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Abstract

By fixed point theorem of a mixed monotone operator, we study boundary value problems to non-
linear singular fourth-order differential equations, and provide sufficient conditions for the exis-
tence and uniqueness of positive solution. The nonlinear term in the differential equation may be
singular.
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1. Introduction

Fourth-order differential equations play an important role in various fields of science and engineering. With the
help of boundary value conditions, we can describe the natural phenomena and mathematical model more accu-
rately. Therefore, the fourth-order differential equations have received much attention and the theory and appli-
cation have been greatly developed (see [1]-[4] and their references). Most of the results told us that the equa-
tions had at least single and multiple positive solutions. In papers [1]-[3], the authors obtained some newest re-
sults for the singular fourth-order boundary value problems. But there is no result on the uniqueness of solution
in them.
In this paper, we consider the following singular fourth-order boundary value problem:

[p(®)x"(t)] +a(t)x"(t)=2F (t.x(t)), 0<t<l A>0,

o x(0)-Bx'(0)=0,

7x(1)+6x'(1) =0, (1.2)
a,x"(0)— B,x"(0) =0,

7,X"(1)+6,x" (1) =0.
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Throughout this paper, we always suppose that
(S) p(t)eC([0,1],R), p(t)>0, q(t)eC([0.1].R), q(t)<0, &, B, 7, 6,20, (i=12),
and By, +ay; +a6 >0 (i=1,2). f €C((0,1)x(0,+),(0,+)).

Moreover, f(t,u) may besingularat t=0, t=1,0r x=0.

Equation (1.1) is often referred to as the deformation for an elastic beam under a variety of boundary condi-
tions. A brief discussion of the physical interpretation under some boundary conditions associated with the li-
near beam equation can be found in Zill and Cullen [5]. In this article, we consider the existence and uniqueness
of positive solutions for fourth-order singular boundary value problems by using mixed monotone method.

2. Preliminary
Let P be a normal cone of a Banach space E, and e P with e <1, e 6. Define

Q.= {x € P| X # 0, there exist constants m, M > 0 such that me < x < Me}.

Now we give a definition(see [7]).

Definition 2.1. Assume A:Q,xQ, — Q,. A'is said to be mixed monotone if A(x,y) is nondecreasing in x
and nonincreasing iny, i.e. if x, <x,(x,X, €Q,) implies A(x,y)<A(x,,y) forany yeQ,,and
yl(s Yo (Y1, Y, €Q.) implies A(x,y,)>A(x,y,) forany xeQ,. x"eQ, is said to be a fixed point of A if
AlX", X )=x".

Theorem 2.1. Suppose that A:Q, xQ, — Q, is a mixed monotone operator and 3 a constant o, 0<a <1,
such that

A[tx,%yjzt“A(x, y) Vx,yeQ, O<t<Ll. (2.1)

Then A has a unique fixed point x" € Q,. Moreover, for any (x,,y,)€Q, xQ,

Xn:A(Xn—l!yn—l)' yn:A(yn—:l’Xn—l)' n=12.--,
satisfy
X, > X, Y, >X

n

=o(1—r"n), =o(1—r°’"),
0<r<1,risaconstant from (x,,Y,).
Theorem 2.2. (See [7]): Suppose that A:Q,xQ, — Q, is a mixed monotone operator and 3 a constant
a €(0,1) such that (2.1) holds. If x; is a unique solution of equation

A(x,x)=4x, 4>0,

where

5

Yo ¥

X, — X

in Q,, then ||x;—xjO

-0, 1> 4.If 0<a<%,then 0<A4 <4, implies x; >X, , X; #X;, ,and

lim

A+

= +00,

xﬂ" =0, lim
|
A0

X5

3. Uniqueness Positive Solution of Problem (1.1)

This section discusses the problem
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Throughout this section, we assume that

f(t,x)=z(t)(g(x)+h(x)), te(0.1), (3.1)
where
g :[0,+0) —[0,+x) is continuous and nondecreasing;

3.2
h:(0,+0) — (0,+00) is continuous and nonincreasing. (3.2)

Let Q=IxI and Q :ﬁ(t,s) eQ|0£t£ s £1} v Q I{(t,s) eQ|Os s<t £1} . We denote the Green’s func-
tions for the following boundary value problems

-X"(t)=0, 0O<t<1,

and

a,x(1)+ B,x'(1)=0,
by H(ts) and G(t,s), respectively. Itis well known that H(t,s) and G(t,s) can be written by

H(X ).:i{(ﬂ1+a1t)(51+71(1_5))7 (tVS)eQ]_V
VY): 2, (ﬁl+als)(5l+}/l(l—t)), (t,S)eQz,

where p, =By +oy, +o,6, >0 and

_1[m(t)n(s), (ts)eQ,
G(t"v*)--w{m(s)n(t), (t5)eQ

Lemma 3.1. Suppose that (S,) holds, then the Green’s function G(t,s), possesses the following properties:
1) m(t)eC?(1,R) isincreasingand m(t)>0, x<(0,1].

2) n(t)eC?(I,R) isdecreasingand n(t)>0, xe[0,1).

3) (Lm)(t)=0, m(0)=2,, m'(0)=q,.

4) (Ln)(t)=0, n(1)=6,, n'(1)=—7,.

5) o isapositive constant. Moreover, p(t)(m’(t)n(t)—m(t)n’(t))=w.

6) G(t,s) is continuous and symmetrical over Q.

7) G(t,s) has continuously partial derivative over Q;, Q,.

8) For each fixed sel, G(t,s) satisfies LG(t,s)=0 for s=t, tel.Moreover, R (G)=R,(G)=0

for SE(O,l).
9) G/ has discontinuous point of the first kindat t=s and
1

G/(s+0,5)-G/(s-0,s)=——, se(0,1).
[(+0.9)=Gi(s-0.8) == 75, s€(03)

Following from Lemma 3.1, it is easy to see that

(@ H(t,s)<H(t,t), H(t;s)<H(s,s),

H(ts)2—2 — _H(tt)H(s,s), for (t,5)e[0,1]x[0,1].

(0‘1+/81)(51+71)

(b) G(Ls)<G(tt)=—m(t)n(t), G(ts)<G(ss),

0]

G(t,s)=G(t,1)G(s,s) , for (t,5)e[0,1]x[0,1].

m(1)n(0)
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Suppose that x is a positive solution of (1.1). Then

=A[[H(t7)G(r.5) f(s.x(s))dsdz  0<t<l, (3.3)
By using (3.3) and (a), we see that for every positive solution x one has
I < A[[;H (z,7)G (z,5) f (5.x(s))dsd,
X(t)2 ———2——H (L) A[ ['H (r,7)G(z,5) f (5.X(s))dsd 7 > || I

(0{1+ﬂ1)(51+;/1)
where ||x||:sup{|x(t)|;0st sl} . Let
K(t;s)=];H (t.7)G(z,5)dr.
Thus by (3.3) one has

(a1+ﬂ1) 5 +71

:ﬂ.[:K(t,s) f(s,x(s))dsdr, 0<t<1

by (a) one has

P H(tt) [ H(r,7)G(z,5)dr <K(t5)<

(al +ﬁ1)(51 +71)

H(L1) [ G(r.s)dr. (3.4)

Let P= {x eC [0,1]| x(t)=0,Vte [0,1]} . Obviously, P is a normal cone of Banach space C[0,1].

Theorem 3.1. Suppose that there exists o (0,1) such that
g(tx)>t"g(x)
h(t™x)=th(x)

forany te(0,1) and x>0,and z eC((O 1), (0 oo)) satisfies
j H™ s)ds < +oo.

(3.5)

(3.6)

Then (1.1) has a unique positive solution X; (t) And moreover, 0< 4 <4, implies x; <x; , X, #X, .If

ae( 1) then
2

Proof. Since (3.5) holds, let t™x =y, one has
h(y)>t"h(ty)

lim
20"

xﬂ":O, lim ||x

A—+0

* —_—
4| = F0.

then

()< Lh(y), vte(01), y>o.
Let y=1.The above inequality is
h(t)gtiah(l), vte(0.).
From (3.5), (3.7) and (3.8), one has
1

h(t™x) = t“h(x), h@zﬁh(l),

h(tx)stiah(x), h(t)ﬁtiah(l), te(04),

3.7)

(3.8)

(3.9)
x> 0.
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Similarly, from (3.5), one has

g(tx)>t*g(x), g(t)>t“g(1), te(0,1), x>0. (3.10)
Let tzi, x>1, one has
g(x)<x*g(1), x=1. (3.11)
Let e(t):WH(t,t). Itis clear that |e]| <1, and now let
Q :{ ﬁe(t)s X(t)< Me(t), te[O,l]} (3.12)
where M >1 is chosen such that
M >matzg( )(WJ H G(z,5)z(s)dsdz
Py e s)z(s)H “(s,s Srlla
+/1h(1)(m] [ G(z.5)2(s)H “(s,s)dsd }
{/Ig( )(W] H H(z,7) )z(s)H" (s,s)dsdz
+2h(D) [ H ( s)z(s )drds}M].
Forany X, yeQ,, we define
A, (%, ¥)( /If K(t,s)z(s )[g(x(s))+h(y(s))]ds vte[01]. (3.13)
First we show that A, :Q,xQ, —» Q.. Let x, yeQ,, from (3.10) and (3.11) we have
g(x(1))<g(Me(t) <g(M)<M“g(1)
and from (3.9) we have
h(y(t))ﬁh(ﬁe(t)j<M“e (h() (3.14)
Then from (3.4) and (3.13) we have
A (xy)(t )=ﬂf ( ) ( ) (S)[g( (s))+(y(s))]dsdz
<2H (t,t {j: dsdr+” G(z,s) (s)h(y(s))dsdr}
<AH (Lt {M ”G (r.5)2(s)dsdr + M*h(1) 16 (r,5)2(s)e™ (s)dsdlr
=AH Mg (1 JI s)dsdz+M“h(1 )[mj_aﬁﬁG(r,s)z(s)H“(s,s)dsdr

<e(t)M te[0,1].

484
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On the other hand, for any x, y € Q,, from (3.9) and (3.10), we have
g(x(t)) =g (ﬁe(t)] >Me”(t)g(1),
h(y(t))=h(Me(t))=h(M)=M “h(1).

(3.15)
Thus, from (3.15), we have

A, (x,y)( /1J' H(r,z G(r,s)z(s)[g(x(s))+h(y(s))]ds
zzmH(t,t){ij(T,T)G(T,s)z(s)g(x(s))dfdsq;j:H(f,T)G(T,s)z(s)h(y(s))drds}

>/1€(t {M g II H(z, r ( )e“(s)drds +M’“h(1).|':j:H(r,r)G(r,S)Z(S)dz’ds}
=ie(t){M‘“g(l)[WJ IJ H(z,7) s)H“(s,s)z(s)dzds

+M“h(1 H )z(s )drds}

>e(t)—.

So, A, iswelldefinedand A, (Q,xQ,)c=Q,.
Next, forany 1<(0,1), one has

A (1x17y)(1) = 2] K (t,5)2(s)[ 9 (1x(s)) +h(17y(s)) |ds
ZAJ'OK (t,s z(s)[l“g(x(s))+|“h(y(s))]ds

=1“A, (x,y)(t), te[01].

So the conditions of Theorems 2.1 and 2.2 hold. Therefore there exists a unique x; € Q, such that

A, (x*, x*) =X, . It is easy to check that x; is a unique positive solution of (1.1) for given A >0. Moreover,

Theorem 2.2 means that if 0<4 <4, then x; (t)<x; (t), x; (t)=x} (t),andif ae (0%} , then

lim
A—0"

xi"—O, lim

A—>+0

o

This completes the proof.
Example. Consider the following singular fourth-order boundary value problem:

[p t)x"(t ]’+ (t)x"(t)=A(ux* +x"), 0<t<l,
ax(0)-Ax'(0)=0,

71X ( )+6,x'(1)=0,
2X"(0)=,x"(0) =0,
"(l)+52x”’( )=0,

where 1, a, b>0, £>0, max{a,b} <1, satisfies jOH’“(s,s)z(s)ds<+oo.
Let

a=max{a,b}, g(x)=ux*, h(x)=x", z(t)=1
Thus O<a <1 andforany te(0,1) x>0, y>0,

g(tx)=t*g(x)=tg(x), h(t’lx)ztbh(x)zt“h(x).
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Now Theorem 3.1 guarantees that the above equation has a positive solution.
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