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Abstract 
The game of life represents a spatial environment of cells that live and die according to fixed rules 
of nature. In the basic variant of the game a cell’s behavior can be described as reactive and deter- 
ministic since each cell’s transition from an actual state to a subsequent state is straight-for- 
wardly defined by the rules. Furthermore, it can be shown that the alive cells’ spatial occupation 
share of the environment decreases quickly and levels out at a really small value (around 3%), 
virtually independent of the initial number of alive cells. In this study we will show that this occu-
pation share can be strongly increased if alive cells become more active by making non-determi- 
nistic sacrificial decisions according to their individual positions. Furthermore, we applied sig-
naling games in combination with reinforcement learning to show that results can be even more 
improved if cells learn to signal for navigating the behavior of neighbor cells. This result stresses 
the assumption that individual behavior and local communication supports the optimization of 
resourcing and constitute important steps in the evolution of creature and man. 
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1. Introduction 
Conway’s game of life [1] is a cellular automaton implemented on an m × n grid of cells. A cell can be in two 
possible states: dead or alive. Each cell interacts with its eight horizontally, vertically, or diagonally adjacent 
neighbor cells. At each time step transitions occur, defined by four simple rules. In this article these rules are 
considered as unalterably written in stone, and therefore called rules of nature, defined as follows: 

1) under-population: any alive cell with fewer than two alive neighbor cells die; 
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2) surviving: any alive cell with two or three alive neighbor cells lives on to the next generation; 
3) overcrowding: any alive cell with more than three alive neighbor cells dies; 
4) reproduction: any dead cell with exactly three alive neighbors becomes an alive cell. 
By considering a finite grid size, the proportion of alive cells is called the occupation share since alive cells 

are considered as occupied, dead cells are considered as empty. By starting the game of life with a randomly 
chosen set of alive cells, it can be shown for sufficiently large grid sizes that after a while the occupation share 
stabilizes on a specific number. This number is generally around 3% of all cells of the grid. Figure 1 shows the 
course of the number of alive cells over 3000 steps for 15 different simulation runs. Each run is an instance of 
the game of life applied on a 70 × 70 grid (4900 cells) by starting with a 25% chance of each cell to be initially 
alive. Thus the expected initial occupation share is 25% (1225 alive cells). As a result, in each simulation run the 
number of live cells strongly decreased and finally leveled out at occupation share values between 1.9% (92 
alive cells) and 4.1% (199 alive cells), in average 3.2% (157.6 alive cells).  

Furthermore, it seems to be independent of the initial occupation share that the final occupation share is 
around 3%. This fact is supported by further experiments with different initial occupation shares of 12%, 25% 
and 50%, 15 simulation runs for each setting. For each experiment the number of alive cells decreased during 
runtime and finally leveled out at an occupation share of around 3% on average.  

Thus there is an interesting fact to observe: no matter how high the initial number of alive cells is, the rules of 
nature of the game of life cause a strong decrease of alive cells down to a very low level of around 3% until it 
stabilizes. If all cells are considered as resources and alive cells represent usage of resources, then the occupa-
tion share depicts a utilization value. As a consequence, with an occupation share of 3% of all possible resources 
utilization is fairly poor.  

In this article we deal with the following question: is it possible to keep the occupation share and therefore the 
utilization value on a higher level? If the alive cells have the opportunity to make a pre-“rules of nature” deci-
sion to sacrifice themselves (decide to die), is it then possible to keep the occupation share of a higher level? On 
the first view it sounds like a paradox that sacrifice might increase the occupation share, but it possibly restricts 
the overcrowding effect. In the next section we will show that the final occupation share can be increased by 
simple fixed pre-“rule of nature” decisions of sacrifice. 

2. Sacrifice Decisions in Pre-Games 
As mentioned in Section 1, an appropriate action that improves the occupation share of the population should not 
alter the basic game of life rules—they are fixed by nature. Furthermore, the creation of new cells is not allowed 
and can only happen by the reproduction rule of nature. An action that can be added is the deletion of cells before 
 

 
Figure 1. The number of alive cells over 3000 simulation steps 
of the game of life for 15 different runs. The number of cells 
decreases from an occupation share of initially around 25% 
(1225 alive cells) to finally 3.2% (157.6 alive cells) on average 
over all runs.                                            
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the rules of nature appliance. Occupied resources would be freed. Since we want cells to make such decisions on 
their own, this could be seen as sacrifice. 

2.1. The Non-Deterministic n-Die Game 
For that purpose we integrate a pre-“rule of nature” game that an alive cell can play. In such a pre-game the cell 
can decide if to sacrifice itself and therefore to die, or to stay alive. In the following we introduce a simple va-
riant for such a pre-game, called the non-deterministic n-die game.  

 
Definition 2.1: The non-deterministic n-die game 
Given is the game of life as introduced. CL denotes the set of alive cells in the actual round of play, where for 
all ci ϵ CL the neighborhood Ni is defined as follows: Ni = {cj ϵ CL|cj is a neighbor of ci}. For a number n ϵ ℕ, 1 
≤ n ≤ 8 the non-deterministic n-die game is defined by the following “three phases” algorithm: 
1) Initialization: Create a list AL and include all alive cells ci ϵ CL in a random order; 
2) Sacrifice Decision: 

For all j ϵ ℕ, 1 ≤ j ≤ |AL|: Treat cell ck at position j of list AL as follows: 
a) If |Nk| = n: Label ck as dead; for all ci ϵ CL: Ni = Ni/{ck}; 

3) Rules of Nature: Apply the rules of nature of the game of life. 
 
Note that the steps 1 and 2 constitute the pre-game: all cells with n neighbors sacrifice themselves. Further, this 

happens in a non-deterministic way: the cells are ordered in a random sequence and each sacrificing cell is also 
deleted in the neighborhood of all other cells (step 2). Thus e.g. a cell that had initially more than n neighbors can 
probably have n neighbors when checked in step 2(a). As a consequence, the fact that the list AL is ordered ran-
domly makes the algorithm non-deterministic. All in all, the non-deterministic n-die game realizes a game of life 
with a pre-game, where cells are acting in a row and decide to die if they have exactly n neighbors at their turn of 
decision. 

Note that the algorithm accomplishes a fixed decision rule for cells: sacrifice yourself if you have exactly n 
neighbors. Thus, to make a decision cells have only access to information of the direct neighborhood. And this is 
intended since even the rules of nature are exclusively based on neighborhood arrangements. In our opinion, the 
property of access restriction to direct neighborhood information is an important requirement for all following 
pre-games since this property reflects the spatial character of the rules of nature of the game of life. We denote 
this requirement as the local information rule. 

2.2. Simulation Experiments and Results 
To find out if the non-deterministic n-die game supports a better occupation share, we started experiments for 
different n values. First, we ascertained from the basic tests that n-die games with n < 3 have, if any, a detrimental 
effect on the game of life since these cells i) would die anyway by the under-population and ii) are highly possible 
in a shorthanded area and therefore probably important to support neighbor cells not to die by under-population. 
Furthermore, n-die games with n > 6 have (almost) no effect on the game of life, since they 1) as good as never 
emerge during a simulation run and 2) would directly die by overcrowding. As a consequence, we started simula-
tion experiments for n-die games with 3 ≤ n ≤ 6: the 3-die game, the 4-die game, the 5-die game and the 6-die 
game. For each n-die game we performed 15 simulation runs over 3000 simulation steps. The resulting courses of 
the number of alive cells over time are depicted in Figure 2. 

As shown in Figure 2, the different n-die games cause quite different cells’ behavior. While the 3-die game’s 
performance of enlarging occupation share is below the performance of the basic game of life, the performance 
of the 4-die game is slightly better and the performance of the 5-die game is remarkable better. The 6-die game’s 
performance is roughly as good as the basic game of life (as depicted in Figure 1). 

2.3. Explanatory Approach of Results 
The simulation results of the four different n-die games reveal remarkable differences in performance. To high-
light these differences and to compare them with the basic game, Figure 3 depicts the box plots of the final occu-
pation shares for the basic game and all 4 experiments. The key to explain these variances is to analyze the way 
pre-game decisions might interact with the rules of nature of the game of life. 
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Figure 2. The number of alive cells over 3000 simulation steps for different n-die games. The 
number of cells decreases from an occupation share of initially 25% (1225 cells) to average 
values of 1.8% (88 cells) for the 3-die game, 6.9% (337 cells) for the 4-die game, 14.7% (721 
cells) for the 5-die game and 3% (147 cells) for the 6-die game.                           

 

 
Figure 3. Box plots of the final occupation share for the basic game and the 4 n-die games.    

 
The 3-die game sacrifices cells that have 3 neighbors. These cells would survive because of the rules of nature, 

thus the sacrifice rule supports a faster dying in comparison to the basic game of life. The speed of decreasing is 
not only faster, but also the final occupation is with 1.8% almost only half of that of the basic game.  

The 4-die game produces three effects: first, it sacrifices cells that would die anyway by overcrowding of the 
rules of nature, thus there is no acceleration of dying speed like for the 3-die game. Second, in weakly crowded 
areas it causes neighbor cells to die by under-population, who would survive in the basic game. Thus it indirect-
ly supports an accelerated dying. Third, it clears crowded areas, thus it also rescues other cells that would other-
wise die by overcrowding according to the rules of nature. The third effect seems to be much stronger than the 
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second one, since the final average occupation share is with 6.9% more than twice as high as the final value of 
the basic game. The extremely high variation of these values reveals a strong competition of both effects. 

The 5-die game also sacrifices cells that would die anyway by overcrowding of the rules of nature. And fur-
thermore even the other effects, already described for the 4-die game, are expected. But since a cell with 5 
neighbors is supposed to be in a really crowded area, the third effect described for the 4-die game is even much 
more helpful in the 5-die game: many cells in the neighborhood are rescued that would normally die by over-
crowding of the rules of nature. This effect is remarkably strong, since the average occupation share after 3000 
steps is with 14.7% almost 5 times as high as the one of the basic game. 

The 6-die game sacrifices cells that would probably die because of overcrowding anyway. But it has to be 
taken into account that cells with 6 neighbors are really rare during a simulation run, especially by reconsidering 
that each cell initially starts with two neighbors on average. Thus the effect on the population is minute and we 
observe with 3% a similar resulting occupation share as for the basic game of life.  

In summary, we showed that a simple pre-game of cells that sacrifice themselves can strongly improve the 
performance of increasing occupation share. Especially the 5-die game shows a remarkable performance by re-
vealing an occupation share that is with 14.7% almost 5 times as high as the one of the basic game. Nevertheless, 
we will show that further features like learning and neighborhood communication can improve the performance 
even more. 

3. Neighborhood Situations and Learning 
Within the n-die game cells make their decisions in dependence of their individual circumstances determined by 
the number of neighbors. But what would happen if they are able to gain more information? What if they can ob-
tain neighbor cells’ circumstances and take this additional information into account to make their decision? To 
answer these questions we applied a more elaborate pre-game that enables cells to request information about cir-
cumstances of neighbor cells and make their decision based on their own and a neighbor’s situation, which is 
called the n × m-die learning game. Furthermore, the cells do not have fixed rules like in the previous section, but 
learn rules by learning dynamics. Thus before we give the definition for the algorithm of the n × m-die learning 
game, we first introduce the learning dynamics applied in our models, called reinforcement learning.  

3.1. Reinforcement Learning 
Reinforcement learning can be captured by a simple model based on urns, also known as Pólya urns [2]. An 
urn models a probabilistic choice in the sense that the probability of making a particular decision is propor-
tional to the number of balls (in the urn) that correspond to that action choice. By adding or removing balls 
from an urn after each encounter, an agent’s (here: cell’s) behavior is gradually adjusted. In this work we 
apply reinforcement learning in a way that the cells of the game of life learn how to behave in the pre-game. 

Let’s formalize this: first of all we distinguish between different states of cells by means of the number of 
alive neighbor cells a particular alive cell has. Thus T = {t1, t2, t3, t4, t5, t6, t7, t8} is the set of states a cell can be 
in, where to be in state ti means to have i alive neighbor cells. Furthermore, there are two actions between a cell 
can choose: to sacrifice itself and therefore to die, or to stay alive. Thus A = {adie, astay} is the set of possible ac-
tions. Finally the cell’s basis for a decision also involves a neighbor’s state; thus we define a situation as a set of 
state tuples: Γ = {γ = (ti, tj)|ti ϵ T is the state of an alive cell c, tj ϵ T the state of an alive neighbor cell of c}. 

A simple reinforcement learning account RL = {σ, Ω} is defined by response rule σ and update rule Ω. The 
response rule depicts a probabilistic action choice for a given situation, thus σ ϵ (Γ → Δ(A)). As already men-
tioned, such a response rule can be modeled by an urn model in the following way: for each situation γ there is 
an urn ʊγ filled with balls of any type a ϵ A. To make a probabilistic action choice in a given situation means to 
draw a ball from the appropriate urn. Thus the response rule σ(a|γ) is defined as follows:  

 
Definition 3.1: Reinforcement Learning Response Rule 
By defining a(ʊγ) as the number of balls of type a in urn ʊγ and |ʊγ| as the overall number of balls in this urn, the 
probability σ(a|γ) to make action choice a in situation γ is given as follows:  

 ( ) ( )|a a γ γσ γ =
 

Next, the update rule of a reinforcement learning account should reinforce successful behavior. But how can 
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we measure that an action is successful for a given situation? In our model we call an action a successful, if it 
contributes in a positive way to the occupation share of the whole population. To be more concrete: let’s say OSa 
is the occupation share of the next round if action a is performed, OS¬a is the occupation share of the next round, 
if not. Now an action a is considered as successful, if and only if OSa > OS¬a, i.o.w. if the occupation share of 
the next round is higher with performing action a than without performing action a. Consequently, the update 
rule is informally defined as follows: if action a is successful in situation γ, then increase the number of balls of 
type a in urn ʊγ by one ball. In this way successful behavior reinforces itself since it makes the appropriate 
choice more probable in subsequent rounds. 

3.2. The n × m-Die Learning Game 
The idea of the n × m-die learning game is similar to the n-die game in the sense that cells can make a pre-“rules 
of nature” decision to sacrifice. But there are two crucial differences. First, for the n-die game the basis of deci-
sion making is an alive cell’s state t, but for the n × m-die learning game it is its situation (own state and an alive 
neighbor’s state). Second, for the n × m-die learning game the decision-finding process is modeled by reinforce-
ment learning, while for the n-die game the rules are fixed. 

Thus by taking the n-die game as template and incorporating reinforcement learning for decisions grounded 
on situations, the n × m-die learning game can be defined as follows:  

 
Definition 3.2: The n × m-Die Learning Game 
Given is the game of life as introduced. CL denotes the set of alive cells in the actual round of play, Ni denotes 
the set of alive neighbor cells of cell ci. RL = {σ, Ω} is a reinforcement learning account with urns ʊγ for all γ ϵ 
Γ. The n × m-die learning game is defined by the following “three phases” algorithm: 
1) Initialization: For all γ ϵ Γ: fill urn ʊγ with 50 balls of type adie and 50 balls of type astay 
2) Sacrifice Decision: 

For all ci ϵ C: 
a) pick randomly a neighbor cj ϵ Ni and request its state tm  
b) play action a via response rule σ(a|γ), where γ = (tn, tm), and tn is the state of ci 
c) if a = adie: label ci as dead cell 
d) make an urn update of urn ʊγ via update rule Ω 

Delete all as dead labeled cells 
3) Rules of Nature: Apply the rules of nature of the game of life 
 
In each round an alive cell requests a state of a random alive neighbor cell (step 2(a)) and for the state tuple of 

own and neighbor’s state γ = (tn, tm) it chooses an action a according to the reinforcement learning response rule σ 
(step 2(b)). In case that action adie is chosen, the cell gets the label dead and will be deleted after the loop. To 
complete the reinforcement learning process, the appropriate urn ʊγ will be updated in step 2(d) according to up-
date rule Ω of the reinforcement learning account. 

3.3. Simulation Experiments and Results 
To find out if the n × m-die learning game supports a better occupation share than the basic game of life and 
probably outperforms the quite successful non-deterministic 5-die game of Section 2, we started 20 simulation 
runs for the n × m-die learning game, each over 3000 simulation steps. The resulting courses of the number of 
alive cells over time are depicted in Figure 4.  

While some of the simulations runs performed poorly and the number of alive cells decreases to 100, most of 
them performed remarkable well with values oscillating around 1500 alive cells after 3000 steps. This mismatch 
is caused by the fact that cells accomplish a successful learning strategy in most but not all simulation runs. In 
other words, the experiments yielded a partition of runs that (a) succeeded in developing a successful strategy 
(successful runs), and (b) runs that failed (failed runs). And as depicted in right illustration of Figure 4 the dif-
ference is apparently sharp: failed runs have with an average occupation share of 1.4% a worse performance 
than the worst n-die game of the experiments in Section 2.1, the 3-die game. On the other hand, successful runs 
show with an average occupation share of 28.4% an almost twice as good performance as the 5-die game, the by 
far best n-die game of the experiments of Section 2.1.  
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Figure 4. The number of alive cells over 3000 simulation steps for the n × m-die learning game: the average 
occupation share over all runs is 17.6%. As evident in the left figure there is a clear separation of runs with 
successful and failed learning of an efficient strategy. For the former group the average occupation share is 
28.4% (right figure, middle box plot), for the latter group 1.4% (right figure, right box plot).                 

 
There is a good case to belief that the cells seem to improve performance just by the fact that they have addi-

tional information, not only about their own state, but also about the neighbor state. And if they succeed to learn 
a successful strategy, they outperform the best fixed strategy, that only considered a cell’s own state: the 5-die 
game. This result raises the question of how such a successful strategy looks like: what kind of strategy must the 
cells learn to maintain a high occupation share?  

As a basic result, all successful strategies that evolved in simulation runs have particular properties in com-
mon: they all involve situations for which cells learn a definite decision. This can be illustrated by two sets: a set 
of situations for which cells definitely sacrifice Γdie = {γ ϵ Γ|σ(a|γ) = 1.0}, and a set of situations for which cells 
do definitely not sacrifice Γstay = {γ ϵ Γ|σ(a|γ) = 0.0}. In almost all successful simulation runs the cells’ strategies 
contain the same definite decisions, depicted by the following two sets: 
• ( ){ }4, 1 8die it t iΓ = ≤ ≤  

• ( ){ }, 1 8, 1 3stay i jt t i jΓ = ≤ ≤ ≤ ≤  

Note that both sets reveal the fact that definite decisions are only made in dependence of the cell’s neighbor’s 
state and completely independent of the cell’s own state, since the own state ti is defined for all possible num-
bers of alive neighbors 1 ≤ i ≤ 8 for both sets Γdie and Γstay. Furthermore, two rules for a successful strategy can 
be derived from these results. These two rules are called neighbor treatment rules, given as follows: 

 
Definition 3.3: Neighbor treatment rules 
For the n × m-die learning game a successful strategy can be characterized by the following two rules: 
1) Sacrifice if your neighbor has exactly 4 neighbors 
2) Never sacrifice if your neighbor has less than 4 neighbors 
 
Furthermore, there weren’t any other states or combinations that describe salient features that all successful 

strategies had in common. Thus, these results elicit two interesting conclusions. First, it is much more important 
for a cell’s decision process to include its neighbor’s state than its own: cells learn successful strategies by specif-
ic definite decisions independent of the own state, but completely dependent of the neighbor’s state. Second, suc-
cessful strategies that follow the two rules of Definition 3.3 achieve an average occupation share of 28.4% and 
therefore outperform the strategy of the 5-die game by almost factor 2. 

4. Neighborhood Communication 
In the n × m-die game of Section 3 the cells are able to obtain the neighbor’s state. They obtain the number of 
neighbors a neighbor has. But this precondition violates the local information rule we postulated at the end of 
Section 2.1, since cells gain information from observing facts beyond the direct neighborhood. 
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A possibility to comply with the local information rule and also give cells access to the states of direct neigh-
bors is the following idea: instead of that a cell ci can observe the state of a neighbor cell cj, cell cj can commu-
nicate it’s state to ci, if ci requests the information. Thus to gain information above the own direct neighborhood, 
cells have to communicate. This can be modeled accurately with a game-theoretic account, called the signaling 
game. 

4.1. The Signaling Game 
A signaling game, first introduced by [3], is a dynamic game SG = [(S, R), T, M, A,U] played between a sender S 
and a receiver R. S has private information: a state t ϵ T. To communicate the state, S sends a message m ϵ M to 
R, and R responds with a choice of action a ϵ A. For each round of play, players receive utilities depending on 
the communicative performance. Further, we will consider a variant of this game where the number of messages 
n = |M| is variable. We denote a signaling game with n messages as SGn. In addition, the set of states T and the 
set of actions A is given as already defined in Section 3.1. Finally, the utility function U: T × A → ℕ is defined 
by the way the appropriate action improves the occupation share: U(t, a) = 1, if OSa > OS¬a, else 0.  

Additionally, the cells have to learn how to assign messages to states and actions, thus we combine the sig-
naling game with a reinforcement learning account (see e.g. [4] for a more detailed description): there are urns ʊt 
for states and urns ʊm for messages; and different response rules: the sender response rule σ(m|t) = a(ʊt)⁄|ʊt|; and 
the receiver response rule ρ(a|m) = a(ʊm)/|ʊt|. 

4.2. The n-Messages Signaling Game 
As initially remarked, the innovation of the new game is the fact that a cell ci cannot observe the state tk of a 
neighbor cell cj. Instead of that a cell ci can request this information and cj has to communicate that it is in state 
tk in terms of sending a message m ϵ M that cell ci has to construe. Furthermore, the decisions i) which message 
to send for a given state, and ii) how to construe a received message, is not initially given, but has to be learned 
by reinforcement learning. Thus the n-messages signaling game conforms to the n × m-die learning game and 
extends it by communication via signaling games. It is defined as follows: 

 
Definition 4.1: The n-Messages Signaling Game 
Given the game of life as introduced. CL denotes the set of alive cells in the actual round of play, Ni denotes the 
set of neighbor cells of a cell ci. SGn = [(S, R), T, M, A,U] is a signaling game as already introduced, RL = {σ, Ω} 
is an reinforcement learning account with urns ʊt for all t ϵ T and urns ʊm for all m ϵ M. The n-messages signal-
ing game is defined by the following “three phases” algorithm: 
1) Initialization:  

a) For all t ϵ T, for all m ϵ M: fill urn ʊt with 100∕|M| balls of type m 
b) For all m ϵ M: fill urn ʊm with 50 balls of type adie and 50 balls of type astay 

2) Sacrifice Decision: 
For all ci ϵ C: 

a) pick randomly a neighbor cj ϵ Ni and make a state request for its state t  
b) cj sends a message m ϵ M via response rule σ(m|t) 
c) ci plays action a via response rule σ(a|m) 
d) if a = adie: label ci as dead cell 
e) make an urn update of urn ʊt and ʊm via update rule Ω 

Delete all as dead labeled cells 
3) Rules of Nature: Apply the rules of nature of the game of life 
 
Notice that the game conforms to the n × m-die learning game in almost all points, but instead of observing the 

neighbor’s state, it is communicated via a signaling game (steps 2(a) - 2(c)), and communicative behavior is up-
dated by reinforcement learning (step 2(e)).  

4.3. Simulation Experiments and Results 
To find out if the n-messages signaling game can at least uphold the performance of the n × m-die learning game, 
we started experiments for different n-values for the n-messages signaling game: the 2-messages, the 4-messages, 
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the 6-messages and the 8-messages signaling game, for each 20 simulation runs over 3000 simulation steps. As a 
basic result, all different n-messages signaling games performed roughly as well as the n × m-die learning game: 
if cells learned a successful communication strategy, the occupation share was around 25% on average after 3000 
steps; if not, the occupation share was below 3% on average. Additionally, this results show that the number of 
messages n did not influence the performance of successful runs. 

But the number of messages n did influence the percentage of simulation runs for which a successful strategy 
evolved. And that in the following way: the higher n and therefore the more messages are at disposal for commu-
nication, the more simulation runs were successful. This result is a good index for assuming that the probability 
that successful communication emerges increases with the number of messages n. The percentage of successful 
runs in dependence of n is depicted in Figure 5 (left). 

In a next step we analyzed what kind of communication strategy turned out to lead to successful communica-
tion. As shown in the last section, the two neighbor treatment rules said 1) sacrifice if your neighbor has 4 
neighbors and 2) don’t sacrifice if your neighbor has less than 4 neighbors. And this rules are incorporated in 
almost all successful communication strategies. An exemplary successful strategy that evolved (at least in a 
quite similar fashion) in all successful runs is depicted in Figure 5 (right). The first rule is accomplished by the 
fact that cells learned exactly one message mx, called the death message, to communicate that the sender cell is 
in state t4 and the receiver cell learned to construe it with adie, thus to sacrifice. Furthermore, this message was 
also quite often used to communicate t6 (The reason for this way of usage remains to be analyzed and goes 
beyond the scope of this article). 

All the other messages were either a) used to communicate that the sender cell is in one of the other states and 
the receiver cell learned to construe it with astay or b) not used at all. Thus in the former case all these messages 
mi are member of the live-on set ML that is a subset of M/{mx}, that moreover accomplishes the second neighbor 
treatment rule. If M/{mx} − ML ≠ Ø, then there were also remaining messages not used for any state, called un-
used messages mu ϵ M/{mx} − ML. 

5. Conclusions 
As a basic result, we were able to show that the game of life’s performance, in terms of occupation share of alive 
cells, can be strongly improved by integrating pre-games that give alive cells the opportunity to sacrifice before 
the rules of nature of the game of life are applied. In Sections 2 and 3 we were able to show that such pre-“rules 
of nature” decisions were especially successful (in comparison with the basic game of life’s occupation share of 
around 3%) by complying with the following strategies: 
• 5-die rule: Sacrifice, if you have exactly 5 neighbors (occupation share: 14.7%); 
• Neighbor treatment rules: Sacrifice, if your neighbor has exactly 4 neighbors; and don’t sacrifice, if your 

neighbor has less than 4 neighbors (occupation share: 28.4%). 
Further, we argued that the state of the neighbor cannot be directly observed without violating the local 

 

 
Figure 5. The number of messages n of the game supportively influences the 
probability of learning a successful strategy (left figure). The strategy that 
succeeds in the n-message signaling games needs at least two messages to 
compare between two actions. The death message mx is generally sent in 
states s4 and s6, as exemplarily depicted by a successful strategy profile (right 
figure).                                                          
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information rule of direct neighbor access. Thus in Section 4 we integrated signaling games to obtain the neigh-
bor’s state by communication. We were able to show that 1) two messages were sufficient to learn a successful 
communication strategy, but 2) the more messages are provided, the higher the probability that cells learn a 
successful communication strategy.  

All in all, we were able to show that if cells have the possibility to make decisions according to their individ-
ual state and especially according to a neighbor’s state, they can strongly increase the occupation share. Fur-
thermore, by integrating communication via signaling games, we were able to detect specific strategy patterns 
that ensure successful communication. Thus, it would be quite interesting to analyze how such characteristics of 
strategic communication depend on the game of life’s rules of nature. Experiments with altered rules of nature 
can possibly reveal such dependencies and are therefore interesting hints for the impact of environmental fea-
tures on the evolution of communication. 
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