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Abstract 
The notion that animals could be used as predictive models in science has been influenced by rel-
atively recent developments in the fields of complexity science, evolutionary and developmental 
biology, genetics, and evolutionary biology in general. Combined with empirical evidence, which 
has led scientists in drug development to acknowledge that a new, nonanimal model is needed, a 
theory—not a hypothesis—has been formed to explain why animals function well as models for 
humans at lower levels of organization but are unable to predict outcomes at higher levels of or-
ganization. Trans-Species Modeling Theory (TSMT) places the empirical evidence in the context of 
a scientific theory and thus, from a scientific perspective, the issue of where animals can and can-
not be used in science has arguably been settled. Yet, some in various areas of science or science- 
related fields continue to demand that more evidence be offered before the use of animal models 
in medical research and testing be abandoned on scientific grounds. In this article, I examine 
TSMT, the empirical evidence surrounding the use of animal models, and the opinions of experts. I 
contrast these facts with the opinions and positions of those that have a direct or indirect vested 
interest—financial or otherwise—in animal models. I then discuss the ethical implications re-
garding research constructed to find cures and treatments for humans. 
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1. Introduction 
Before I analyze the use of animals in scientific research and testing, I need to delineate the areas of science 
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where animals are currently used. As shown in Table 1, animals are used in various areas of science. 
Category 1, “Animals are used as predictive models of humans for research into such diseases as cancer and 

AIDS” and category 2, “Animals are used as predictive models of humans for testing drugs or other chemicals,” 
are both examples of using animals as predictive models for humans. This implies that such models have a high 
predictive value for human response. In other words, if the drug kills the animal model, animal modelers assume 
it will kill you and vice-versa. Categories 3-9 make no such claim. It has been my contention that while animal 
models are successfully used per categories 3-9, they cannot be used to predict human response to drugs and 
disease because their predictive value is so low [1]-[20]. I have used the formula for sensitivity and positive pre-
dictive value (PPV) to support this contention as most of the literature available has not presented data sufficient 
to calculate specificity and negative predictive value (NPV) or likelihood ratios (LRs). NPV and specificity were 
available from some studies and in those cases I used those values, but most studies simply did not provide the 
needed data. Table 2 shows how these values are calculated. On other occasions, the studies listed a more crude 
evaluation of predictive values, but the crude value was sufficient to make the conclusion that animal models 
failed in terms of predictive value. 
 
Table 1. Nine categories of animal use in science and research [19].                                               

1 Animals are used as predictive models of humans for research into such diseases as cancer and AIDS. 

2 Animals are used as predictive models of humans for testing drugs or other chemicals. 

3 Animals are used as “spare parts”, such as when a person receives an aortic valve from a pig. 

4 Animals are used as bioreactors or factories, such as for the production of insulin or monoclonal antibodies, 
or to maintain the supply of a virus. 

5 Animals and animal tissues are used to study basic physiological principles. 

6 Animals are used in education to educate and train medical students and to teach basic principles of anatomy 
in high school biology classes. 

7 Animals are used as a modality for ideas or as a heuristic device, which is a component of basic science research. 

8 Animals are used in research designed to benefit other animals of the same species or breed. 
9 Animals are used in research in order to gain knowledge for knowledge sake. 

 
Table 2. Binary classification and formulas for calculating predictive values of modalities such as animal-based research.     

 
Gold standard 
GS+ GS− 

Test 
T+ TP FP 
T− FN TN 

Sensitivity = TP/(TP + FN) 
Specificity = TN/(FP + TN) 
Positive predictive value = TP/(TP + FP) 
Negative predictive value = TN/(FN + TN) 
LR+ = sensitivity/(1 – specificity) = (a/(a + c))/(b/(b + d)) 
LR− = (1 – sensitivity) / specificity = (c/(a + c))/(d/(b + d)) 
iNLR = specificity/(1 – sensitivity) 
T− = Test negative 
T+ = Test positive 
FP = False positive 
TP = True positive 
FN = False negative 
TN = True negative 
GS− = Gold standard negative 
GS+ = Gold standard positive 
LR+ = Likelihood ration positive 
LR− = Likelihood ration negative 



R. Greek 
 

 
968 

People have opposed the use of animals in testing, research, and science in general for millennia. Many 
people who experimented on animals or wrote about the history of such referred to the practice as vivisection, 
meaning cutting into the living [21]-[25]. Schiller states: 

Vivisection was an ancient tradition and its roots went back to dissection. Its original aim was living anat-
omy. Herophilus and Erasistratus of Alexandria are known to have practised it in the third century, B.C. 
According to Celsus they even used human subjects. In the 18th century Maupertuis attempted to justify the 
vivisection of criminals for the benefit of mankind. Galen was the real promoter of the method and he at-
tempted to establish animal vivisection as the foundation of physiology [21]. 

Claude Bernard, the father of modern-day animal modeling, referred to what he did as vivisection ([26], p. 19, 
104). Darwin also referred to the practice as vivisection: “In the agony of death a dog has been known to caress 
his master, and every one has heard of the dog suffering under vivisection, who licked the hand of the operator; 
this man, unless the operation was fully justified by an increase of knowledge, or unless he had a heart of stone, 
must have felt remorse to the last hour of his life” ([27], p. 90). Only recently has the term been disowned by the 
vivisection community. 

The opposition to vivisection increased dramatically in the mid-1800s with the popularization of the practice 
by Bernard. Bernard was a French physiologist and conducted open demonstrations of vivisection along with 
public experiments involving vivisection. Bernard’s wife and two daughters formed one of the first French an-
ti-vivisection societies after they found that Claude had vivisected the family dog. 

Bernard was a strict causal determinist, meaning that if X caused Y in a monkey it would also cause Y in a 
human. Bernard states: “Physiologists ... deal with just one thing, the properties of living matter and the me-
chanism of life, in whatever form it shows itself. For them genus, species and class no longer exist. There are 
only living beings; and if they choose one of them for study, that is usually for convenience in experimentation” 
([26], p. 111). 

Bernard continues: 

Now the vital units, being of like nature in all living beings, are subject to the same organic laws. They de-
velop, live, become diseased and die under influences necessarily of like nature, though manifested by infi-
nitely varying mechanisms. A poison or a morbid condition, acting on a definite histological unit, should 
attack it in like circumstances in all animals furnished with it; otherwise these units would cease to be of 
like nature; and if we went on considering as of like nature units reacting in different or opposite ways un-
der the influence of normal or pathological vital reagents, we should not only deny science in general, but 
also bring into zoology confusion and darkness... Experiments on animals, with deleterious substances or in 
harmful circumstances, are very useful and entirely conclusive for the toxicity and hygiene of man. Inves-
tigations of medicinal or of toxic substances also are wholly applicable to man from the therapeutic point of 
view; for as I have shown, the effects of these substances are the same on man as on animals... ([26], pp. 
124-125). 

Clearly, Bernard is stating that any reaction observed in a mouse or dog will also be seen in humans. This was, 
and still is in some quarters, the very high predictive value that animal modelers assigned their model. As I will 
discuss, the fields of evolutionary biology and complexity theory, along with empirical evidence, have proven 
Bernard’s deterministic view naïve. 

One reason for Bernard’s deterministic view was that he was a creationist and this aspect of Bernard’s beliefs 
is not unimportant. Bernard was not a creationist in the current sense of the word, but he did reject evolution. 
LaFollette and Shanks: 

Moreover, certain types of creationism may involve a commitment to the interchangeability of species. 
Those who think that all creatures are products of a designer would likely assume—on grounds of ontolog-
ical simplicity—that the designer took the same basic stock of parts and re-arranged them to produce dif-
ferent species. Certainly this was one response to the discovery of homologous structures by 19th century 
comparative anatomists: what Darwin would see as evidence of descent with modification, creationists 
were apt to see as evidence of a designer’s variations on a basic common blueprint. According to creation-
ists, the main difference between men and animals was merely that the designer added an extra ingre-
dient—a soul. But the basic body parts remained constant. Under these assumptions, if we knew how a 
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rat’s liver functioned, we would likewise know how a human liver functioned (once we had adjusted for 
differences in size and weight) [28]. 

People in Bernard’s day thought human parts and animal parts were more or less interchangeable. Humans 
had souls and were sentient; otherwise animals and humans were identical. This view of creationism explains, at 
least in part, why Leonard Bailey transplanted the heart of baboon into Baby Fae ([29], pp. 162-163]. 

The controversy regarding vivisection initially centered on ethics and compassion, but some anti-vivisection- 
ists began criticizing vivisection on scientific grounds. All in all, most of those science-oriented criticisms 
turned out to be wrong. For example, the Germ Theory of Disease was just being developed and various diseas-
es were being discovered that ultimately were found to be caused by germs such as bacteria. Humans and ani-
mals can both be infected with various “germs” and in some cases the responses and treatments are similar. (See 
reference [15] on why this is the case.) So it should come as no surprise that a superficial study of infectious 
diseases resulted in the conclusion that animal models had predictive value for medical science. Had cancer or 
coronary artery disease been the primary killer of the 19th century, vivisection would probably have struggled 
and eventually been abandoned by science and society alike. Regardless, a superficial examination (or an ex-
amination on the gross level—the level seen with the naked eye) revealed many similarities between species. 
This was the era in which vivisection thrived. 

Just as was the case in the 1800s, some people today reject vaccines, the Germ Theory of Disease, along with 
science in general, in part because, from their perspective, all of this is associated with vivisection. Anti-vivi- 
sectionists of the 1800s over-reacted in criticizing the science of vivisection. For example, one anti-vivisection- 
ist surgeon stated that performing surgery on animal tissues had made him unfit to work with human tissues. 
This was absurd. One ties sutures, controls bleeding, and handles the tissues in more or less the same fashion 
whether the patient is a dog or human. Moreover, many anti-vivisectionists claimed that knowledge could never 
come from the vivisection lab because knowledge would not allow itself to come from such evil. Along the 
same lines, the anti-vivisectionist and theosophist Anna Kingsford thought she had killed Claude Bernard by 
throwing her psychic energy at him. Theosophy was popular in 19th-century Europe and an anti-science mental-
ity fit into this worldview. 

In conclusion, early vivisectors learned much about the things that mammals and humans have in common. 
Most of that could probably have been learned from human-based study, but that is a topic for another time. In 
any event, there is no doubt that the fundamentals of mammalian anatomy and physiology were discovered, or 
could have been discovered, from vivisection. 

By 1900 however, vivisection had a track record and some of the conclusions from the animal lab had been 
shown false. From the early 1900s to about 2000, the anti-vivisection community largely pointed out where vi-
visection studies failed and justified their position that vivisection was scientifically flawed on the basis of these 
failures. Such was not a bad position. In science the burden of proof is on the claimant (in this case the vivisec-
tion community that claims animal models have predictive value—more on that momentarily). If one can show 
enough examples of failure, when the practice in question is claimed to be predictive, or in cases when the re-
sponse is claimed to always be identical to humans, then these examples count. Examples in the forms of sup-
ported case reports can invalidate a scientific claim while case reports alone cannot prove a scientific claim. 
Proof requires data, usually in the form of controlled studies. 

The position of the anti-vivisectionists was also reasonable compared to the claims of the vivisection commu-
nity. If the vivisection community had claimed that animal models helped them form hypotheses for testing in 
humans, the anti-vivisectionists of the 20th century would have had little to criticize from a scientific perspec-
tive. Failures are to be expected for hypotheses. But the vivisection community over-reached in their claims just 
as the anti-vivisection community of the 19th century had over-reacted with theirs. William Osler’s statement, in 
a 1907 address to the Congress of American Physicians and Surgeons, implies that animal models are of predic-
tive value for human response to drugs and disease: 

The limits of justifiable experimentation upon our fellow creatures are well and clearly defined. The final 
test of every new procedure, medical or surgical must be made on man, but never before it has been tried 
on animals. ... For man absolute safety and full consent are the conditions which make such tests allowable. 
We have no right to use patients entrusted to our care for the purpose of experimentation unless direct ben-
efit to the individual is likely to follow. Once this limit is transgressed the sacred cord which binds physi-
cian and patient snaps instantly [30]. 
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Statements and positions illustrated by the above would discomfit vivisectors as more and more differences in 
response to drugs and disease surfaced between species. By the last few decades of the 20th century, there were 
vast numbers of studies and examples demonstrating that animal models clearly failed in terms of predicting 
human response to drugs and disease. From a scientific perspective however, anti-vivisectionists still lacked one 
important piece of the puzzle. Vivisectors frequently acknowledged that animal model X did not in fact fulfill 
the criteria as a good predictor of human response. However, they went on to assure society that there was 
another animal model being sought or invented that would succeed where animal model X had failed. (Today, 
this argument takes the form of genetically modified animals.) Anti-vivisectionists had no science-based counter 
to the argument that a better animal model was possible and hence should be sought. They needed a scientific 
theory to account for the failures and successes of animal models and that would also answer the question of 
whether trans-species extrapolation would ever be possible. The empirical evidence proved that current animal 
models had failed but this did not prove the paradigm was destined to fail. 

In the mid-20th century, evolutionary biologists started advising caution to their vivisectionist colleagues re-
garding the latters’ claims for animal models [31]. Even then, the better evolutionary biologists knew that the 
odds were against animal models in general in terms of having predictive value for human response to drugs and 
disease. There were just too many differences between species. These differences were not inconsequential; 
these differences were the reason there were different species in the first place. Vivisectors largely ignored the 
advice. 

Also in the mid-20th century, two new fields of physics were being developed. Chaos and complexity argua-
bly dated back to the turn of the 20th century, but the real work began in the 1950s and 1960s. Today, chaos is 
considered a division of complexity studies and both have revolutionized physics. Animals and humans are ex-
amples of evolved, complex systems. That statement summarizes the problems with animal models. Complex 
systems are highly dependent upon initial conditions and the reason we have different species is because the ini-
tial conditions (genetic make-up) change (in the form of mutations and changes in gene regulation, and so forth). 
The fact that animals and humans are evolved, complex systems, along with some knowledge from genetics, 
means that animal models will never be of predictive value for human response to drugs and disease. No matter 
how many genes one adds or deletes, the background genes will differ among species, as will other initial condi-
tions and perhaps even emergent phenomena. 

Everyone, however, does not agree that knowledge from the fields of evolutionary biology and complexity 
science has added to the empirical data adequately to justify, as of say, November 2013, abandoning animal 
models for drug and disease response. I will now analyze the position of three such people, reported in their De-
cember 2013 article [32]. 

Jarrod Bailey, Michelle Thew, and Michael Balls published an article titled “An Analysis of the Use of Dogs 
in Predicting Human Toxicology and Drug Safety” [32], which appeared online in December of 2013, that ana-
lyzed the predictive value of using dogs in drug testing for toxicity. A dataset of 2366 drugs from a drug com-
pany was made available to them and they used it to calculate likelihood ratios (LRs) for toxicity. This is good 
research, which supports numerous, previous studies. Unfortunately Bailey et al. demeaned the value of pre-
vious studies where positive predictive value (PPV) was or could have been calculated. Additionally, they ig-
nored the importance of theory when evaluating a practice like animal modeling. In this article, I will review the 
literature prior to the Bailey et al. article (prior to November of 2013) and attempt to place the contribution of 
their paper in context, as well as defend the importance of theory in science. I begin by exploring our current 
knowledge of evolutionary biology and complex systems. 

2. What Was Known Regarding the Predictive Value of Animal Models Prior to the 
Publication by Bailey et al.? 

2.1. Evolved Complex Systems 
Humans and animal are examples of evolved, complex systems. As I have addressed this concept many times 
[2]-[7] [10]-[18] [20], I will here briefly describe the characteristics of such systems. Systems in general can be 
classified as simple, chaotic, or complex. Characteristics of complex systems include the following: 
• Complex systems are adaptive. They interact with and adapt to their environment. Evolution is an example 

of this adaptive quality. 
• Complex systems have chaotic subsystems. Chaos is a discipline of complexity science and is best known 
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for dependence on initial conditions—the butterfly effect—and the fact that even though the systems are de-
terministic, they are not predictable. Perhaps the most well-known example of dependence on initial condi-
tions is the graph from Lorenz that was first associated with chaotic systems (Figure 1). 

• Complex systems are highly dependent on initial conditions. 
• Complex systems manifest emergent properties. Even complete knowledge of all the components would be 

insufficient to discover the emergent properties of the system. This means that biological complex systems 
cannot be fully understood by reductionism alone. This has led to the field of study known as systems biol-
ogy. 

• Complex systems have feedback loops. 
• Complex systems demonstrate a hierarchy of organization. These levels of organization are important be-

cause, as we discussed in “Animal Models and Conserved Processes” [12], animal models have predictive 
value at lower levels of organization. For example, fundamental particles act the same regardless of where in 
the complex system those particles are. Likewise, the laws of physics apply grossly to animals and human 
equally: gravity will act equally on a frog and human when dropped out of an airplane. The force of impact 
will also result in similar outcomes. 

• Complex systems are composed of many components. 
• Some of the components can be organized into modules. 
• Complex systems are non-Gaussian. They do not necessarily demonstrate the typical bell curve of distribu-

tion. 
• Complex systems exhibit nonlinearity in response to perturbations. Small changes in input may lead to large 

changes in output, while large changes in input may lead to small or no changes in output. At one time, a 
perturbation might elicit large response but at another time no response. Furthermore, two seemingly iden-
tical complex systems might respond oppositely to the same perturbation. 

• Complex systems are thought to be nonsimulable. This is one reason it is so difficult to predict outcomes in 
humans that have been exposed to drugs or disease. 

• Complex systems demonstrate redundancy. The loss of a component does not necessarily mean the entire 
system is incapacitated. 

• Complex systems demonstrate robustness. The system is resistant to change, in part because of the redun-
dancy of the system. 

• Complex systems demonstrate self-organization. 
• The whole is greater than the sum of parts of a complex system. This also limits what can be learned about a 

complex system through the use of reductionism. (For more on complexity see [33]-[47].) 
 

 
Figure 1. Small changes in a variable, three places beyond 
the decimal point, in Lorenz’ computer program produced 
very different results (red line) from the original (black line). 
(Graph is not the original but a likeness by the author.)        

time
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The above characteristics must be considered in light of the fact that animals and humans evolved. Basically, 
evolution changes the initial conditions, the genetic makeup, of an organism and complex systems are highly 
dependent on initial conditions. Perhaps the best example of small differences in initial conditions resulting in 
very different outcomes comes not from animal-human comparisons but from intra-human variability in res-
ponses to drugs and disease. The area of research known as personalized medicine stems from these differences 
[48]-[70]. 

Physicians have known for decades that great variability exists between men and women [71]-[82], and 
among ethnicities [65] [76] [81] [83]-[95] in terms of response to drugs and disease. It was long suspected and 
recently confirmed that monozygotic twins differ in disease susceptibility and drug response [96]-[114]. These 
dramatic differences, such as when only one twin contracts schizophrenia or multiple sclerosis, are due to very 
small differences in genetic makeup—differences in initial conditions. When the consequences of very small 
changes in human genetic makeup—such as single nucleotide polymorphisms, copy number variants, the effect 
of gene deletion, differences in genetic regulation and expression, differences in gene and protein networks, al-
ternative splicing, background and modifier genes, pleiotropy, and mutations in general—are considered, it 
should come as no surprise that the even greater genetic differences between species will result in dramatically 
different outcomes to perturbations like diseases and drugs. More on this momentarily. 

2.2. Empirical Evidence 
Numerous studies have compared the outcomes from drugs or disease in humans with outcomes in various ani-
mal species and strains. (The following references compose a very partial list [115]-[139]. Moreover, there is a 
history of failures in specific areas such as HIV vaccine research [7] [140]-[142] and neuroprotection [143]- 
[153]. Historically, there are also a plethora of failures such as the response to poliovirus [154]-[156]. The in-
stances in which animal models have responded similarly have either been when evaluating efficacy for treating 
a third complex systems, such as was the case for anti-bacterials [15], or after a long series of failures when a 
model was discovered that responded similarly to humans but only in this one case [6] [15]. Such a success rate 
does not yield numbers consistent with even a moderate predictive value. 

2.3. Opinions of Experts 
While the argument from authority, isolated from other factors, is an example of fallacious reasoning, the opi-
nions of experts, especially when there is consensus, should be considered. A consensus exists among scientists 
inside and outside of drug development that animal models have no predictive value [2]-[4] [6] [10] [19] [20] 
[117] [119] [120] [125] [127]-[130] [132] [135] [136] [138] [139] [157]-[250]. This stands in sharp contrast to 
scientists, spokespeople, and politicians who have a vested interest, directly or indirectly, be it financial or emo-
tional, in animal modeling. Consider the following examples from scientists representing the consensus. In a 
2009 article, Markou et al. state: 

Despite great advances in basic neuroscience knowledge, the improved understanding of brain functioning 
has not yet led to the introduction of truly novel pharmacological approaches to the treatment of central 
nervous system disorders. This situation has been partly attributed to the difficulty of predicting efficacy in 
patients based on results from preclinical studies. Few would dispute the need to move away from the con-
cept of modeling CNS diseases in their entirety using animals. However, the current emphasis on specific 
dimensions of psychopathology that can be objectively assessed in both clinical populations and animal 
models has not yet provided concrete examples of successful preclinical-clinical translation in CNS drug 
discovery [200]. 

The FDA has acknowledged the need to make toxicology science-based [247], with FDA Commissioner 
Margaret Hamburg echoing MacDonald and Robertson, stating: “Most of the toxicology tools used for regula-
tory assessment rely on high-dose animal studies and default extrapolation procedures, and have remained rela-
tively unchanged for decades, despite the scientific revolutions of the past half-century” [248]. Elias Zerhouni, 
former director of NIH and current head of R&D at Sanofi, was quoted in the June 25, 2012 issue of Forbes as 
saying: “R&D in pharma has been isolating itself for 20 years, thinking that animal models would be enough 
and highly predictive, and I think I want to just bring back the discipline of outstanding translational science, 
which means understand the disease in humans before I even touch a patient.” Zerhouni was also quoted in NIH 
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Record in 2013 as stating the following:  

“We have moved away from studying human disease in humans,” [Zerhouni] lamented. “We all drank the 
Kool-Aid on that one, me included.” With the ability to knock in or knock out any gene in a mouse—which 
“can’t sue us,” Zerhouni quipped—researchers have over-relied on animal data. “The problem is that it 
hasn’t worked, and it’s time we stopped dancing around the problem…We need to refocus and adapt new 
methodologies for use in humans to understand disease biology in humans” [250]. 

The above can be easily multiplied and numerous examples from the second half of the 20th century listed. 
The notion that animal models lack predictive value is not new to the 21st century. When the opinions of experts 
are combined with the empirical evidence, evolutionary biology, and complexity science, a compelling case ex-
ists against using animal models for their predictive value. I now turn to combining these areas into a theory of 
science. 

2.4. Trans-Species Modeling Theory 
The term theory is commonly misrepresented by scientists and nonscientists therefore the following two expla-
nations are appropriate. The National Academy of Sciences (USA), explains theory as follows: 

In everyday usage, “theory” often refers to a hunch or a speculation. When people say, “I have a theory 
about why that happened,” they are often drawing a conclusion based on fragmentary or inconclusive evi-
dence. The formal scientific definition of theory is quite different from the everyday meaning of the word. 
It refers to a comprehensive explanation of some aspect of nature that is supported by a vast body of evi-
dence. Many scientific theories are so well established that no new evidence is likely to alter them substan-
tially. One of the most useful properties of scientific theories is that they can be used to make predictions 
about natural events or phenomena that have not yet been observed ([253], p. 11). 

The American Association for the Advancement of Science (AAAS) states: 

In detective novels, a “theory” is little more than an educated guess, often based on a few circumstantial 
facts. In science, the word “theory” means much more. A scientific theory is a well-substantiated explana-
tion of some aspect of the natural world, based on a body of facts that have been repeatedly confirmed 
through observation and experiment. Such fact-supported theories are not “guesses” but reliable accounts 
of the real world. The theory of biological evolution is more than “just a theory.” It is as factual an explana-
tion of the universe as the atomic theory of matter or the germ theory of disease. Our understanding of 
gravity is still a work in progress. But the phenomenon of gravity, like evolution, is an accepted fact [254]. 

Trans-Species Modeling Theory (TSMT) states: “While trans-species extrapolation is possible when pertur-
bations concern lower levels of organization or when studying morphology and function on the gross level, one 
evolved, complex system will not be of predictive value for another when the perturbation affects higher levels 
of organization” [16]. TSMT was formulated by the author and is not yet a universally accepted theory like the 
Theory of Evolution and the Germ Theory of Disease. However, the basis, or components, of TSMT are univer-
sally accepted. TSMT is based on the Theory of Evolution and Complexity Theory (or complexity science) and 
has been tested in the form of the empirical evidence, comparing animal to human outcomes to perturbations. 

In the early days of animal-based research, the researchers discovered that the general morphology and func-
tion of organs was the same in species with a recent common ancestor. For instance, the pancreas is involved in 
regulating sugar levels in the body in mammals. Evolution predicts this to be the case—general morphology will 
be very similar the closer two species are to their common ancestor. For example, humans and chimpanzees look 
more like each other than either looks like a fish. But evolution also predicts that on a finer level of examination, 
the details regarding how an organ functions and responds to perturbations will vary. For example, HIV infects 
both humans and chimps but the response to the infection is dramatically different—a mild cold versus death if 
untreated. Likewise, the heart pumps blood in pigs and humans but only humans suffer myocardial infarctions 
due to intra-coronary plaque. Superficial similarities do not imply the same disease or the same mechanism. 
Trichotillomania, the pulling out of one’s hair in humans responds to behavioral modification and anti-depres- 
sants. When cats do the same it is usually due to allergies, for example flea allergy, and is treated by eliminating 
the fleas or desensitization to the allergen. Humans and other mammals have brains and humans are naturally 
predisposed to experience cerebral ischemia—strokes. Cerebral ischemia can be induced in animals and numer-
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ous drugs have been shown efficacious in preventing long terms brain damage in animals. Such drugs have con-
sistently been shown inefficacious in humans. 

Greek and Hansen, discussing how TSMT fulfills Popper’s criteria of a scientific theory [255], state: 
1) It is supported by a vast amount of evidence. Where direct comparisons are possible—such as with drug 

toxicity, efficacy, bioavailability, and so forth—definitive evidence exists to support the concerns raised by 
trans-species modeling theory... [For references see original.] If two evolved CASs [complex adaptive systems] 
are not predictive for each other in these areas, what changes in evolution would account for their being predic-
tive in other areas such as HIV, ALS, and cancer? Indeed the empirical evidence in these areas agrees with that 
from the drug development literature. 

2) The prediction that such systems should not be of predictive value contained risk in that evolution has fol-
lowed common pathways and therefore many similarities should and do exist. Based on TSMT, we should ex-
pect agreement among species when the perturbation affects only the lower levels of the hierarchy of organiza-
tion (for example, the laws of physics affect all mammals equally). However, as one moves into the higher le-
vels of organization the perturbations should be expected to result in varying responses both qualitatively as well 
as quantitatively... [See original for references.] Empirically, we find those two predictions are fulfilled. 

3) It prohibits animal models from predictive value at higher levels of organization and this has been quanti-
fied. 

4) It is refutable. For example, a species or strain that correlated with human data regarding known terato-
gens >95% of the time and that correctly predicted novel teratogens a similar percentage of the time would fal-
sify the theory. 

5) It has been tested many times in disciplines ranging from infectious diseases, cancer, toxicity, neurology, 
and drug efficacy to teratogenicity. 

6) Confirming evidence has come from many and varied disciplines involved in animal use: research on heart 
disease, sepsis, trauma, and anesthesiology. 

7) The theory is straightforward and has no ad hoc features [16].  
TSMT summarizes the current scientific knowledge regarding when animal models have predictive value and 

when they do not. (Please see reference 16 for more on TSMT.) But, it sometimes takes theories in science dec-
ades to be accepted by other scientists and society. For example, Climate Change Theory, also known as global 
warming, is vigorously opposed by some [256] [257]. It also took time for the Germ Theory of Disease to be 
accepted [258] [259]. 

3. Likelihood Ratio vs. Positive Predictive Value 
3.1. Animal Modelers Claim a High Predictive Value for Animal Models 
Claude Bernard’s 19th-century position that animal models were of high predictive value has not changed 
among current animal modelers. Consider the following from Gad: 

Biomedical sciences’ use of animals as models [is to] help understand and predict responses in humans, in 
toxicology and pharmacology by and large animals have worked exceptionally well as predictive models 
for humans. Animals have been used as models for centuries to predict what chemicals and environmental 
factors would do to humans. The use of animals as predictors of potential ill effects has grown since that 
time. If we correctly identify toxic agents (using animals and other predictive model systems) in advance of 
a product or agent being introduced into the marketplace or environment, generally it will not be introduced. 
The use of thalidomide, a sedative-hypnotic agent, led to some 10,000 deformed children being born in 
Europe. This in turn led directly to the 1962 revision of the Food, Drug and Cosmetic Act, requiring more 
stringent testing. Current testing procedures (or even those at the time in the United States, where the drug 
was never approved for human use) would have identified the hazard and prevented this tragedy [260].  

(See reference number [6] for a rebuttal of Gad’s sentiment regarding thalidomide.) 
Gad is representative of the community of scientists, politicians, and spokespeople that have a vested interest 

in animal modeling, as typified by the following statements. David Willetts, Science Minister of the UK, states: 
“The Government is committed to working to reduce the use of animals in scientific research, but we do recog-
nise that there remains a strong scientific case for the careful regulated use of animals in scientific research and 
that this does play a role in ensuring new medicines are safe and effective” [261]. 
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Hart et al. state: 

Nonhuman primates (NHPs) are important models in preclinical research enabling understanding of patho-
genic mechanisms in human disease that readily translate into therapy development. Marmoset colonies are 
outbred reflecting the genetic heterogeneity of the human population, although differences exist compared 
with humans. Marmoset disease models are appropriately complex and their use requires in-depth know-
ledge of marmoset biology and optimal laboratory management [262]. 

Cheng states: “Animal tests are necessary for some research, such as testing drugs for toxicity. It would be, in 
my opinion, improper to release drugs for human use without animal testing” [263]. Vassar states: “Chronic 
dosing in mice and monkeys is necessary to show the efficacy and safety of the antibody before it’s taken into 
humans” [264]. Rigmor Thorstensson, Head of the Department of Virology, Immunology and Vaccinology, at 
SMI in Sweden wrote in an article titled “Medical research on apes is no ethical problem for me” [265]: 

The ethical reasons against animal testing must be weighed against the evidence that more and more people 
across the globe can have access to effective drugs and vaccines. If these were tested in clinical trials with-
out first undergoing animal testing large numbers of people risking their lives in such studies and the de-
velopment could also be delayed catastrophic. For me it is no ethical problem of using monkeys in experi-
ments, it is the only way to produce an effective vaccine against the major global infectious diseases, HIV, 
tuberculosis and malaria [265]. 

On March 25, 2011, a letter from Andrew B. Rudczynski, Yale University’s associate vice president for re-
search administration, was published in the New Haven Register, which contained the following: “Contrary to 
claims in a letter to the editor, the basic research model used by Yale University and its peer institutions is 
scientifically valid and predictive of human disease” [266]. (For more on the use of animals in basic research see 
reference [3].) Hau states: “A third important group of animal models is employed as predictive models. These 
models are used with the aim of discovering and quantifying the impact of a treatment, whether this is to cure a 
disease or to assess toxicity of a chemical compound” [267]. The Committee on Applications of Toxicogenomic 
Technologies to Predictive Toxicology and Risk Assessment stated in 2007: 

Animal models offer important experimental research opportunities to understand how genetic factors in-
fluence differential response to toxicologic agents. Animal models are advantageous as a first line of re-
search because they are less expensive, less difficult, and less time-consuming than human studies. In addi-
tion, animal studies can address questions that are almost insurmountable in human studies, such as ques-
tions about sporadic effects or effects that cannot be adequately examined for sex linkage because of sex 
bias in employment ([268], p. 123]. 

The above could be easily multiplied and firmly establishes that animal modelers assign high predictive value 
to animal models. Contrast the above with the examples of statements from scientists involved in both drug de-
velopment and animal modeling from Section 2.3. The contrast between the two should be kept in mind when 
evaluating the following statements from Bailey et al. In the remainder of Section 3, I will quote from Bailey et 
al. [32] and compare and contrast TSMT with the authors’ statements. 

3.2. Where Does the Bailey et al. Study Rank in Importance for Proving Animal Models 
Are Have No Predictive Value? 

Bailey et al. sought to “estimate the evidential weight provided by canine data to the probability that a new drug 
may be toxic to humans...” In order to accomplish this, Bailey et al. “calculated Likelihood Ratios (LRs) for an 
extensive dataset of 2366 drugs with both animal and human data...” 

Bailey et al. appear to be making three claims: 
1) Their paper establishes the lack of predictive value for canine models as used in toxicity testing in drug 

development for the first time. 
2) Positive Predictive Value (PPV) cannot be used to assess a model or test’s real predictive value. 
3) Similar studies are needed for each test and research project in which animals are used. 
Consider the following statements from Bailey et al.: 

In previous research into the reliability of animal models as predictors of toxicity in humans, some authors 
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(e.g. 9) have focused on the sensitivity, expressed as the “true positive concordance rate”, or the so-called 
Positive Predictive Value (PPV), given by a/(a + b) [see Table 2], which reflects the probability that human 
toxicity was correctly identified by the animal model, given that toxicity was observed in the animal model 
(e.g. 12). However, neither of these metrics is suitable for the role of assessing the evidential weight pro-
vided by any toxicity test... 
The analysis presented here is urgently required, to support informed debate about the worth of animal 
models in preclinical testing. It is acknowledged among some stakeholders (if not universally among all 
stakeholders) that assessment of the scientific value of animal data in drug development is necessary, has 
been scarce, and has been thwarted for decades by the unavailability of relevant data for analysis (e.g. 14). 
Nevertheless, primarily due to concerns over privacy and commercial interests, data sharing and making 
data available continue to be resisted, in spite of assurances to the contrary from industry (14).  

Reference [12] in the above quotation is “Systematic Reviews of Animal Models: Methodology versus 
Epistemology” by Greek and Menache [17]. In that article, as well as in many others, Greek et al. explain why 
PPV is useful in determining the predictive value of animal models. But, before I go into detail regarding PPV, 
let’s take closer look at the language of Bailey et al. The phrase “the so-called Positive Predictive Value (PPV)” 
is disingenuous as PPV is a routinely used calculation. Prefacing it with “so-called” is an example of poisoning 
the well, as “so-called” immediately places the legitimacy of PPV into doubt. 

Bailey et al. make clearer their position that without the LRs calculated in their article, no definitive data ex-
isted on the predictive value of dogs toxicity testing: “However, only limited evaluations of the reliability of the 
canine model for this purpose have been conducted, chiefly due to the difficulty of accessing relevant data, most 
of which are unpublished and proprietary to pharmaceutical companies” [32]. While it is true that volumes of 
proprietary drug company data exist, there have been exceptions to the rule that none has been made available. 
Data from Phase I, II, and III trials, in the form of attrition rates [130] [135] [136], reflects directly on the animal 
models in terms of efficacy and safety as every drug was both safe and effective on some animal species or 
strain and the drug development community acknowledges that animal models are the primary method used to 
evaluate safety and efficacy [129]-[131] [135]-[137] [164] [173] [187] [197] [208] [228] [269]-[271]. As Bailey 
et al. point out, most of the time the dog and a rodent species were used in these studies. Given the extremely 
high attrition rates (90% - 95%), as Bailey et al. also allude to, one could logically, as well as scientifically, con-
clude that the dog has no predictive value for human response. 

Furthermore, direct human-to-animal comparisons have been made for efficacy and toxicity and the predic-
tive values found to be very low [115] [117]-[123] [126] [128] [132] [138]. (Also see references in Section 2.2.) 
Many of these studies measured toxicity as a single entity. Moreover, they counted as a positive any animal that 
exhibited the same toxicity as a human. This is a very generous interpretation of the predictive value in terms of 
toxicity and animal models. If these toxicities had been separated by species, the total number of positive hits 
per species would have been much less and thus the PPV less. Therefore, even with unsophisticated studies such 
as some of the above, the PPV was low and would have been lower had better methods been used.  

Sophisticated measurements are not always required in order to ascertain facts. Very rarely are people studied 
as they jump out of an airplane without a parachute and they almost never have monitors in place such as EKGs, 
pulse oximetry, end tidal carbon dioxide detectors, and pulmonary artery catheters. Yet, scientific consensus 
remains that jumping out of an airplane flying over 3000 feet above ground level is very likely lethal. Centuries 
of observing that animal models fail to inform scientist regarding what a drug or disease will do in humans has 
provided data similar to the parachute example. Higher math or statistics is not needed. 

Agencies such as the FDA and scientists in drug development have also been very vocal that animal tests in 
general offer little in terms of predictive value for efficacy or toxicity [129]-[131] [135]-[137] [164] [173] [187] 
[197] [208] [228] [269]-[271]. Finally, the physiological properties that lead to efficacy and toxicity (absorption, 
distribution, metabolism, and elimination) have also been studied and predictive value shown to be nonexistent 
(see Figure 2) [116] [125] [127] [160]. Some of these scientists studied dogs specifically [124]. Other studies 
have revealed variation in genetic response to the diseases that drugs are designed to treat (see Figure 3) [139]. 
(Consilience—evidence from fields other than the exact one under question—is important in science. See refer-
ence [16] for more on the Seok [139] study.) Based on such empirical evidence, the lack of predictive value for 
animal models in general is well accepted in the scientific community [2]-[4] [6] [10] [19] [20] [117] [119] [120] 
[125] [127]-[130] [132] [135] [136] [138] [139] [157]-[240]. This is further confirmed by the fact that roughly 
50% of clinical trials are never published, in part due to the fact that the trials failed because the animal data was  
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Figure 2. Comparison of oral bioavailability among three species. Data from reference 
[160], graph by author.                                                       

 

 
Figure 3. Seok et al. [139] reveal species differences in response to disease.                                    
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so misleading [272]. The noteworthiness of Bailey et al. is that they obtained access to the data from a drug 
company. That was an accomplishment in that no one else had obtained such access to such a large number of 
drugs, but it does not lessen the importance all the empirical evidence before the publication of their paper or 
demand that society call into question the conclusions drawn from such studies. 

Finally, thalidomide was deemed dangerous by physicians because of three patients [273]. The use of animals 
in drug development affects far more than three patients and has far more evidence against it than thalidomide 
did at the time it was removed from the market. (For more on thalidomide see [6].) Granted, this analogy is not 
perfect; nevertheless large numbers and sophisticated analyses are not always needed to form conclusions. 

Bailey et al. continue: 

Those evaluations that have been conducted have usually employed “concordance” metrics (e.g. 9), which 
various authors have interpreted as the true positive rate (“sensitivity”) or the Positive Predictive Value 
(PPV). While these metrics are appropriate for assessing the reliability of a diagnostic test for a specific 
disorder (e.g. HIV infection), the insights they provide depend critically on the question being asked of the 
diagnostic test. However, they are not appropriate for assessing the salient question at issue with animal 
models, which is whether or not they contribute significant weight to the evidence for or against the toxici-
ty of a given compound in humans. 

Bailey et al. are conflating an accepted scientific formula that measures positive predictive value with a dif-
ferent formula that yields sensitivity. They are also confusing the issue further by introducing concordance, used 
by Olson et al. [274] as “true positive concordance rate”, a term an invented by Olson et al. (Shanks and I ad-
dress this Animal Models in Light of Evolution [20].) Sensitivity, along with specificity, PPV, and NPV have 
been used for decades in many areas of science and industry to measure predictive ability of a range of methods 
including diagnostic tests in medicine. PPV is not confined to medical tests, however. It can be used to assess 
the predictive ability of dogs to sniff out drugs or explosives in airports, cadaver dogs’ ability to sniff out chem-
icals associated with the post-mortem state [275], the predictive ability of fortune tellers and psychics, whether 
death certificates accurately reflect cause of death in workplace homicide victims [276], in the jet-manufacturing 
industry [277] retrospective analysis of occupational exposure [278], in industry in general [279], business in 
general [280], ergonomics [281], customer behavior analysis [282], nutrition science [283], in computer science 
in general [284]-[287], for testing programs to catch spam [288], and to test whether a sobriety test has a high 
enough predictive value to evaluate driver behavior [289]. Indeed these simple statistics have been used to eva-
luate virtually any model, test, practice, method, or entity in any area. 

For example, Que et al. state the following regarding an algorithm for Biosurveillance and Biosecurity: 

In this paper, we propose a Z-Score Based Multi-level Spatial Clustering (ZMSC) algorithm for the early 
detection of emerging disease outbreaks. Using semi-synthetic data for algorithm evaluation, we compared 
ZMSC with the Wavelet Anomaly Detector, a temporal algorithm, and two spatial clustering algorithms: 
Kulldorff’s spatial scan statistic and Bayesian spatial scan statistic. ROC curve analysis shows that ZMSC 
has better discriminatory ability than the three compared algorithms. ZMSC demonstrated significant 
computational efficiency—1000× times faster than both spatial algorithms. Finally, ZMSC had the highest 
cluster positive predictive values of all the algorithms. However, ZMSC showed a 0.5 - 1 day average delay 
in detection when the false alarm rate was lower than one false alarm for every five days. We conclude that 
the ZMSC algorithm improves current methods of spatial cluster detection by offering better discriminatory 
ability, faster performance and more exact cluster identification [290]. 

Similarly, Almeda et al. state: 

Several computational systems which depend on the precise location of the eyes have been developed in 
the last decades. Aware of this need, we propose a method for automatic detection of eyes in images of 
human faces using four geostatistical functions—semivariogram, semimadogram, covariogram and corre-
logram and support vector machines. The method was tested using the ORL human face database, which 
contains 400 images grouped in 40 persons, each having 10 different expressions [291]. 

PPVs ranged from 83% - 94% depending on the function used. 
Likewise, in pattern recognition and information retrieval, the positive predictive value measures retrieved 

cases that are deemed relevant. LRs require prevalence in order to evaluate diagnostic tests and there is no pre-
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valence to measure in some situations where PPV is used. PPV can also be derived from Bayesian analysis [292] 
and, as Bayesian analysis is not confined to medical testing, neither is PPV. 

The claim that PPV cannot be used to determine “whether or not they [animal models] contribute significant 
weight to the evidence for or against the toxicity of a given compound in humans,” suggests a fundamental mi-
sunderstanding of what PPV is. PPV is a probability and this probability can be applied to situations included in 
the original calculation of PPV. For example, if human hepatotoxicity was evaluated using mongrel dogs and the 
PPV found to be 0.25, then one could assess a new chemical’s probability of producing hepatotoxicity in human, 
when hepatotoxicity was seen in mongrel dogs, as being 0.25. That is what PPV is used for. When predictive 
values are that low, one must conclude that the model is not capable of judging hepatotoxicity. Granted NPV 
cannot be calculated without the false-negative rate being known, but TSMT addresses why one evolved com-
plex system should even be considered to be capable of having predictive value, positive or negative, for another 
evolved complex system at higher levels of organization. TSMT combined with PPVs and the empirical evi-
dence was sufficient to determine that animal testing for toxicity lacked predictive value and that this would not 
change with more genetic modifications to animals. 

Bailey et al. continue: 

The case of the PPV is more subtle. This metric is a measure of the probability that human toxicity will be 
correctly identified, given that the animal model detected toxicity. As such, PPVs are conditional probabili-
ties, the condition being the preexistence of a positive animal test result. This makes PPVs dependent on 
the prevalence of toxicity in compounds, and thus an inappropriate measure of the reliability of the test 
with any specific compound (e.g. 10, 13). 

Prevalence is indeed important in determining predictive ability of diagnostic tests. Grimes and Schultz state: 
“Likelihood ratios can refine clinical diagnosis on the basis of signs and symptoms; however, they are underused 
for patients’ care. A likelihood ratio is the percentage of ill people with a given test result divided by the per-
centage of well individuals with the same result” [293]. This is a good definition. Note that prevalence is defined 
by those taking the test and not by a survey of the population at large. This can skew the real numbers and per-
centages. For example, the prevalence of appendicitis in the general population is lower than the prevalence in 
the emergency room among patients with right lower quadrant pain and rebound tenderness. 

Also note that prevalence, as used to calculate LR, can only be determined retrospectively after we know 
which patients really were ill and which were not. To make this definition specific to our analysis of animal 
models, the true prevalence of the side effect, in terms of toxicity, or of the effect—efficacy—can only be as-
certained after administering the drug to thousands of humans. I will address why thousands, if not tens of thou-
sands, are needed momentarily. For now, we need to understand that in terms of screening drugs for efficacy and 
toxicity in animals, the prevalence of these factors are not known in humans hence those evaluating a new drug 
will not have that data available. This is highly significant for those evaluating new drugs for safety. The preva-
lence of a disease is known while the prevalence of side effect of a new drug is not. This is yet another differ-
ence between evaluating diagnostic tests and the efficacy and safety of new drugs. 

Altman and Bland state: 

The whole point of a diagnostic test is to use it to make a diagnosis, so we need to know the probability that 
the test will give the correct diagnosis. The sensitivity and specificity do not give us this information. In-
stead we must approach the data from the direction of the test results, using predictive values [294]. 

Altman and Bland then describe the use of prevalence when evaluating diagnostic tests. They then state: “If 
the prevalence of the disease is very low, the positive predictive value will not be close to 1 even if both the sen-
sitivity and specificity are high. Thus in screening the general population it is inevitable that many people with 
positive test results will be false positives” [294]. But, as we have seen, PPV is used in many areas including 
manufacturing and ergonomics where prevalence is either immaterial or unknown. The point being that PPV has 
value in specific areas even without knowledge of prevalence or where the concept of prevalence is not applica-
ble. Moreover, using animal models for testing safety is not an example of a diagnostic test, hence the rules for 
application are different. 

Bailey et al. continue: “Thus, any appropriate metric of the evidential value of animal models requires know-
ledge of both the sensitivity and the specificity of the model. This, in turn, implies that the appropriate metrics 
for the evidential weight provided by an animal model are LRs (e.g. 13).”  
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The following are definitions of evidential value: 

Value of those records which are necessary to provide an authentic and adequate evidence of an organiza-
tion’s actions, functioning, policies, and/or structure. Evidential value relates to the document’s creation 
and not necessarily to its content or informational about the activities, functions, and origins of its creator 
[295]. 
Value of records given as or in support of evidence, based on the certainty of the records origins. The value 
here is not in the record content. This certainty is essential for authentic and adequate evidence of an enti-
ty’s actions, functioning, policies, and/or structure [296]. 

Evidential value appears to be used primarily by archivists and in forensic science, business, law, and history. 
As of January 2014, PubMed contained 126 articles with the phrase evidential value. Of the five freely available, 
all were related to forensic science and most of the other 121 also appeared to be related to forensic science. 
None of the articles addressed PPV and only one mentioned LR. Clearly, the articles in PubMed do not use the 
phrase evidential value very frequently and only very rarely associate it with LR. I am not sure what Bailey et al. 
are referring to when they use the phrase evidential value. Moreover, the way animal models are used in drug 
development is more on the order of digital than analog. If certain toxicities are seen in animal models then it is 
unlikely that the drug will continue to be developed. Thus, even if we assume that what Bailey et al. mean by 
evidential value is more along the non-dictionary use of the phrase (consistent with “Can we trust this test?”) we 
still must assess whether the animal model offers predictive value for drug development. 

In order to illustrate the differences between +LRs (PLR) and PPV, Bailey et al. include a graph: “The inap-
propriate nature of PPVs is demonstrated in Figure 2 [shown below as Figure 4], which shows a scatter plot of 
‘ranked’ PPVs against equivalent ranked PLRs. Each PPV and PLR was ranked according to its value for each 
of the 436 classifications of effects, and these ranks were plotted against each other.” The graph does indeed 
show a shotgun blast pattern, or scattergram, indicating no correlation between the rankings of the drugs using 
the two values. This is quite impressive at first glance but upon closer examination the graph is shown to be of 
no real value. The graph does not compare PPV with LR, which is what one would expect from the article. Ra-
ther it compares where the drugs studied ranked with respect to the other drugs using the two methods. Whether 
 

 
“PPVs and PLRs for all 436 results were ordered according to their value, with the highest ranking first and 
the lowest last. For each BMO and tissue effect, the corresponding PPV and PLR rank were plotted against 
each other. If a perfect correlation exists, all points should lie on the line, where, for example, the 10th, 50th, 
and 100th highest PPV value would also be the 10th, 50th, and 100th highest PLR values. However, the sig-
nificant scatter of the data points demonstrates that little correlation exists between PPV and PLR. For ex-
ample: the 20th highest PPV ranks only 404/436 for PLR, whereas the 30th highest PLR ranks only 406/436 
for PPV” [32]. 

Figure 4. “Scatter plot illustrating the lack of correlation of PPVs and PLRs of biomedical ob-
servations (BMOs) and tissue effects in humans and dogs” [32].                             

500

450

400

350

300

250

200

150

100

50

0

PP
V

0             50           100          150          200          250          300          350          400          450    500 
PLR



R. Greek 
 

 
981 

a drug has a PPV of 0.5 or 0.01, along with corresponding LRs, determined the ranking of the drug. But in real 
life PPVs of 0.01 or 0.5 both reveal a test that offers no predictive value, regardless of where that value ranks 
compared to the LR+. The ranking system as used appears to be an attempt to mislead the reader into thinking 
that rank, as opposed to low PPV is related to the success or failure of the method in general. Statistics offers 
many ways to mislead and graphs offer yet another way. The fact that Bailey et al. chose to employ this graph 
suggests they might have an agenda other than simply reporting likelihood ratios from drug data. (See Figure 2 
for an example of a graph that is also a scattergram but that is valuable because it compares the relevant values 
directly.) 

The situation of using LRs to evaluate animal models as opposed to PPV is similar to using a CT scan of the 
chest as opposed to a chest x-ray (CXR) to diagnose a pneumothorax. Chest x-rays are readily available and less 
expensive than a chest CT, however the chest CT is the gold standard for diagnosing a pneumothorax. Never-
theless, a vast majority of pneumothoraxes are diagnosed with CXR. The reason for this is simply that the CXR 
quicker, easier, less expensive test is all that is usually needed to diagnose a clinically relevant pneumothorax. 
One does support the diagnosis from CXR with a CT scan. Likewise, calculating LRs is currently the gold stan-
dard in terms of diagnostic tests, but again animal toxicity is not a diagnostic test and even if it were there exists 
historical data that is sufficient to rule out animal tests as offering predictive value for human response. Addi-
tionally, a series of very low PPVs combined with theory, other data, along with the opinions of experts is ade-
quate for revealing such a profound lack of predictive value that drug development should abandon animal 
models. Indeed, this is exactly what we are seeing. As the quotes from experts in section 2.3 revealed, the phar-
maceutical industry is changing. Bailey et al.’s success was in obtaining the data from a pharmaceutical compa-
ny that allowed the calculation of specificity and LRs. Bailey et al. did not reveal a conceptually new conclusion 
that could only have been discovered with their data. 

The pharmaceutical industry understands the above and has been searching for viable methods to test for ef-
ficacy and toxicity for over a decade. Clearly Bailey et al. offer nothing new to the people who are actually 
doing the work of drug development. Why then does Bailey et al. make such claims? The people actively de-
fending the status quo regarding toxicity testing are the contract research organizations that are paid to perform 
the animal testing. Also rejecting the data that proves toxicity testing has never been effective are various animal 
protection organizations whose livelihood depends on animal testing and their supposed opposition to it. If ani-
mal testing were shown to have been unnecessary for the last two to three decades, when animal protection or-
ganizations were saying it was necessary, they would be completely discredited and possibly in violation of na-
tional laws. 

3.3. Animal Models in Light of Personalized Medicine 
Sensitivity, specificity, positive predictive value, and negative predictive value vary with the genetic makeup of 
the population. Prevalence, regardless of how it is measured, does not take into account genetic variation. This is 
one reason why, as I stated above, thousands if not tens of thousands of people are needed in order to truly eva-
luate a drug. This is why estimates of prevalence based on clinical trials are very misleading. Even when one 
thousand people are tested prior to marketing the drug, side effects that are rare, such as was the case with Vioxx, 
will not necessarily be seen. But such side effects are important enough to necessitate the drug’s withdrawal 
from the market. The solution to this is not in vitro tests per se or in silico tests per se, but rather gene-based 
tests and gene-based prescribing. Animal models do not figure into the solution in any fashion. Drug develop-
ment must be human-based and that is what the industry is aiming for. 

As I previously stated, physicians and scientists have long known that individual patients respond differently 
to drugs and that one reason for this is genetic variations. The fields of pharmacogenetics and personalized 
medicine are based on this. For example, the enzyme CYP2D6 converts the commonly prescribed pain killer 
codeine to morphine. In 2005, a new mother was prescribed codeine for postpartum pain. There is nothing un-
usual about this so far. Unfortunately, the woman had several copies of the gene that makes CYP2D6 and there-
fore she metabolized almost all the codeine, converting it to morphine. These very high morphine levels did not 
adversely affect her but the morphine was passed along to the baby through the woman’s breast milk. When the 
baby was brought to the ER, 12 days after birth, he had gray skin and died the next day. Ultimately the concen-
tration of morphine in the baby’s blood was discovered to be 30 times higher than anticipated [49]. 

We now understand that there are important differences in genetic makeup among ethnicities [65] [76] [81] 
[83]-[95]. Among cigarette smokers, African Americans and Native Hawaiians are more susceptible to lung 
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cancer than whites, Japanese Americans, and Latinos [85]. Acute lymphoblastic leukemia (ALL) is a common 
childhood cancer and affects ethnicities in varying frequencies. Hispanic children are more likely to contract 
ALL than Caucasian or African children. Variants in four genes, ARID5B, IKZF1, CEBPE, and CDKN2A/2B, 
have been identified that appear to be responsible for some cases of ALL and more than 5 copies of these genes 
are associated with ALL [297]. (The four genes can be inherited from both parents thus a total of eight copies of 
the variants are possible.) A recent study [298] revealed that: “African American women coinfected with human 
immunodeficiency virus (HIV) and hepatitis C virus (HCV) are less likely to die from liver disease than Cauca-
sian or Hispanic women.” 

Differences exist between the sexes [71]-[81], and even between monozygotic twins [96]-[114]. Individuals 
of the same species or strain also differ in ways that affect disease and drug response [61] [190] [201] [240] 
[299]-[316].  

Even diseases have even been differentiated because of genetics. By studying tissues from human cancer pa-
tients, researchers discovered that stomach cancer is actually two different diseases and response to therapy de-
pends on the genome of the cancer [59]. An individual’s cancer is not one cancer but many, varying in genetics 
[317]. This is important, but perhaps even more important is that some of the cancer cells have genes turned on 
such that they can implant into other tissues more easily. A study examined circulating tumor cells (CTCs), cells 
that are circulating in the bloodstream and that were derived from the original cancer. The study revealed 
marked genetic variation among the cancer cells [62]. This in part explains drug-resistant cancer, why patients 
respond so differently to treatments, and why different treatments may be needed in the same patient. It also, 
again, supports the notion that animal models are never going to be predictive modalities for human response to 
drugs and disease. This has major implications for treatment. Pharmacogenomics seeks to match a drug to the 
patient with the genotype that maximizes effects and minimizes side effects [48] [49] [52] [57] [58] [64]-[70]. 
See Figure 5 [70]. The current emphasis on personalized medicine makes clear the need for drug development 
to go from the blockbuster to the niche-buster (see Figure 6 [318]). Drug testing needs to be personalized and,  
 

 
Figure 5. Diseases are composed of different effects hence various drugs arerequired for treating the appropriate 
effect [318].                                                                                      
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The most significant genetic predictors of drug response 

Organ or systems involved Associated gene/allele Drug/drug response pathway 

Blood 
Red blood cells  
Neutrophils  
 
Platelets 
Coagulation 

 
G6PD 
TMPT*2 
UGT1A1*28 
CYP2C19*2 
CYP2C9*2, *3, VKORC1 

 
Primaquine and others 
Azathioprine/6MP-induced neutropenia 
Irinotecan-induced neutropenia 
Stent thrombus 
Warfarin dose-requirement 

Brain and peripheral nervous system 
CNS depression 
Anaesthesia 
Peripheral nerves  

 
CYP2D6*N 
Butyrylcholinesterase 
NAT-2 

 
Codeine-related sedation and respiratory depression 
Prolonged apnea 
Isoniazid-induced peripheral neuropathy 

Drug hypersensitivity 

HLA-B*5701 
HLA-B*1502 
 
HLA-A*3101 
 
HLA-B*5801 

Abacavir sensitivity 
Carbamazepine-induced Stevens Johnson syndrome 
(in some Asian groups)  
Carbamazepine-induced hypersensitivity in  
Caucasians and Japanese 
Allopurinol-induced serious cutaneous reactions 

Drug-induced liver injury 

HLA-B*5701 
HLA-DRB1*1501-DQB1*0602 
HLA-DRB1*1501-DQB1*0602 
HLA-DRB1*07-DQA1*02 
HLA-DQA1*0201 

Flucloxacillin 
Co-amoxiclav 
Lumiracoxib 
Ximelagatran 
Lapatinib 

Infections 
HIV-1 infection 
Hepatitis C infection 

 
CCR5 
IL28B 

 
Maraviroc efficacy 
Interferon-alpha efficacy 

Malignancy 
Breast cancer 
Chronic myeloid leukemia 
Colon cancer 
GI stromal cancer 
Lung cancer 
 
Malignant melanoma 

 
CYP2D6 
BCR-ABL 
KRAS 
c-kit 
EGFR 
EML4-ALK 
BRAF V600E 

 
Response to Tamoxifen 
Imatinib and other tyrosine kinase inhibitors 
Cetuximab efficacy 
Imatinib efficacy 
Gefitinib efficacy 
Crizotinib efficacy 
Vemurafenib efficacy 

Muscle 
General anaesthetics 
Statins 

 
Ryanodine receptor 
SLCO1B1 

 
Malignant hyperthermia 
Myopathies/rhabdomyolysis  

Figure 6. Pharmacogenetics seeks to predict drug response in the individual [70].                                     
 
as I have suggested [14], this could follow the current format of microdosing but be expanded to include phar-
macodynamics. 

3.4. TSMT and Baye’s Theorem 
Bailey et al. state:  

Our results therefore have important implications for the value of the dog in predicting human toxicity, and 
suggest that alternative methods are urgently required. ... We have, for the first time, addressed the salient 
question of contribution of evidential weight for or against the toxicity of a given compound in humans by 
data from dog tests, by using the appropriate metrics of LRs. Furthermore, we have applied the apposite 
LRs to a dataset of unprecedented scale, to critically question the value of the use of the dog as a preclinical 
species in the testing of new pharmaceuticals. 

If one has all the relevant data, LRs are better than PPV alone for calculating the accuracy of diagnostic tests. 
However, a search of PubMed for “likelihood ratio” returns 6298 hits, but searching for “positive predictive 
value,” I obtained 25,128 hits. PPV has been successfully used historically and is currently being successfully 
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used in many areas. As Bailey et al. mention, the exact question one is asking must be considered when choos-
ing statistical methods and animal testing is not a diagnostic test. I would add that evidence from other fields 
(consilience) is important in determining the question as well as framing the answer. Moreover, when the pre-
dictive value has been calculated in the form of PPV and found to be as incredibly low as animal modeling, it is 
effectively impossible that LRs will contradict this. LRs have an important place in science and medicine but in 
light of TSMT, expert opinions, and the data mentioned in previous sections, the Bailey et al. paper offers noth-
ing new. It supports TSMT, the opinions of experts, and the previous data, and for that alone the paper has value, 
but the statement that “The analysis presented here is urgently required,” is a gross exaggeration. 

TSMT is a theory that explains why animal models fail. Empiricism is an important aspect of science. But we 
do not have LRs for jumping out of an airplane with a parachute vs. without a parachute, for treating severe 
bacterial infections with anti-bacterials vs. without anti-bacterials, or for whether a specific living organism is 
the result of special creation or evolution. LRs are a better way to determine the value of a diagnostic test but not 
everything requires LRs. If one has a law or theory, then using LRs to judge a particular instance covered under 
the law or theory is not necessary. We do not evaluate every species to see if it was placed here by special crea-
tion or if it evolved.  

No research is perfect, the paper describing the research is not perfect, and rarely are perfect statistical me-
thods used or even available to analyze the data. LRs are better than solely using PPV to analyze diagnostics 
tests. Evidence-Based Medicine (EBM) is one reason LRs are popular and EBM also employs systematic re-
views and meta-analysis. But even systematic reviews and meta-analyses can arrive at the wrong answer. For 
example, a meta-analysis by the Cochrane Group reported that albumin increased deaths in certain patient 
groups [319]. However, a large study in Australia later revealed no such effects [320]. 

One reason, among many others, that scientific studies are later shown wrong or misleading is that the scien-
tists do not take into account prior probability (or prior plausibility) [321]-[324]. What this means is that scien-
tists should be using Bayesian analysis whenever possible [322] [325]-[327]. Bayes’ theorem is as follows. 

( ) ( ) ( )
( ) ( ) ( ) ( )

P h|b P e|h.b
P h|e.b

P h|b P e|h.b P ~h|b P e|~h.b
×

=
× + ×      

 

Carrier defines the terms in Bayes’ theorem as follows: 
P = Probability (epistemic probability = the probability that something stated is true). 
h = hypothesis being tested. 
~h = all other hypotheses that could explain the same evidence (if h is false). 
e = all the evidence directly relevant to the truth of h (e includes both what is observed and what is not ob-

served). 
b = total background knowledge (all available personal and human knowledge about anything and everything, 

from physics to history). 
P(h|e.b) = the probability that a hypothesis (h) is true given all the available evidence (e) and all our back-

ground knowledge (b). 
P(h|b) = the prior probability that h is true = the probability that our hypothesis would be true given only our 

background knowledge (i.e. if we knew nothing about e). 
P(e|h.b) = the consequent probability of the evidence (given h and b) = the probability that all the evidence we 

have would exist (or something comparable to it would exist) if the hypothesis (and background knowledge) is 
true. 

P(~h|b) = 1 – P(h|b) = the prior probability that h is false = the sum of the prior probabilities of all alternative 
explanations of the same evidence (e.g. if there is only one viable alternative, this means the prior probability of 
all other theories is vanishingly small, i.e. substantially less than 1%, so that P(~h|b) is the prior probability of 
the one viable competing hypothesis; if there are many viable competing hypotheses, they can be subsumed un-
der one group category (~h), or treated independently by expanding the equation, e.g. for three competing hy-
potheses [P(h|b) × P(e|h.b)] + [P(~h|b) × P(e|~h.b)] becomes [P(h1|b) × P(e|h1.b)] + [P(h2|b) × P(e|h2.b) + 
[P(h3|b) × P(e|h3.b)]). 

P(e|~h.b) = the consequent probability of the evidence if b is true but h is false = the probability that all the 
evidence we have would exist (or something comparable to it would exist) if the hypothesis we are testing is 
false, but all our background knowledge is still true. This also equals the posterior probability of the evidence if 
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some hypothesis other than h is true—and if there is more than one viable contender, you can include each 
competing hypothesis independently (per above) or subsume them all under one group category (~h) [328]. 

In developing TSMT, as described above, I attempted to take into account the variables in Bayes’ theorem. 
Bailey et al. have increased the amount of evidence available and for that they are to be commended. But Bayes’ 
has many other factors to consider. Explaining the following from animal modeling, if the opposite hypothesis is 
true—that animal models are of predictive value—is impossible at this time: 
• Approximately 100 successful HIV-like vaccines have been efficacious in animals but none in humans 

[329].  
• Hundreds, and possibly over one thousand neuroprotectant drugs have been efficacious in animals but none 

in humans [149] [152] [188] [330]-[332]. 
• The very high attrition rate in clinical trials after passing efficacy and safety tests in animals [129]-[131] 

[135]-[138] [161] [164] [173] [187] [197] [217] [228] [270] [271] [333]-[335].  
• The differences in gene expression in specific disease states among species [139]. 
• The fact that humans respond so differently to the same drugs and diseases and have different disease sus-

ceptibilities. (See Section 3.3 for references.) 
Moreover, the total background knowledge, in the form of complexity and evolutionary biology, is sufficient 

to abandon animal-based testing and research designed to take advantage of the supposed predictive value of 
animal models. 

As more segments of the scientific community analyze TSMT, more supporting evidence should appear from 
disciplines such as evolutionary and developmental biology, comparative anatomy, comparative medicine, and 
mathematics. This may have implications for personalized medicine as well as other apparently disparate fields 
of science. 

4. Conclusions and Ethical Implications 
Bailey et al. are to be complimented for introducing more data regarding dog models of toxicity. As I state, the 
study supports the current literature with an evaluation that is arguably better than has ever been published. But 
the study does not break new ground conceptually and the claim by the authors that it does, reinforced by the 
tone of the paper along with the accompanying graph, suggests the authors had an agenda when commenting on 
previous studies. Moreover, animal tests are not diagnostic tests, hence different rules apply for evaluating how 
useful PPV is under the circumstances. The fact that Bailey et al. ignored empirical evidence, theory, and the 
opinions of experts was also concerning. Ioannidis states in his article “Why Most Published Research Findings 
Are False” that “The greater the financial and other interests and prejudices in a scientific field, the less likely 
the research findings are to be true” [324]. I would extend this concept to the comments in a research article that 
are unrelated to the research itself. 

There has been sufficient empirical evidence to abandon the use of all animals in testing and research since 
the middle of the 20th century; the exact date is immaterial. Furthermore, prior to November of 2013, there was 
also a theory in the form of evolutionary biology and complex systems. TSMT was published online in June 
2013 but the basis for it had been known for a very long time. Additionally, there were concerns from the phi-
losophy of science community, in terms of modeling, that dated back to the early 1990s [336]-[338] and con-
cerns from the evolutionary biology community dating back to the 1940s [31]. 

There are ethical concerns regarding the use of animals in research and testing both from the animals’ pers-
pective as well as from the perspective of humans. The animal costs are obvious: suffering and death. But the 
human-based concerns are the same. Patients suffer and die because of animal-based research and testing. This 
occurs in three ways: First, in the form of animal models offering no predictive value for human responses and 
consequently patients taking medications that are ineffective and/or harmful. Second, the money spent on ani-
mal-based research and testing could have been put to more dependable and thus useful research or testing me-
thods. The most reliable estimate for the percentage of funding that goes to animal-based research is from the 
NIH in 1985 which calculated that around 50% went to fund animal models [339]. Relatedly, in 1964, John R. 
Platt wrote the classic paper Strong Inference [340]. In it, Platt anticipated some of the points I have presented in 
this article: “We speak piously of taking measurements and making small studies that will ‘add another brick to 
the temple of science.’ Most such bricks just lie around the brickyard” [340].  

Third, in contrast to NIH funding, the cost of animal testing in drug development is minimal. The real cost 
comes in the form of bad drugs that make it through clinical trials only to be pulled from the market or shelved 
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prior to going to market [216] [228] [229] [341] [342]. There is also the cost of good drugs that are lost because 
of animal testing [159] [166] [184] [197] [223] [343]-[345]. This costs patients in that an otherwise effective 
treatment is not forthcoming, hence more suffering and death. The US National Cancer Institute acknowledges 
that society may have lost cures for cancer because of misleading animal studies [166]. Moreover, the drugs that 
do eventually go to market are more expensive for patients because those drugs must cover the cost of develop-
ing the failed ones. It also costs pharmaceutical companies profits that would have, at least partially, gone back 
into research. 

Considering the above, suggesting as Bailey et al., do that only recently has enough evidence existed to ab-
andon the practice of using animals in general and dogs in particular in toxicity testing is not only scientifically 
unsustainable but unethical. 

The reasons the animal model continues to be accepted by society in general are not unique to this situation, 
and can be explained by the following: 

1) Animal use is now entrenched in society and it is very difficult to change traditions.  
2) Along the same lines, animal use is ingrained in institutions of higher learning. Promotions and salaries are 

frequently tied to factors related to animal-based research and the hierarchy of power is related to the money that 
animal-based research generates.  

3) Many scientists have dedicated their careers to animal-based research and have an emotional interest in the 
process.  

4) Billions of US dollars are spent annually on animal-based research and testing. This money generates spe-
cial interest groups that have power in the political system.  

5) Society in general is not knowledgeable enough in science or medical science to discover the flaws of ani-
mal models. 

6) Any discussion of the ethics of using animals in research and testing usually revolves around the pain and 
suffering of animals. The human implications need to be included in these conversations. 

Biomedical research needs to fully embrace evolutionary biology and complexity theory and move beyond 
the vestiges of a creation-based research program. TSMT is one step in this process. 

These conclusions should be communicated to society as: 1) society has ethical concerns regarding animal- 
based research; 2) these conclusions have important implications in light of what type of research is currently 
being funded (animal-based) and what is not (clinical research and research leading to better technology); 3) 
what is funded influences which disciplines young scientists consider for their careers; 4) the legal requirements 
for animal testing must be changed as they impede progress and drive up costs without providing a safer drug 
supply as the US Congress mandated. 
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