ ∗

∗ ∗ ∗

 +  
 =
−

. Now, if we use the  

relation 2 2 2 2 2 2
x y x yk k k k k k∗ ∗ ∗ ∗ ∗ ∗= + ⇒ = −  under the condition 2 2

yk k∗ ∗< ⇒  2 2 2 2
y yk k k Ck∗ ∗ ∗ ∗< ⇒ = , 1C <  

then ( )2 2 2 2 21xk k Ck k C Ck∗ ∗ ∗ ∗= − = − = , 1C < . Then Equation (29) becomes: 
2

2 2 2
2

2
horizont magnetic field 1 π

4

xf
k g Ck
n k
h

γ ω
∗ ∗

∗ ∗

∗
∗

= −
 + + 
 

.                    (30) 

At 2
horizont magnetic field 0γ = , the critical point becomes 

2
2

2

1 π
4

x

c
f

g nk
C hω

∗
∗

∗ ∗

   = − +  
   

. 

This implies that the complete stability happens at 2
2π 1

4

xf
g

nC
h

ω
∗

∗

∗

<
    +  
   

. 
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Also, if the perturbation in the Equation (11) in the form ( ) ( ) ( )( )1 , , , expf x y z t f z i kx tω= − . Then 1C =   

and the square normalized growth rate becomes 
2

2 2 2
2

2
horizont magnetic field 1 π

4

xf
k g k
n k
h

γ ω
∗ ∗

∗ ∗

∗
∗

= −
 + + 
 

, and the criti-

cal point of stability becomes 
2

2
2

1 π ,
4

x

c
f

g nk
hω

∗
∗

∗ ∗

   = − +  
   

this results correspond with Ref. [17]. 

(iii) In the case of 2 20,  0
x zf fω ω∗ ∗= ≠ . Again, from Equation (27) we get 0.5λ∗ = − , and substituting in Equa-

tion (26), the square normalized growth rate given by:  
2 2

2 2

2
2

2 2
2 2

vertical magnetic field

π 1 π
4

1 π 1 π
4 4

zf
n n k
h hg k

n nk k
h h

ω

γ

∗ ∗
∗ ∗∗ ∗

∗ ∗
∗ ∗

       + +     
       = −

   + + + +   
   

.             (31) 

Now, comparing between Equations (28) and (31), someone can observe that, the stabilizing role for the ver-
tical magnetic field on the considerable system, where 2 2

vertical magnetic field Goldston and Rutherford
γ γ<  and the sys- 

tem arrives to complete stability case at 

2

2

2
2

π

1
π 1

4 z

c

f

n
hk

g
n
h

ω

∗
∗

∗

∗
∗

 
 
 =

−
    +  
   

. This indicates that, in the presence of 
zf

ω∗ , 

the stability role stratifies under the condition 2
2π 1

4

zf
g

n
h

ω
∗

∗

∗

<
  + 
 

. 

(iv) For the general case ( )2 20,  0
z xf fω ω∗ ∗≠ ≠ , if we can eliminate the term 

x zx f fik ω ω∗ ∗ ∗  between Equations (26) 
and (27). Then the square normalized growth rate given in the from 

{ }

2

2 2 2 2
2 2 2 2 2 2 2

2 2

2 2

1

π π 5 π π 5 16 6 2 2 2 1 2 3 3 2 1
4 4 4

     6 6 2 2

n n n nk k k
h h h h k

nk

γ

λ λ λ λ λ λ λ λ λ

λ λ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗

=

                     + − − + − − + − + − + − + − + −                                         

× + − − { }
2 2

2 2 2 2
2

4 2 2
4 2 2 2 2 2

2

π 5 π
4

π π π 1 5 π     6 2 6
4 4

x

z

x f

f

nk k
h h

n n n nk k
h h h h

λ λ ω

λ λ λ λ λ ω

∗ ∗ ∗ ∗ ∗
∗ ∗
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(32) 
In the general case, if we wish to look into the effect of both horizontal and vertical magnetic field together on 

the instability of the considered system, Equation(32) is to be numerically solved, where 2γ  is function in the 
dimensionless quantities of horizontal ( )xf

ω∗  and vertical ( )zf
ω∗  components of the magnetic field, the wave 

number k∗  and DLλ λ∗ = , where λ  is constant and DL  is the density-scale length. In these figures 
2 2

xk Ck∗ ∗= , ( )1 0.2C C< = , 1h∗ = , 1n =  and 10g∗ ≅ . 
The role of λ∗  as a function horizontal k∗  in the presence of both horizontal and vertical magnetic field 

components ( )0.25
x zf fω ω∗ ∗= =  is plotted in Figure 1 and Figure 2, where the square normalized growth rate  
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(a) 

 
(b) 

Figure 1. The square normalized growth rate ( )2γ  against the square normalized wave 

number 2k ∗  at ( )0.25
x zf fω ω∗ ∗= =  (a) at 0.5,1,1.5λ∗ = −  (b) at 0.5, 1, 1.5λ∗ = − − − .   

 
2γ  is plotted against the square normalized wave number ( )2 20 20k k∗ ∗≤ ≤ . Figure 1(a) shows the role of 

λ∗ ( )0.5≥ − , for example 0.5,1,1.5λ∗ = − . One can see that 2γ  decrease with increasing of λ∗ . While Figure 
1(b) shows the role of λ∗  ( )0.5≤ −  or 0.5, 1, 1.5λ∗ = − − − , where 2γ  decrease with decreasing of λ∗ . 
These implies that the maximum instability in the presence of both vertical and horizontal magnetic field hap-
pens at 0.5λ∗ = − . The same phenomenon hold in Figure 2(a) and Figure 2(b) at ( )0.5

x zf fω ω∗ ∗= = . In this 
case, if we put 0.5λ∗ = −  in Equation (32), then the maximum square normalized growth rate 2γ  is: 

4 2 2
2 2 2

2
2 2 2
max 2 2

2 2

π 1 π 1 π
4 4

.
1 π 1 π
4 4

z

x

f

x f

n n nk k
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h h
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γ ω
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∗ ∗ ∗∗ ∗

∗ ∗

∗ ∗
∗ ∗

       + + +       
        = − + 
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          (33) 
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(a) 

 
(b) 

Figure 2. The same as Figure 1 but at ( )0.5
x zf fω ω∗ ∗= = .             

 
From Equation (33) it can see that, the maximum square normalized growth rate 2γ  (in the presence of both 

horizontal and vertical magnetic field components) given as we add the second term in Equations (29) and (31) 
to Equation (28). Figure 3 shows the role of both horizontal and vertical components’ magnetic field 

0.6
x zf fω ω∗ ∗= =  on the considered system at 0.5λ∗ = − , where the square normalized growth rate 2γ  is plot-

ted against the square normalized wave number 2k∗ . One can see that, the magnitudes of 2γ  in the presence 
of these parameters ( ),

x zf fω ω∗ ∗  or either them is less than their magnitudes in the Goldston and Rutherford case, 
which means that these factors have a stabilizing effect on the considered system. Also, it can seen that, no 
mode of maximum instability exists when ( )0 or 0

x zf fω ω∗ ∗= =  as the square normalized growth rate 2γ  
usually increases by increase with the square normalized wave number values. While, in the presence of quan-
tum term ( )0.6

xf
ω∗ = , there is a mode of maximum instability, where the square normalized growth rate 2γ  

increases with 2k∗  increases through the range 2 2
max0 k k∗ ∗< <  (at 2

maxk∗  the square normalized growth rate ar-
rives to the maximum instability, and when 2 2

maxk k∗ ∗>  the square normalized growth rate 2γ  starts to de-
creases as 2k∗  increases and then goes to the complete stable at 2

ck∗  ( 2
ck∗  is the critical value for stability, at 

this point the square normalized growth rate goes to zero). This means that the horizontal component of mag- 
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netic field has a crucial capability to suppress the instability that satisfies for the large wave number (short wa-
velength), while the vertical component of magnetic field has this strength just for the very short wave number 
(large wavelength). Also, the considerable model is more stability in the presence of both horizontal and vertical 
components of the magnetic field ( )0.6

x zf fω ω∗ ∗= = . This case ( ),
x zf fω ω∗ ∗  shows in Figure 4, where the mag-

nitudes of 2γ  decrease with increasing of both horizontal and vertical components of magnetic field 
 

 

Figure 3. The square normalized growth rate ( )2γ  against the square normalized wave number 
2k ∗  at 0.5λ∗ = −  in the presence of 0.6

xf
ω∗ = , 0.6

zf
ω∗ =  and 0,0.6

x zf fω ω∗ ∗= = .            

 

 

Figure 4. The square normalized growth rate ( )2γ  against the square normalized wave number 
2k ∗  at 0.5λ∗ = −  for different values of the magnetic field 0,0.4,0.5,0.6

x zf fω ω∗ ∗= = .          
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( )0.4,0.5,0.6
x zf fω ω∗ ∗= =  that are less than their counterpart at 0

x zf fω ω∗ ∗= =  (Goldston and Rutherford re- 
sults). Figure 5(a) and Figure 5(b) show the role of magnetic field ( )0.4,0.5,0.6

x zf fω ω∗ ∗= =  when λ∗  have  

 

 
(a) 

 
(b) 

Figure 5. The square normalized growth rate ( )2γ  against the square normalized wave number 2k ∗  

for different values of the magnetic field 0,0.4,0.5,0.6
x zf fω ω∗ ∗= = . (a) at 1.5λ∗ = −  (b) at 1.5λ∗ = .  
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different values than 0.5λ∗ = −  (at 1.5,1.5λ∗ = − , respectively). In Figure 5(a), one can see that, the maxi- 
mum instability (maximum square of growth rate 2γ ) at ( )0.4,0.5,0.6

x zf fω ω∗ ∗= =  in Figure 5(a), respec- 

tively, are ( )2 4.2, 2.5,0.5γ = , they are less than their counterpart in Figure 4 ( )2 4.95,3.4,1.17γ = . Also, the 
critical point for stability in Figure 5(a), respectively, are ( )2 230,118,50ck∗ = , they are less than their counter-
part in Figure 4 ( )2 245,132,69ck∗ = . This implies that the magnitudes of 2γ  in Figure 5(a) at 1.5λ∗ = −  are 
less than their counterpart in Figure 4 at 1.5λ∗ = − . The same phenomenon holds in Figure 5(b) but at 

1.5λ∗ = , where both the maximum instability and the critical point for stability in Figure 5(b) are less than 
their counterpart in Figure 4 at 0.5λ∗ = − , which also indicates that, the magnitudes of 2γ  at 1.5λ∗ = −  are 
less than their counterpart at 0.5λ∗ = − . 

4. Conclusions 
Finally, we have investigated the effect of magnetic field in both horizontal and vertical direction on the Ray-
leigh-Taylor instability of stratified incompressible plasmas layer. We can summarize the results as follows: 

(i) In the presence of horizontal magnetic field only or vertical magnetic field only the growth rate depends on  
hh
L

∗ = 
 

 of plasma layer and λ∗  takes one value ( )0.5λ∗ = − . While, in the presence of both horizontal and 

vertical magnetic field, the square growth rate (Equation (32)) depends on the dimensionless thickness hh
L

∗ = 
 

  

and also depends on the parameter DLλ λ∗ = . 
(ii) The constant DLλ λ∗ =  plays an important stabilizing role in the growth rate, where the maximum insta-

bility happens at 0.5λ∗ = −  and to get more stability model, the values λ∗  must be different than 0.5λ∗ = −  
(i.e. 0.5 λ∗− <  or 0.5λ∗ < − ). In other words, in studying the combined effect of horizontal and vertical mag-
netic field on RTI of stratified plasma, the system will be more stable when we accept that λ∗  is different than 
−0.5 (i.e. 0.5λ∗ ≠ − ). 

(iii) Our model is more stable than those considered in previous study (horizontal magnetic field only or ver-
tical magnetic field only). This divergence ascribes to the stabilizing role that the magnetic field plays on RTI 
problem in the presence of both horizontal and vertical components, where the presence of both these parame-
ters dissipates the energy of any disturbance and thereby the system becomes more stability. 
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