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Abstract 
Applications, theoretical analysis and numerical methods are introduced for the simulation of 
mechanical models and principles of the porous flow in high temperature, high salt, compli-
cated geology and large-scale reservoirs in this paper. Considering petroleum geology, geo-
chemistry, computational permeation fluid mechanics and computer technology, we state the 
models of permeation fluid mechanics and put forward a sequence of implicit upwind differ-
ence iteration schemes based on refined fractional steps of the upstream, which can compute 
the pressures, the saturation and the concentrations of different chemistry components. A type 
of software applicable in major industries has been completed and carried out in numerical 
analysis and simulations of oil extraction in Shengli Oil-field, which brings huge economic ben-
efits and social benefits. This software gives many characters: spatial steps are taken as ten 
meters, the number of nodes is up to hundreds of thousands and simulation time period can be 
tens of years and the high-order accuracy can be promised in numerical data. Precise analysis 
is present for simplified models of this type and that provides a tool to solve the international 
famous problem. 
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1. Introduction 
At present an effective method, water-flooding, to keep the pressure of reservoirs is popular in the world, and 
the recovery efficiency is more outstanding than any other natural exploring forms. It gives more benefits and 
helps Chinese oil fields keep high quantity production. It continues to be more important and a strategic job to 
develop the exploiting efficiency of crude oil in the way water-flooding driving. 

Much crude oil remains in the reservoir after water-flooding exploiting, which stays underground due to the 
constraint of capillary force, or doesn’t move due to slight influenced region and the fluidity ratio between dis-
placement phase and driven phase. How to develop the displacement efficiency? A popular method considered 
is that the injected mixture includes chemical addition agents such as polymer, surface active agent and alkali. 
Polymer can optimize the fluidity of displacement phase, modify the ratio with respect to driven phases, balance 
the leading edges well, weaken the inner porous layer, and increase the efficiency of displacement and the pres-
sure gradient. Surface active agent and alkali can decrease interfacial tensions of different phases, then make the 
bounded oil move and gather. Some hypotheses should be made for the mathematical models. Local thermody-
namic equilibrium holds in the reservoir, solid phase has no motion, and the rock and mixture fluid are slight- 
compressible, of Fick dispersion, ideal and suitable for Darcy Law. 

The equilibrium equation of multi-phase, multi-components and slight compressible mixture is formulated by 
a nonlinear coupled system of partial differential equations. It is hard to solve this system because many modern 
numerical methods such as mixed element, finite element, finite difference and numerical algebra, will be in-
volved in the simulation. In general speaking, based on physical means the pressure function is solved by an im-
plicit scheme and the concentration values are obtained by an explicit solver or an implicit solver. The scholars 
try to find good ways analyzing the data and numerical results and doing some research work in simulation, 
which describe the whole process of chemistry displacements very well and help the engineers control the rules 
and process of displacement and forecast the recovery efficiency of natural oil and compute the oil percentage of 
output liquid and the percent of polymer and surface active agent. By numerical research the curves describing 
different components motion are shown, and some plans are made about the beginning and end of injected liquid 
and some related parameters of natural oil efficiency are derived. These conclusions, important techniques in 
chemistry displacements, can be used in forecasting the characters of fields, choosing different optimization 
plans, establishing the models of chemical displacements of reservoir, completing computational software and 
carrying out the numerical simulation. Petroleum engineers and mathematicians pay more attention to modern 
new techniques of exploiting natural oil. 

Yuan visited United States and accomplished some work cooperate with Prof. R. E. Ewing during 1985 to 
1988, and kept a series of research in theoretical analysis and applications of numerical simulation. With the 
leading of Yuan several research groups undertook some important projects from 1991 to 1995 such as “Eighth- 
Five” national key science and technology program (the Program for Tackling Key Programs) (85-203-01-087) 
entitled “research and application of the polymer displacement software” [1]-[6]. The software was applied in 
designing plan and research work of polymer displacements in industrial production region of Daqing Oilfield. 
Many conclusions from actual numerical results are illustrated such as effects of fragments, fragments setting of 
rinsing protection, quantity of polymer, and used in actual simulations which give rise to outstanding economic 
and social benefits [7]-[9]. Later the authors undertook a key tackling program of oil administration of Daqing 
Oilfield (DQYJ-1201002-2006-JS-9565)—solving development of mathematical models and completing ex-
plain of reservoir [10]. This software system is also applied in three compound combination flooding of Gudong 
Little Well experimental region of Shengli Oilfield, polymer flooding of Gudong Middle One experimental re-
gion, optimization of combination flooding expanded experimental region of Gudong West region and feasibili-
ty of active water flooding of Gudong eighth region, and many interesting results are obtained [11]. 

Theory, method and application of numerical simulation are studied for high temperature, high salt, compli-
cated geology and large-scale reservoirs and the principle of chemical flooding in this paper. Based on the for-
mer research, the conclusions and more discussion of the national major special project on science and technol-
ogy (2008ZX05011-004) “Study on key technology of chemical flooding numerical simulation in high temper-
ature and high salt reservoirs (on numerical simulation)” are given, which consists of permeation fluid mechan-
ical models of numerical simulation of high temperature and high salt polymer flooding and compound combi-
nation flooding, numerical methods, applicable software, theoretical analysis and applications in oilfields. 
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2. Mathematical Model of Polymer Flooding and Compound Combination Flooding 
This section includes five subsections: Section 2.1, basic hypothesis, Section 2.2, conservation equation of mat-
ter, Section 2.3, the pressure equation, Section 2.4, the concentration equation, Section 2.5, the concentration 
equation of chemical components. 

2.1. Basic Hypothesis 
Mathematical model of polymer flooding and compound combination flooding is derived under the following 
hypothesis. Local thermodynamic equilibrium holds in the reservoir, solid phase doesn’t motion, rock and mix-
ture fluid are slight-compressible, of Fick dispersion, ideal and suitable for Darcy Law [1]-[3] [7]-[10]. 

2.2. Conservation Equation of Matter 
Under the primary hypothesis, a conservation equation of the i -th component is stated as follows dependent of 
the i -th concentration iC : 

( ) ( )
1

div ,
pn

i i i il l il i
l

C C Q
t
φ ρ ρ

=

 ∂
+ ⋅ − = 

∂   
∑ u D                            (1) 

where ilC  represents the concentration the concentration of the i-th component in the l -phase, iQ  means 
source sink term, pn  means the number of phases, and subscripts l  denotes the order of phases. The symbol 

iC  represents the total concentration of the i -th component, i.e. the summation of concentrations of the i -th 
component in different phases (including adsorbed phase): 

1 1

ˆ ˆ1 ,        1, , ,
pcv nn

i k l il i cv
k l

C C S C C i n
= =

 
= − + = 
 

∑ ∑


                        (2) 

where cvn , the number of component whose volume couldn’t be ignored, and ˆ
kC  denotes the adsorption con-

centration of the component k . 
The density of the i -th component is dependent of the pressure iρ  under slight compressible case： 

( )1 ,o o
i i i rC p pρ ρ  = + −                                  (3) 

where o
iρ  is the density of the i -th component under considering reference pressure rp , and p  means the 

pressure and o
iC  is the coefficient of compressibility of the i -th component. 

Suppose that the rock is compressible, then the function of the porosity φ  and the pressure is 

( )1 ,o r rC p pφ φ= + −                                    (4) 

where rC  means the coefficient of compressibility of the rock. 
Darcy velocity, lu , is described by Darcy Law, 

( ) ,rl
l l l

l

KK
p Dγ

µ
= ∇ − ∇u                                 (5) 

where lp  means the pressure of phases, K  is the permeability tensor, D  is the depth, rlK  is the relative 
permeability, lµ  is the viscosity and lγ  is the proportion. 

The dispersion flux is expressed in the following Fick formation： 

, , ,

, , ,

, , ,

.
xx il xy il xz il il

il l yx il yy il yz il il

zx il zy il zz il il

F F F C x
S F F F C y

F F F C z
φ

  ∂ ∂ 
  = ∂ ∂  

   ∂ ∂  

D                          (6) 

The dispersion tensor ilF , including molecular diffusion ( )klD , can be formulated as 

,
( )

,il l l l lm ln
mn il mn l mn

l l l

D T L T u u
F

S S
α α α

δ δ
τ φ φ

−
= + +u

u
                      (7) 
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where lLα  and lTα  denote the longitudinal and the lateral dispersion parameters of the l -th phase, τ  is the 
tortuosity, lmu  and lnu  are the components, and mnδ  means Kronecher Delta. The net flow of each phase is: 

2 2 2 .l xl yl zlu u u= + +u                                   (8) 

2.3. The Pressure Equation 
Considering all the conservative equations of each matter with positive volume together, using Darcy Law and 
capillary pressure to express the flux and the pressure relations of different phases respectively, and combining 
with the following constraints 

1
1,

cvn

il
i

C
=

=∑                                       (9) 

We can get the pressure equation of referenced phase: 

( )
1 1 1

div div div ,
p p cvn n n

w
t T w l l clw l

l l l

p
C K p K h K p Q

t
φ λ λ λ

= = =

   ∂
+ ⋅ ∇ = − ⋅ ∇ + ⋅ ∇ +      ∂    

∑ ∑ ∑            (10) 

where  

1
,

cvn
rl

l i il
il

K
Cλ ρ

µ =

= ∑                                  (11) 

and the total relative fluidity Tλ  is  

1
.

cvn

T l
i

λ λ
=

= ∑                                     (12) 

The total coefficient of compressibility tC , is a function dependent of the compressibility of rocks rC  and 
components of the mixture o

iC : 

1
.

cvn
o

t r i i
i

C C C C
=

= +∑   

2.4. The Concentration Equation 
Let wS  and oS  be concentrations of water phase and oil phase denoted by subscripts w  and o  denote and 
the relation 1w oS S+ =  holds obviously. The equations on concentrations of water and oil phases are expressed 
as follows by conservation of the mass (1) 

( ) ( )div ,o o o o oS Q
t
φ ρ ρ∂

+ ⋅ =
∂

u                              (13) 

( ) ( )div .w w w w wS Q
t
φ ρ ρ∂

+ ⋅ =
∂

u                             (14) 

By Darcy Law the velocities of different phases are derived by 

( )1 1 ,w rwK P Dλ γ= − ∇ − ∇u                               (15) 

( ) ( )2 2 1 2 ,o ro ro cK P D K P P Dλ γ λ γ= − ∇ − ∇ = − ∇ +∇ − ∇u                    (16) 

where ( ) ( )1, , ,rw rw w w w w LwK S S C Cλ µ= 
, ( ) ( )ro ro w o wK S Sλ µ=  are the fluidities of two phases, and K , 

rwK  and roK  are the absolute permeability tensor, relative permeabilities. K  is the absolute permeability of 
medium, and wµ , oµ  are the viscosities of water-oil phases dependent on their concentrations and the satura-
tions of polymer and the two opposing principles in nature. 1P , 2P  and 1γ , 2γ  respectively denote the pres-
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sures and the densities of water phase and oil phase and D  is the depth function, 

( ), , .D D x y z z= =  

2.5. The Concentrations of Chemical Substance Components 
Note that all the components (polymer and different principles) are mixed in the water phase and no transmis-
sion takes place, then 

,    
0,       .

iw
il

C l w
C

l w
=

=  ≠
                                  (17) 

Substitute (17) into (1), 

( ) ( )div ,i i iw i iw w iw iC C Q
t
φρ λ ρ∂  + ⋅ − = ∂

u D                         (18) 

where ( )i w iwS A Cλ = +  and ( )iwA C  is dependent of the absorptions. 

3. Numerical Methods 
This section consists of three subsections: Section 3.1 solving the pressure equation, Section 3.2 solving the 
concentration equation, and Section 3.3 structuring a numerical algorithm of components. 

3.1. Solving the Pressure 
Let the parameters with subscripts w , o  be related with the water and the oil respectively, such as wS , oS  
and wP , oP  denote the saturations and the pressures of water and oil phases. Note that the mixture fluid is only 
made by oil and water two phases in the model of polymer flooding and compound combination flooding and 
we can describe the pressure in a simple formula 

( )div .t w o w o
Pc Q Q
t

φ ∂
+ ⋅ + = +

∂
u u                            (19) 

Using Darcy Law and the formula of capillary force, we rewrite the above equation as follows with respect to 
an unknown variable ( )wP P , 

( ) ( )div div .t rw ro w o ro c w o
Pc P Q Q P D
t

φ λ λ λ γ γ∂
   − ⋅ + ∇ = + + ⋅ ∇ − + ∇   ∂

            (20) 

The initial values of the saturations are known at the beginning of simulations while the pressure values 
should be initialized in the following process. When the pressure nP  at the n -th time step are known, then the 
flow velocities are obtained and the values of the saturation and components at the next step ( )1nt t +=  are 
computed. The pressure, denoted by a parabolic equation, is obtained by a seven-point central difference method. 
Considering the physical features of two-phase we assign rwλ  and roλ , the values of the left-side term, in ac-
cordance with upstream principles. At the injected wells and produced wells with fixed quantities, the right 
source term can be assigned directly and the values of quantity are determined by the difference between the 
pressure of local regions and the pressure of bottom holes at injected wells and produced wells with fixed pres-
sures. The production quantities of different phases are distributed by the relative fluidity of oil-water phases. In 
addition, the pressure equation is degraded into an equation of elliptic type, and the matrix is not strictly diagon-
al-dominated under an impressible assumption (the coefficients of compressibility are assumed to be zero). In 
the way of taking the diagonal unit be 1 and non-diagonal units be zero, the equation of feature edges is consis-
tent with the equation of normal oil deposits. The data in feature edges don’t need to be replaced by the values 
of solutions, which makes the quantity of physical data as a constant in the computation. If the program (neces-
sary for the design) runs at feature edges virtual data will be used in the whole computation. 

Given nP , using upstream seven-point central difference algorithm to compute 1nP + , 
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The subscript denotes the upstream position in the first direction between the i -th point and the ( )1i + -th 
point. An assumption is given that there is no flow moving through the boundary. That is to say that its boun-
dary condition is homogeneous of Neumann type. The quantities at the injected wells 1 0n

oQ + = , 1n
wQ +  are 

known and those at the produced wells ( )1 1 , ,n n
o o f o oQ Q P P S+ += , ( )1 1 , ,n n

w w f w wQ Q P P S+ +=  are given implicitly 
by the flowing bottom hole pressure fP , the pressures of phases and the relative mobility ratio. Distributed 
quantities are computed by an allocation program after the pressure values are obtained. It is easy to solve the 
saturation equation when the values of source and sink terms. 

3.2. Solving the Saturation 
Using upstream order, implicit upwind Newton iteration to solve the saturation of water phase, then the values 
of oil saturation 1o wS S= −  are computed. The saturation of water phase is described by  

div ,w
w w

S
Q

t
φ
∂

+ ⋅ =
∂

u  

or expressed in another form combined with Darcy Law 

( )( )( )div .w
w w w w w

S
S P D Q

t
φ λ γ
∂

+ ⋅ ∇ − ∇ =
∂

                         (22) 

The pressure of water phase wP  at 1nt +  and the quantity wQ  are known, then the saturation of water wS  
at 1nt +  are computed by the following discrete algorithm, 
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∆ ∆
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∆
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∆

               (23) 

where the subscript i+  denotes the upstream position according to the moving trend between ix  and 1ix + , i.e. 
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it is either i  or 1i + . It is hard to solve the nonlinear equations directly. 1, 1n l
wS + +  at the ( )1l +  iteration step 

is obtained by Newton iteration under taking the value at the previous step as the initial condition 1,0n n
w wS S+ = . 

Note the following Taylor expansion, 
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Delete the remainder truncation, substitute the approximation expressions into the difference algorithm, take 
1,0

, ,
n n
w ijk w ijkS S+ =  as iteration initial conditions and obtain the iteration values 1, 1

,
n l
w ijkS + +  at the ( )1l + -th step by 

solving the following linear equations 
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, , , , , 1

n l n n n l n l n l n l n n
ijk ij k ijk w w ijk w w ijk w ijk w ijk ijk ij k

n
w ijk

n l n l n l n l n
w w ijk w w ijk w ijk w ijk ij k i

P P S S S S P P z

Q

S S S S D D

λ λ

λ λ

+ − − − −

+ + + +

+ + + + + + + + + +
+ −

+

+ + + + + +
+

   ′− − + − − ∆   

=

 ′+ + − −  ( ) ( ) ( )( ) ( ){ } ( )21 1, 1, 1, 1 1, 1 1
, , , , , 1 ,

0,1, , .

n n l n l n l n l n n
jk w w ijk w w ijk w ijk w ijk ijk ij kS S S S D D z

l L

λ λ
− − − −

+ + + + + + + +
−

 ′− + − − ∆ 
= 

          (24) 
The program runs based on upstream sequence rule, and the iteration value at the ( )1l + -th step is computed 

until the relative error meets a designed requirement or the iteration reaches the steps when the values at up-
stream points are known. The final iterative value is denoted by 1n

wS + . 

3.3. Numerical Algorithm of Concentration Components 
The components of water phase keep conservation of the mass of anions, cations and molecules and other 
particles, whose equation is of diffusion-convection and convection dominated. It has more strengths such as 
high order of accuracy and high efficiency of simulation applying decomposition of operators into the non-
linear system and solving two subproblems: a hyperbolic equation of convection type and a diffusion equa-
tion. The former is solved implicitly by an upwind method, which can be carried out explicitly by an up-
stream technique. The latter is solved by alternating directions finite difference method, which can improve 
the computational speed. The concentration equation of k -component, a typical convection-diffusion equa-
tion, is simplified as follows 

( ) ( )div ,w k k w w k kS C C S K C Q
t

φ φ∂
+ ⋅ − ∇ =

∂
u                         (25) 

where the dispersion tensor is a diagonal form. Given the saturation wS  and the flow field wu , the concen-
tration kC  is to be computed by using an implicit upwind method to solve a convection problem, where the 
subscript k is ignored and C denotes a component concentration. 
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1 1,0 1
1,0 1 1,0 1 1,0 1 1,0 1

, , 1, , , , 1,

1,0 1 1,0 1 1
, , , 1  ,

n n n n
w ijk w ijk n n n n n n n n

ijk i jk w ijk i jk w i jk ij k w ijk ij k w i j k

n n n n n
ijk w ijk ijk w ij k ijk

S C S C
C u C u x C u C u y

t
C u C u z Q

φ
+ − + −

+ −

+ + +
+ + + + + + + +

− −

+ + + + +
−

−
   + − ∆ + − ∆   ∆

 + − ∆ = 

      (26) 

The values 1,0nC +  is obtained, then the diffusion equation is discretized alternatively in three directions. 
In x-direction, 

( ) ( ) ( )

1 1,1 1,0

21 1,1 1,1 1 1,1 1,1
1 2, , , 1 2, 1, 1 2, , , 1 2, 1,  0,

n n n n
w ijk w ijk

ijk

n n n n n n
i jk w i jk xx i jk i jk ijk i jk w i jk xx i jk ijk i jk

S C S C
t

S K C C S K C C x

φ

φ φ
+ −

+ + +

+ + + + + +
+ + + − − −

−

∆
 − − − − ∆ = 

   (27a) 

Then in y -direction, 

( ) ( ) ( )

1 1,2 1,1

21 1,2 1,2 1 1,2 1,2
, 1 2, , , , 1 2, , 1, , 1 2, , , , 1 2, , 1,  0,

n n n n
w ijk w ijk

ijk

n n n n n n
i j k w ij k yy i j k i j k ijk i j k w ij k yy i j k ijk i j k

S C S C
t

S K C C S K C C y

φ

φ φ
+ −

+ + +

+ + + + + +
+ + + − − −

−

∆
 − − − − ∆ = 

  (27b) 

At last in z -direction, 1nC +  is obtained, 

( ) ( ) ( )

1 1 1,2

21 1 1 1 1 1
, 1 2 , zz, , 1 2 , 1 , 1 2 , , , 1 2 , 1  0,

n n n n
w ijk w ijk

ijk

n n n n n n
ij k w ijk ij k ij k ijk ij k w ijk zz ij k ijk ij k

S C S C
t

S K C C S K C C z

φ

φ φ
+ −

+ + +

+ + + + + +
+ + + − − −

−

∆
 − − − − ∆ = 

     (27c) 

Then the discrete solutions 1n
wP + , 1n

oP + , 1n
wS + , 1n

oS + , 1n
kC +  are obtained and the computation runs in the 

next step. 

3.4. Viscosity Computation of High Temperature and High Salt Reservoir 
The polymer hydrolysis can decrease the viscosity in the high temperature and high salt reservoirs, and the 
viscosity is different under different polymers. The viscosity is computed by 

( ) ( ) ( ) 11

1 21 ,
n p

ap w o wµ µ µ µ γ γ
−− = + − +  

                         (28) 

where the values of parameters are defined as follows,  
1.378

1 2 375.3 0.0356oγ µ−= + ,  ( ) 0.03111.163 on p µ= ,  [ ] [ ]( ) [ ]( )2 3
0.634 0.193 0.921o w p p pC C Cµ µ µ µ µ= + + + ,  

[ ] ( )3 0.7969 2 1 2 0.764.665 10 4.219 10 1 p p sM h h M Cµ − −= × + × − . M  denotes the average molecular weight of  

polymer, and ph  denotes the degree of hydrolysis of the polymer with decimal unit. sC  means the degree 
of mineralization and pC  means the concentration of polymer, whose units are mol/L and mg/L, respec-
tively. 

4. Computation Program Illustration  
This section illustrates the computation program by Figure 1. 

5. Actual Experimental Tests of Oil Fields 
The adaptation efficiency of the software SLCHEM is tested in view of three aspects: dependability, un-
iversality and special applicability for large-scale oilfields. The numerical results are dependable by com-
paring with the actual results and popular business software computations. The software is applied success-
fully in different fields of Shengli Oilfield and the universality is tested. The software is used in large-scale 
oilfields and the special applicability is tested. 

1) Experiments of the polymer flooding in small-scale oilfields 
The rectangle computational domain (Tuo Block 28) is partitioned into 22 × 24 × 6 subdomains with uni-  
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Figure 1. Computation program illustration.                               

 
form steps and the spacial steps in x-direction and y-direction are taken as 45.61 m and 47.35 m, respectively. 
The irreducible water saturation is 0.175, residual oil saturation is 0.25, and formation reserve is 9.9843 × 
107 m3. There are fifty four wells in this block. The simulation works about 22,402 days and is considered in 
three periods. It works in November, 1966 and water is injected in March, 1967. The polymer, whose con-
centration is 1500 ppm, is injected from June, 2008 to April, 2015. Water is injected again from April, 2015 
to January, 2030. The simulation results are illustrated in Table 1. 

The comparison of moisture content of produced oil of SLCHEM, VIP, and actual results are shown in 
Figure 2. 

The time cost of SLCHEM is about 0.44 hour, and the material balance error is satisfactory. The relative 
total error comparison with actual moisture content is about 7.8% before the polymer flooding is injected. 
All the results show that the computation of SLCHEM runs fast, the numerical results are reliable and this 
scheme can be applied into present oilfields production. 

2) Experiments of surfactant-polymer flooding agents in middle-scale oilfields 
The rectangle computational domain (Sheng Block 2) is partitioned into 82 × 74 × 7 subdomains with uni-

form steps and the spacial steps in x -direction and y -direction are taken as 33.60 m and 29.29 m, respectively. 
Formation reserve is 3.4938 × 108 m3. There are sixty three wells in this block. The simulation works about  
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Table 1. Numerical results of polymer flooding in small-scale oilfield.                                             

Scheme Time cost Computational 
steps 

Time cost of the 
pressure 

Balance error (two 
phases) 

Balance error 
(components) 

New algorithm 1600.578 8516 517.156 10−6 10−13 

 

 
Figure 2. Curve of moisture content simulation of produced oil of polymer flooding in small- 
scale oilfields.                                                                  

 
$2362 days and is considered in three periods. It works on April 1, 1966 and water is injected on January 1, 
1974. The polymer, whose concentration is 1600 ppm, is injected from August, 2010 to September, 2016. Sur-
factant, whose concentration is 0.4%, is injected from August, 2011 to October, 2011. The largest time step is 
less than five days and the simulation results are illustrated in Table 2. 

The comparison of moisture content of produced oil of SLCHEM, ECLIPSE, and actual results are shown 
in Figure 3. The time cost of SLCHEM is about 4.2 hours, and the material balance error is satisfactory. The 
relative total error comparison with actual moisture content is about 7.10%. All the results show that the 
computation of SLCHEM runs fast, the numerical results are reliable and this scheme can be applied into 
present oilfields production. 

3) Experiments of large-scale oilfields 
The rectangle computational domain (Gudaoguan Block 3) is partitioned into 72 × 62 × 26 subdomains with 

uniform steps and the spacial steps in x -direction and y -direction are taken as 25 m. Formation reserve is 
22,708,200.0 m3. There are one hundred and ninety one wells in this block. The simulation works about 12,965 
days and is considered in three periods. It works on September 1, 1971 and water is injected on September 1, 
1974. The polymer, whose concentration is 1000 ppm, is injected from March 1, 1994 to November 30, 2003. 
Water is injected again from December 1, 2003 to March 1, 2007. The largest time step is less than ten days and 
the simulation results are illustrated in Table 3. 

The comparison of moisture content of produced oil of SLCHEM and actual results are shown in Figure 4. 
The time cost of SLCHEM is about 8.45 hours, and the material balance error is 10−6. The relative total error 

comparison with actual moisture content is about 7.0%. All the results show that the computation of SLCHEM 
runs fast, the numerical results are reliable and this scheme can be applied into present oilfields production. 

4) Numerical simulation of surfactant polymer flooding 
The polymer, whose concentration is 1000 ppm, is injected from March 1, 1994 to November 30, 2003. Sur-

factant, whose concentration is 0.5%, is injected from May 1, 1996 to December 1, 2003. Then water is injected 
again from December 1, 2003 to March 1, 2007. The largest time step is less than ten days and the simulation 
results are illustrated in Table 4. 

Numerical results of SLCHEM of water flooding, polymer flooding and surfactant-polymer flooding are 
compared in Figure 5. The time cost of SLCHEM is about 13.5 hours, and the material balance error is satis-  
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Table 2. Numerical results of surfactant-polymer combination flooding in middle-scale oilfields.                         

Scheme Time cost Computational 
steps 

Time cost of the 
pressure 

Balance error (two 
phases) 

Balance error 
(components) 

New algorithm 15213.343 5520 12929.656 10−6 10−12 

 
Table 3. Numerical results of polymer flooding in large-scale oilfields.                                              

Scheme Time cost Computational 
steps 

Time cost of the 
pressure 

Balance error (two 
phases) 

Balance error 
(components) 

New algorithm 30426.28 6106 20214.90 10−6 10−14 

 
Table 4. Numerical results of surfactant-polymer flooding.                                                        

Scheme Time cost Computational 
steps 

Time cost of the 
pressure 

Balance error (two 
phases) 

Balance error 
(components) 

New algorithm 48877.72 6894 33276.23 10−6 10−14 

 

 
Figure 3. Curve of moisture content simulation of produced oil of two components combination 
flooding in middle-scale oilfields.                                                      

 

 
Figure 4. Curve of moisture content simulation of produced oil in large-scale oilfields.    
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Figure 5. Curve of moisture content simulation of produced oil of surface active agent and 
combination flooding.                                                             

 
factory. The software has three flooding functions and physical-chemical parameters can be processed effec-
tively. The software simulates reliably and generally based on the above experiments of different scales oilfields 
and the simulation scale is up to hundreds of thousands nodes. 

6. Numerical Analysis of the Model Problem  
In this section theoretical analysis is discussed for the numerical simulation of the polymer of porous media. For 
simplification and without loss of generality, a simple model is analyzed here, a three-dimensional mul-
ti-components compressible displacement [1] [2] [12]-[16]. It is a nonlinear system coupled with partial diffe-
rential equations with initial values and boundary values described as follows 

( ) ( ) ( ) ( ]T
1 2 3, ,  , , ,  0, ,pd c q x t x x x x t J T

t
∂

+∇ ⋅ = = ∈Ω ∈ =
∂

u                  (29a) 

( ) ,  ,  ,a c p x t J= − ∇ ∈Ω ∈u                                (29b) 

( ) ( ) ( ) ( ), , ,  ,  , 1, 2, , 1,c
c px b c c D c g x t c x t J n
t t
α

α α α α α
∂ ∂

Φ + + ⋅∇ −∇ ⋅ ∇ = ∈Ω ∈ = −
∂ ∂

u        (30) 

where ( ),p x t  is the pressure of the mixture, ( ),c x tα  is the concentration of the α -th component 

( )1,2, , 1cnα = −
 and cn  is the number of components. Because of ( )

1
, 1

cn

c x tα
α =

=∑ , the only 1cn −  com-

ponents are independent. Let ( ) ( ) ( )( )T

1 1, , , , ,
cnx t c x t c x t−= c  be a vector function of component saturation, 

( ) ( ) ( )
1

,
cn

d c x z c xα α
α =

= Φ Φ∑  be the porosity, zα  represent a compressible constant of α -th component, u  

be the Darcy velocity. ( ) ( ) ( ) 1a c x cκ µ −= , where ( )xκ  is the permeability, ( )cµ  is the fluid viscosity, and 

( )
1

cn

j j
j

b c c z z cα α α
=

 
= Φ − 

 
∑ , ( )D D x=  is the convection coefficient. The pressure ( ),p x t  and the vector 

function of saturations ( ),x tc  are to be computed later. 
Impermeable boundary value conditions: 

( )0,  ,     0,  ,  , 1, 2, , 1,cx D c c x t J nα α α⋅ = ∈∂Ω ∇ − ⋅ = ∈∂Ω ∈ = −u γ u γ              (31) 
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where γ  is the outer normal vector of the boundary ∂Ω  of Ω . Initial value conditions: 

( ) ( ) ( ) ( )0 ,0,0 ,  ,     ,0 ,  ,  , 1, 2, , 1.cp x p x x c x c x x t J nα α α= ∈Ω = ∈Ω ∈ = −
           (32) 

For convenience, the computational domain is taken as [ ]{ }3
0,1Ω =  and the problem is supposed to be Ω

-peri odic, and the impermeable boundary value conditions are dropped. Let 1h N= , ( )T, ,ijkX ih jh kh= , 
nt n t= ∆  and ( ),n n

ijk ijkW W X t= , and take  

( ) ( )1 2, 1, 1,, , 2 ,n n n
i jk ijk ijk i jk i jkA a X C a X C+ + +

 = +                        (33a) 

( ) ( ) ( )1 1

1 2 1 1 1 1
1 2, 1, 1 2, 1, ,n n n n n n n n

x x i jk i jk ijk i jk ijk i jkijk
A P h A P P A P Pδ δ + − + + + +

+ + − −
 = − − −              (33b) 

Then , 1 2,
n
i j kA + , , 1 2

n
ij kA +  and other notations can be defined similarly.  

An implicit fractional finite difference algorithm for the diffusion Equation (29), 

( ) ( ) ( ) ( ) ( )1 1 2 2 3 3

1 3
1 3 1, ,   1 ,

n n
ijk ijkn n n n n n n n

ijk x x x x x x ijkijk ijk ijk

P P
d C A P A P A P q X t i N

t
δ δ δ δ δ δ

+
+ +−

= + + + ≤ ≤
∆

 (34a) 

( ) ( )( )2 2

2 3 1 3
2 3 ,   1 ,

n n
ijk ijkn n n n

ijk x x ijk

P P
d C A P P j N

t
δ δ

+ +
+−

= − ≤ ≤
∆

                (34b) 

( ) ( )( )3 3

1 2 3
1 ,   1 .

n n
ijk ijkn n n n

ijk x x ijk

P P
d C A P P k N

t
δ δ

+ +
+−

= − ≤ ≤
∆

                 (34c) 

Compute the Darcy velocity ( )T
1 2 3, ,U U U=U  as follows, 

1 1 1 1
1, 1,1

1, 1 2, 1 2,
1 ,
2

n n n n
i jk ijk ijk i jkn n n

ijk i jk i jk

P P P P
U A A

h h

+ + + +
+ −+

+ −

 − −
= − + 

  
                   (35) 

1
2,
n

ijkU + , 1
3,
n

ijkU +  can be obtained analogously. 
An implicit fractional upwind difference method for the saturation Equation (30) 

( ) ( ) ( ) ( )
( )

1 1 2 2 3 3

1 3 1
, , 1 3

,

1
,                               , ,           ,1 , 1, 2, , 1,

n n n n
ijk ijk ijk ijkn n n n

ijk x x x x x x ijkijk ijk ijk

n n
ijk ijk c

C C P P
D C D C D C b C

t t
g X t C i N n

α α
α α α α α

α

δ δ δ δ δ δ

α

+ +
+

+

− −
Φ = + + −

∆ ∆
+ ≤ ≤ = −

   (36a) 

( )( )2 2

2 3 1 3
, , 2 3

, ,         1 , 1, 2, , 1,
n n

ijk ijk n n
ijk x x ijk cijk

C C
D C C j N n

t
α α

α αδ δ α
+ +

+−
Φ = − ≤ ≤ = −

∆
         (36b) 

( )( )3 3

1 2 3 3
, , 1 1

, ,,
1

,         1 , 1, 2, , 1,n

n n
ijk ijk n n n

ijk x x ijk ijk cU xijk

C C
D C C C k N n

t β β

α α
α α α

β
δ δ δ α

+ +
+ +

=

−
Φ = − − ≤ ≤ = −

∆ ∑     (36c) 

where ( ) ( )( ){ }1 1
, , , , ,,

1 ,  1, 2, , 1n
n n n n n

ijk ijk ijk x ijk x ijk cU x
C U H U H U C n

β ββ β
α β β β αδ δ δ α+ += + − = − . ( )

1,   0
0,   0.

z
H z

z
≥

=  <
 

Initial value conditions: 

( )0 0
0 , 0,,   ,   1 , , ,  1, 2, , 1.ijk ijk ijk ijk cP p X C c i j k N nα α α= = ≤ ≤ = −                 (37) 

The program of implicit upwind fractional difference method runs as follows. Given  

{ },, , 1, 2, , 1n n
ijk ijk cP C nα α = − , the values { }1 3n

ijkP +  of transition layer is computed by using speedup method in 

1x -direction by (34a), { }2 3n
ijkP +  is obtained by (34b), and the solution of pressure { }1n

ijkP +  is solved by (34c). 

The values of Darcy velocity { }1n
ijk
+U  are computed by (35). Secondly, the values { }1 3

,
n

ijkCα
+  of transition layer 

is computed by using speedup method in x1-direction by (36a), { }2 3
,

n
ijkCα
+  is obtained by (36b), and the solution 
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of concentration { }1
,

n
ijkCα
+  is solved by (36c). Note that the problem is positive definite, the solution of (34)-(36) 

exists and is sole. 
For the model (29)-(32), applying variation technique, energy analysis, decomposition of high order differ-

ence operators and theory and technique of product communitivity we can get error estimates in 2L  of the im-
plicit fractional upwind difference method stated in the following theorem. The computational algorithms dis-
cussed in this paper is based on the mathematical and mechanical considerations. 

Theorem Suppose that the exact solutions of (29)-(32) are sufficiently smooth, and discrete solutions are 
computed by an implicit fractional step upwind difference algorithm (34)-(36). It holds 

( ) ( ) ( ) ( ) { }1 1 2 2 2 2

1 1

; ; ; ;
1 1

( ) ( ) ,
c cn n

t tL J h L J h L J l L J lp P c C d p P d c C M t hα α α α
α α

∞ ∞

− −
∗

= =

− + − + − + − ≤ ∆ +∑ ∑     (38) 

where the constant M ∗  is dependent on ( ),p x t , ( )( ), 1, 2, , 1cc x t nα α = −
 and their derivatives. 

7. Conclusion and Discussion  
Theory, method and application of numerical simulation of high temperature, high salt, complicated geology and 
large scale oilfields and complicated chemical flooding of flow mechanics in porous media are discussed in this 
paper consisting of several sections. Summary is stated about our project in Section 1. Mathematical model of 
permeation fluid mechanics is presented in view of petroleum geology, geochemistry, and computational per-
meation fluid mechanics Section 2. An implicit refined fractional step combined with upwind difference numer-
ical algorithm based on upstream sequence, is structured in Section 3. A type of software applicable in major 
industries has been accomplished, mostly carried out the spacial step of ten meters, ten thousands of nodes and 
tens of years simulation period in Section 4. Some experimental tests taking place successfully in major oil 
fields such as Shengli Oilfield, are illustrated in Section 5. Numerical analysis proceeds for the model problem 
and precise theoretical results are stated on mathematical and mechanical consideration in Section 6. 
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