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Abstract 
The study done in this paper brings out the effect of the viscoelasticity on the reflection/trans- 
mission coefficients. The knowledge of this effect can be useful for several applications, such as 
enhancing the resolution of the seismic sections, fluid and fracture detection. It can also have oth-
er applications different from the geophysical domain, as the study of the bonding between the 
materials in the civil engineering domain. We use the complex Lame coefficients in the continuity 
equations at the boundary layers to get the analytical expressions of the reflection/transmission 
coefficients in viscoelastic media. The coefficients can be divided into two parts, the first part is 
independent from the quality factor, and it corresponds to the elastic reflection/transmission 
coefficients. The second part is dependent on the quality factor contrast and it represents the con-
tribution of the viscoelasticity on the reflection/transmission coefficients. From the numerical 
study it appears that the effect of the viscoelasticity is significant near to the critical angles. This 
effect is not clear and it is difficult to interpret and we do not know if it has a physical meaning or 
it is only a mathematical artifact that is why it is better to be far from the critical angles for seismic 
investigation. 
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1. Introduction 
The estimation of the reflection/transmission coefficients of the seismic waves is paramount for the investigation 
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of the natural medium and to know their geometrical proprieties. In a perfect elastic medium, these coefficients 
are computed from the impedance contrast between two neighbouring layers [1]-[3]. In the viscoelastic media in 
addition to the impedance contrast, the viscoelasticity contrast between the two neighbouring layers should be 
taken into account. Usually the viscoelasticity of the medium is quantified by using the quality factor Q , which  

is inversely proportional to the energy loss E
E
∆ 

 
 

 of the seismic wave: 

1
2π

E
Q E

∆
=                                        (1) 

Buchen [4] has studied the propagation of the seismic wave SH in a layered and slight viscoelastic media. He 
used complex wave number to compute the reflection/transmission coefficients; the imaginary part of the wave 
number takes account the viscoelastic functionality. He noted that the difference between the reflection/trans- 
mission coefficients in the elastic and viscoelastic media is important when the quality factor contrast between 
two neighbouring layers is significant. Krebes [5], has done the same study as Buchen [4], but he considered the 
medium was highly viscoelastic. He noted that even by considering the medium highly viscoelastic, the equality 
of the quality factor between two neighbouring layers implies the independence of the reflection/transmission 
coefficients from the viscosity of the medium. The results of Buchen and Krebes, were confirmed by Carcione 
[6], who studied also the effect of the anisotropy on the reflection/transmission coefficients. 

In this paper, first we do an analytical study of the reflection/transmission coefficients in the slight viscoelas-
tic medium. From this study we provide the analytical expressions of these coefficients for all possible incident 
wave (SH, P and SV), which allows to see clearly the contribution of the viscoelasticity on the reflection/ trans-
mission coefficients. This analytical study is followed by a numerical example; through it we apply the analyti-
cal expressions on synthetic data. So far no study about the reflection/transmission coefficients in slight viscoe-
lastic media has been more complete than this one. 

2. Analytical Study 
Reflection/transmission of plane seismic waves is a local phenomenon, involving local physical proprieties of 
two medium (1) and (2) at the discontinuity point I . Locally, in the vicinity of the point I , we can consider 
that the interface is plane and having normal N  (Figure 1). At the point I  the seismic energy can be divided 
on reflected and transmitted, and it can generate two waves: reflected and transmitted. 

An incident P wave as an incident SV wave can generate reflected P or SV wave and transmitted P or SV wave. 
However, an incident SH wave can generates only reflected or transmitted SH wave. The reflected or transmitted 
waves which are different from the incident wave, they are called converted waves, such P-SV reflection for 
example.  

In this study the incident wave is indicated by the subscript i , the reflected wave by the subscript r  and the 
transmitted wave by the subscript t . The viscoelastic reflection/transmission coefficient are designed by the 
variables V VR T . 

In this section we put just the main equations leading to the V VR T  coefficients. More details are given in 
the thesis of Bouchaala [7]. 

3. Displacement Continuity 
The displacement of the wave particles at the instant t  and the position x  can be expressed as [8], 

( ) ( ) ( ) ( )( ), expt S i tω ω= − −u x U x px                            (2) 

where ( )S ω  is the source term, ω  is the circular frequency, ( )U x  is the amplitude vector at the position 
x . In the orthonormal basis ( )1 2, ,t n n  (Figure 2) the amplitude vector U  has the components ( ), ,A B C  

and can be written as, 

( ) 1 2A B C= + +U x t n n                                   (3) 

p  is the slowness, which can be computed from the velocity V , the propagation direction t  and the qual-
ity factor Q  by:  
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Figure 1. Incident, reflected and transmitted waves in a medium com-
posed from two layers (1) and (2), I is the intersection point between 
the incident wave and the interface, N is the unit vector normal to the 
interface at the point I.                                         

 

 

Figure 2. The direct orthonormal basis ( ) ( ) ( )( )1 2, ,s s st n n . The unit 

vector ( )st  is the first Fresnel vector, tangent to the ray, the unit 

vectors, ( )1 sn  and ( )2 sn  are orthogonal between themselves.       

 

1
2
i

V Q
 

= − 
 

tp                                      (4) 

In the elastic case the slowness vector is real and independent form Q , 
V

=
tp . 

The continuity of the displacement vector at the point I  (Figure 3) is expressed as: 

( ) ( )
1 2

, ,I t I t=      u u                                   (5) 

The displacement at the point I  in the medium (1) is due to the incident and reflected waves:  

( ) ( )( ) ( )( )( )1
, expi rI t S i t Iω ω= + − −  u U U px                        (6) 

The displacement at the point I  in the medium (2) is due only to the transmitted wave:  

( ) ( ) ( )( )( )2
, exptI t S i t Iω ω= − −  u U px                           (7) 

We use the expressions of the displacement given in the Equations (6) and (7) in the continuity Equation (5) 
and we obtain: 

i r t+ =U U U                                      (8) 

The projection of the Equation (8) on the unit vector 2X  (Figure 3) gives: 

i r tB B B+ =                                      (9) 
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Figure 3. The direct orthonormal basis ( )1 2 3, ,X X X , 
the vector 2 =X n  is perpendicular to the figure.      

 
And in the incident plane ( )1 3,X X  (Figure 3) it gives: 

2 2 2i i i r r r r t t t tA C A C A C+ + + = +t n t n t n                           (10) 

4. Stress Continuity 
The continuity condition of stress vector at the point I , is expressed by the following equation: 

( ) ( )
1 2

, ,I t I tσ σ   =   N N                               (11) 

where ( )
1

,I tσ  N  is the stress vector at the point I , generated by the incident and the reflected waves 
(propagating in the medium (1)), and applied on the elementary surface having a normal vector N . 

( )
2

,I tσ  N  is the stress vector at the point I  generated by the transmitted wave (propagating in the me-  

dium (2)), and applied on the elementary surface having a normal vector N .  
In the isotropic media, the generalized Hook’s law can be simplified as:  

( ) ( )tIσ λ µ= ∇ ⋅ + ∇ +∇u u u                              (12) 

where λ  and µ  are the complex Lame coefficients, their imaginary parts contain the viscoelastic functional-
ity of the medium. In the elastic case these coefficients are real. 

The projection of the Equation (12) in the orthonormal basis ( )1 2 3, ,X X X  (Figure 3), leads to the following 
expression of stress vector 3σ σ=N X :  

3 31 2
3 3 1 2 1 3

3 3 3 3

2
u uu uau au

X X X X
σ µ µ λ µ

    ∂ ∂∂ ∂
= + + + + +    ∂ ∂ ∂ ∂     

X X X X               (13) 

where 

( )sin
1

2
i

i

ia
V Q
θ  

= + 
 

, iθ  is the incident angle                     (14) 

So, by using the Equation (14), the continuity condition (12) in theorthonormal basis ( )1 2 3, ,X X X , we get a 
system of three equations: 

1 1
3 3

3 31 2

2 2

3 31 2

3 3 3 3
1 1

3 3 3 31 2

2 2

u uau au
X X

u u
X X

u u u u
au au

X X X X

µ µ

µ µ

λ µ λ µ

      ∂ ∂
+ = +      ∂ ∂          


   ∂ ∂ =   ∂ ∂   
      ∂ ∂ ∂ ∂ + + = + +       ∂ ∂ ∂ ∂         

                  (15) 

From the Equation (2) the derivation of the components of the vector displacement can be given as, 

( )i
j i

j

u
i u

X
ω

∂
= ⋅

∂
p X                                   (16) 
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The system of Equation (15) contains one equation involving only the second component ( )2u , correspond-
ing to the displacement of the wave SH and also two other equations, involving the first and the third compo-
nents, 1u  and 3u , corresponding to the displacement of P and SV waves, respectively. This means, that the 
reflection/transmission problem can be divided in two sub-problems: P-SV and SH.  

0
0 0

0

P P SV P
r i V V i

SH SH
r i D i

P SV SV SV
r i V V i

A A R R A
B B R B
C C R R C

→ →

→

→ →

     
      = =      

            

R                      (17) 

0
0 0

0

P P SV P
t i V V i

SH SH
t i D i

P SV SV SV
t i V V i

A A T T A
B B T B
C C T T C

→ →

→

→ →

      
      = =       

            

T                      (18) 

R  and T  indicate the matrix of the reflection and transmission coefficients, respectively. 
We use the derivation in the Equation (16) to get the projection in the orthonormal basis ( )1 2 3, ,X X X  of 

displacement and stress vectors due to the incident, reflected and transmitted waves of SH, SV and P waves, 
which are given in the Tables 1-4. 
 
Table 1. Component in the basis ( )1 2 3, ,X X X  of displacement vectors at the point I  for incident, reflected and transmit-
ted waves (SH Reflection/Transmission).                                                                      

Displacement vector at point I  Of the incident wave SH 

( ) ( )( )( )expS i t T Iω ω× − −  

Displacement vector at point I  Of the generated waves  

( ) ( )( )( )expS i t T Iω ω× − −  

( )0, ,0iB  
Reflected SH ( )0, ,0rB  
Transmitted SH ( )0, ,0tB  

 
Table 2. Component in the basis ( )1 2 3, ,X X X  of the stress vector 3σ X  at point I  Due to incident, reflected and trans-
mitted waves (Reflection/Transmission SH).                                                                   

Stress vector at point I  due to incident wave SH 

( ) ( )( )( )expi S i t T Iω ω ω× − −  

Stress vector at point I  due to generated waves 

( ) ( )( )( )expi S i t T Iω ω ω× − −  

( ) ( )1 22 21
1

1

1 0, ,0ia Bµ β
β

∗
∗ ∗

∗
− −  

Reflected ( ) ( ) ( ) ( )1 2 1 22 2 2 21 1
1 1

1 1

1 0, ,0 1 0, ,0i ra B a Bµ µβ β
β β

∗ ∗
∗ ∗ ∗ ∗

∗ ∗
− − −  

Transmitted ( ) ( )1 22 22
2

2

1 0, ,0ta Bµ β
β

∗
∗ ∗

∗
− −  

 
Table 3. Component in the basis ( )1 2 3, ,X X X  of the displacement vector at point I  for incident, reflected and transmit-
ted waves (Reflection/Transmission P-SV).                                                                    

Displacement vector at point I  Of incident waves 

( ) ( )( )( )expS i t T Iω ω× − −  

Displacement vector at point I  of generated waves 

( ) ( )( )( )expS i t T Iω ω× − −  

Incidente P ( )1 1,0,iA a Pα∗ ∗ ∗−  

Reflected P ( )1 1,0,iA a Pα∗ ∗ ∗  

Transmitted P ( )2 3,0,tA a Pα∗ ∗ ∗−  

Reflected SV ( )2 1,0,rC P a β∗ ∗ ∗−  

Transmitted SV ( )4 2,0,tC P a β∗ ∗ ∗  

IncidenteSV ( )2 1,0,iC P a β∗ ∗ ∗  

Reflected P ( )1 1,0,rA a Pα∗ ∗ ∗  

Transmitted P ( )2 3,0,tA a Pα∗ ∗ ∗−  

Reflected SV ( )2 1,0,rC P a β∗ ∗ ∗−  

Transmitted SV ( )4 2,0,tC P a β∗ ∗ ∗  
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Table 4. Component in the basis ( )1 2 3, ,X X X of stress vector at I  due to incident, reflected, and transmitted waves (Ref-
lection/Transmission P-SV).                                                                                

Stress vector at point I  Due to incident waves  

( ) ( )( )( )expi S i t T Iω ω ω× − −  

Stress vector at point I  Due to generated waves 

( ) ( )( )( )expi S i t T Iω ω ω× − −  

Incident P  

( )
2

2 1
1 1 1 1 1 1

1

2 ,0, 2i

PA a P aµ λ α λ µ
α

∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗

 
− + + 
 

 

Reflected P 

( )
2

2 1
1 1 1 1 1 1

1

2 ,0, 2r

PA a P aµ λ α λ µ
α

∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗

 
+ + 

 
 

Transmitted P 

( )
2

2 3
2 3 2 2 2 2

2

2 ,0, 2t

PA a P aµ λ α λ µ
α

∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗

 
− + + 
 

 

Reflected SV 
2

22
1 1 1 2

1

,0, 2r

PC a a Pµ β µ
β

∗
∗ ∗ ∗ ∗ ∗ ∗

∗

  
− +     

 

Transmitted SV 
2

24
2 2 2 4*

2

,0, 2t

PC a a Pµ β µ
β

∗
∗ ∗ ∗ ∗ ∗ ∗

  
− + −     

 

Incident SV 
2

22
1 1 1 2

1

,0, 2i

PC a a Pµ β µ
β

∗
∗ ∗ ∗ ∗ ∗ ∗

∗

  
− + −     

 

Reflected P 

( )
2

2 1
1 1 1 1 1 1

1

2 ,0, 2r

PA a P aµ λ α λ µ
α

∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗

 
+ + 

 
 

Transmitted P 

( )
2

2 3
2 3 2 2 2 2

2

2 ,0, 2t

PA a P aµ λ α λ µ
α

∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗

 
− + + 
 

 

Reflected SV 
2

22
1 1 1 2*

1

,0, 2r

PC a a Pµ β µ
β

∗
∗ ∗ ∗ ∗ ∗ ∗

  
− +     

 

Transmistted SV 
2

24
2 2 2 4*

2

,0, 2t

PC a a Pµ β µ
β

∗
∗ ∗ ∗ ∗ ∗ ∗

  
− + −     

 

 
Before starting our analytical development, we remind the following results: 

( )2 2,     2µ ρβ λ ρ α β∗ ∗ ∗= = −                              (19) 

where β ∗  and α∗ are the complex S  and P  wave velocities which can be expressed from the real veloci-
ties β  and α  and the quality factors PQ  and SQ  (see Appendix). 

5. SH Problem 
We assume SH incident wave, with the amplitude vector, 1 2i i iB B= =U n X . The continuity Equations (9) and 
(15) at the interface show that the incident SH wave, generates only SH waves, reflected or transmitted.  

After using the projection of the stress vector in the basis ( )1 2 3, ,X X X given in the Table 2 and replacing µ  
by its expression in Equation (19), the Equation (15) becomes, 

( ) 1 1 2 2 2 4i r tB B P B Pρ β ρ β∗ ∗ ∗ ∗− =                               (20) 

After using the Equation (9), the Equation (20) can be written as, 

( ) ( )1 1 2 2 2 4i r i rB B P Pρ β β β ρ β∗ ∗ ∗ ∗− = +                            (21) 

or 

( ) 1 1 2 2 2 42 i t tB B P Pρ β β ρ β∗ ∗ ∗ ∗− =                              (22) 

The V VR T  coefficients are defined as, 
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,    SH SH SH SH tr
V V

i i

BBR T
B B

→ →= =                               (23) 

After dividing the Equations (21) and (22) by iB , we obtain expression of V VR T  coefficients  

1 1 2 2 2 4

1 1 2 2 2 4

SH SH
V

P PR
P P

ρ β ρ β
ρ β ρ β

∗ ∗ ∗ ∗
→

∗ ∗ ∗ ∗

−
=

+
                               (24) 

1 1 2

1 1 2 2 2 4

2SH SH t
V

i

B PT
B P P

ρ β
ρ β ρ β

∗ ∗
→

∗ ∗ ∗ ∗= =
+

                             (25) 

We replace the parameters indicated by an asterisk in Equations (24) and (25) by their expressions shown in 
the Appendix, to obtain the final expressions of the V VR T  coefficients, 

( )

2 2
1 2 1 2 2 4 2

2 2
2 141 1 2 2 2 4

1 12 1
2

SH SH SH SH
V E

S S

P P aR R i
Q QPP P

ρ ρ β β β
ρ β ρ β

→ →   
= − − −  

+   
               (26) 

( )

2 2
1 2 1 2 2 4 2

2 2
2 141 1 2 2 2 4

1 12 1
2

SH SH SH SH
V E

S S

P P aT T i
Q QPP P

ρ ρ β β β
ρ β ρ β

→ →   
= − − −  

+   
               (27) 

where ( )1 2
2 1 sin iP θ= −  and 

1 2
2

4
1

1 sin iP β
θ

β
 

= − 
 

. 

The terms SH SH
ER → and SH SH

ER → in the Equations (26) and (27), corresponds respectively to the reflection and 
transmission coefficients of the elastic media which are dependent on the impedance contrast ρβ  between the 
two media. The second term of the equations is due to the viscosity effect on the V VR T  coefficients, it is pro-  

portional to the quality factor contrast, 
2 1

1 1

S SQ Q
−  between the two media. This means that with a zero contrast  

in the quality factor, the V VR T  coefficients are similar to those of the elastic case. 

6. P-SV Problem 
P and SV incident waves can generate reflected or transmitted P and SV waves. After using the projection of the 
displacement and stress vector in the basis ( )1 2 3, ,X X X given in the Table 3 and Table 4, we replace λ  and 
µ  by their expressions in Equation (19), thecontinuity Equations (9) and (15) can be written respectively as, 

For P incident wave 

( )
( )
1 2 2 4

1 1 3 2

i r r t t

i r r t t

a A A P C a A P C

P A A a C P A a C

α α

β β

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

+ − = +

− − = −
                           (27) 

( ) ( ) ( )
( )( ) ( )

2 2 2 2 2 2
1 1 1 1 1 1 2 2 3 2 2 2

2 2 2 2 2 2
1 1 1 1 1 2 2 2 2 2 2 4

2 1 2 2 1 2

1 2 2 1 2 2

i r r t t

i r r t t

aP A A a C aP A a C

a A A aP C a A aP C

ρ β ρ β β ρ β ρ β β

ρ α β ρ β ρ α β ρ β

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

− + − = + −

− + + = − −
          (28) 

For SV incident wave, 

( )
( )

2 1 2 4

*
1 1 3 2

i r r t t

i r r t t

P C C a A a A P C

a C C P A P A a C

α α

β β

∗ ∗ ∗ ∗

∗ ∗ ∗

− + = +

+ + = − +
                          (29) 

( )( ) ( )
( ) ( ) ( )

2 2 2 2 2 2
1 1 1 1 1 1 2 2 3 2 2 2

2 2 2 2 2 2
1 1 2 1 1 1 2 2 2 2 2 4

1 2 2 2 1 2

2 1 2 1 2 2

i r r t t

i r r t t

a C C aP A aP A a C

aP C C a A a A aP C

ρ β β ρ β ρ β ρ β β

ρ β ρ α β ρ α β ρ β

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

− + − = + −

− − + − = − −
         (30) 

The V VR T  coefficients are defined as, 
For P incident wave, 
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,     ,     P P P SV P SV tr r
V V V

i i i

CA CR R T
A A A

∗ ∗ ∗→ → →= = =                        (31) 

For S incident wave,  

,     ,     ,     SV P SV SV SV P SV SVt tr r
V V V V

i i i i

A CA CR R T T
C C C C

∗ ∗ ∗ ∗→ → → →= = = =                (32) 

By combining the Equations (27) to (32), V VR T  coefficients can be expressed in matrix form,  
For P incident wave, 

( )

1

11
2

1 1 1

2 2
1 1 1

2

1 2

P P
V
P SV

V
P P

V
P SV

V

aR
PR

aPT
T a

α

ρ β

ρ α β

∗→

∗→
−

∗ ∗→

→ ∗ ∗

  
  
   =   
  
 −    

M                            (33) 

For SV incident wave, 

( )

2

11
2 2

1 1 1

2
1 1 2

1 2

2

SV P
D
SV SV
D
SV P

D
SV SV

D

PR
aR

aT
T aP

β

ρ β β

ρ β

∗→

∗→
−

∗ ∗→

→ ∗ ∗

  
   −   =    −  
   −   

M                           (34) 

( ) ( )
( ) ( )

1 2 2 4

1 1 3 2

2 2 2 2 2 2
1 1 1 1 1 1 2 2 3 2 2 2

2 2 2 2 2 2
1 1 1 1 1 2 2 2 2 2 2 4

2 1 2 2 1 2

1 2 2 1 2 2

a P a P
P a P a

aP a aP a

a aP a aP

α α
β β

ρ β ρ β β ρ β ρ β β

ρ α β ρ β ρ α β ρ β

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

 −
 

− 
=  − − − 
 − − − − −  

M       (35) 

We invert the matrix M  in the Equations (33) and (34), then we obtain the analytical expressions of all 
possible reflection and transmission coefficients from P and SV incident waves, under the assumption that 

P SQ Q= : 

2 1 2 1

2 1 2 1

2 1 2

1 1 1 1    

1 1 1 1      

1 1 1     

P P P P P SV P SV P SV P SV
V E V E

P P P P P P P SV P SV P SV
V E V E

SV P SV P SV P SV SV SV SV SV SV
V E E

R R ir R R ir
Q Q Q Q

T T it T T it
Q Q Q Q

R R ir T T it
Q Q Q

→ → → → → →

→ → → → → →

→ → → → → →

   
= + − = + −   

   
   

= + − = + −   
   

 
= + − = + 

  1

1
Q

 
− 

 

          (36) 

Such the SH incident wave case, the above equations can be divided in two terms, the first one corresponds 
respectively to the reflection and transmission coefficients of the elastic media and the second one corresponds  

to the contribution of the viscosity. The contribution is proportional to the contrast of the viscosity 
2 1

1 1
Q Q

− ,  

therefore if the quality factor contrast equals zero, we get back at the elastic case. 
The exact expressions of the second terms in Equation (36) are given in the Appendix. 

7. Numerical Study 
Synthetic Data 
To have further insight about the effect of the viscoelasticity on the V VR T  coefficients, we apply the above 
expressions of the coefficients on a synthetic data. We assume two cases, in the first case we assume a low im-
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pedance contrast between the medium (1) and the medium (2), and in the second case we assume a big imped-
ance contrast between the two media (Table 5). The medium (1) in the first case has similar characteristic as a 
sandstone formation and as marlstone formation in the second case. The medium (2) has similar characteristic as 
a limestone formation in the two cases [9].  

We should respect the slight viscosity assumption, for the choice of the quality factor values ( )20Q ≤ . For 
each case and each reflection or transmission, we choose: 1 20Q =  and 2 1000Q = , in the first time then the 
inverse: 1 1000Q =  and 2 20Q = . The curves of the V VR T  coefficients versus incidence angles for the cho-
sen values of the quality factor, are compared to the elastic case ( )1 2Q Q= . 

8. Results 
The curves (Figures 4-13) of the V VR T  coefficients from all possible incident waves (P-SV, SH), show that 
the viscoelasticity of the medium disturbs there flection/transmission-coefficients around the critical angles 
(Table 6 and Table 7). The difference between the elastic V VR T  coefficients, indicated by the black color  
 
Table 5. Synthetic data.                                                                                   

Data Medium1 Medium 2 

Velocity (km/s) 1Vp  1Vs  2Vp  2Vs  

Case 1 3.50 2.02 
5.00 2.89 

Case 2 2.00 1.15 

 
Table 6. Critical angles (Incident wave P).                                                                    

Angles critiques 
(Degree) 

1

2

arcsin Vp
Vp
 
 
 

 1

2

arcsin Vp
Vs
 
 
 

 

Case 1 44.43  

Case 2 23.57 43.79 

 
Table 7. Critical angles (Incident wave S).                                                                    

Critical angles 
(Degree) 

1

1

arcsin Vs
Vp
 
 
 

 1

2

arcsin Vs
Vp
 
 
 

 1

2

arcsin Vs
Vs
 
 
 

 

Case 1 35.25 23.87 44.34 

Case 2 35.10 13.30 23.45 

 

 
Figure 4. Modulus and phase of the reflection P P

VR →  versus the incidence angle for: 

1 20Q =  and 2 1000Q =  (dashed red lines), 1 1000Q =  and 2 20Q =  (dashed blues 
lines), 1 2Q Q=  (dashed black lines). Low contrast case (left) and high contrast (right).     
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Figure 5. Modulus and phase of the reflection P SV

VR →  versus the incidence angle for: 1 20Q =  and 2 1000Q =  (dashed 
red lines), 1 1000Q =  and 2 20Q =  (dashed blues lines), 1 2Q Q=  (dashed black lines). Low contrast case (left) and high 
contrast (right).                                                                                          
 

 
Figure 6. Modulus and phase of the transmission P P

VT →  versus the incidence angle for: 1 20Q =  and 2 1000Q =  (dashed 
red lines), 1 1000Q =  and 2 20Q =  (dashed blue lines), 1 2Q Q=  (dashed black lines). Low contrast case (left) and high 
contrast (right).                                                                                          
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Figure 7. Modulus and phase of the transmission P SV

VT →  versus the incidence angle for: 1 20Q =  and 2 1000Q =  (dashed 
red lines), 1 1000Q =  and 2 20Q =  (dashed blue lines), 1 20Q =  (dashed black lines). Low contrast case (left) and high 
contrast (right).                                                                                          
 

 
Figure 8. Modulus and phase of the transmission SV P

VR →  versus the incidence angle for: 1 20Q =  and 2 1000Q =  (dashed 
red lines), 1 1000Q =  and 2 20Q =  (dashed blue lines), 1 20Q =  (dashed black lines). Low contrast case (left) and high 
contrast (right).                                                                                          
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Figure 9. Modulus and phase of the transmission SV SV

VR →  versus the incidence angle for: 1 20Q =  and 2 1000Q =  
(dashed red lines), 1 1000Q =  and 2 20Q =  (dashed blue lines), 1 20Q =  (dashed black lines). Low contrast case (left) 
and high contrast (right).                                                                                   
 

 
Figure 10. Modulus and phase of the transmission SV P

VT → versus the incidence angle for: 1 20Q =  and 2 1000Q =  (dashed 
red lines), 1 1000Q =  and 2 20Q =  (dashed blue lines), 1 2Q Q=  (dashed black lines). Low contrast case (left) and high 
contrast (right).                                                                                          
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Figure 11. Modulus and phase of the transmission SV SV

VT →  versus the incidence angle for: 1 20Q =  and 2 1000Q =  
(dashed red lines), 1 1000Q =  and 2 20Q =  (dashed blue lines), 1 2Q Q=  (dashed black lines). Low contrast case (left) 
and high contrast (right).                                                                                   
 

 
Figure 12. Modulus and phase of the transmission SH SH

VR →  versus the incidence angle for: 1 20Q =  and 2 1000Q =  
(dashed red lines), 1 1000Q =  and 2 20Q =  (dashed blue lines), 1 2Q Q=  (dashed black lines). Low contrast case (left) 
and high contrast (right).                                                                                   
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Figure 13. Modulus and phase of the transmission SH SH

VT →  versus the incidence angle for: 1 20Q =  and 2 1000Q =  
(dashed red lines), 1 1000Q =  and 2 20Q =  (dashed blue lines), 1 2Q Q=  (dashed black lines). Low contrast case (left) 
and high contrast (right).                                                                                  
 
in the figures and the viscoelastic coefficients indicated by the blue and red colors can be significant. As we can 
note in the first case, where the modulus viscoelastic reflection coefficient around the critical angle reach 1.4, 
bigger than 1 because of the changing in the phase also, while in the elastic case the modulus is equal to 0.9. 

The Figures 4-13 show also that when the number of the critical angles is high, as in the case 2, the V VR T  
coefficients are more affected by the viscoelasticity of the medium. 

9. Conclusions 
The above results show that in the viscoelastic media, V VR T  coefficients between two neighboring layers de-
pend on the contrast of their quality factor. The effect of the contrast is effective around the critical angles, 
which depends on the incidence angle and the velocities of each layer. The number of the critical angles in-
creases when the velocity contrast is large and in this case the V VR T  coefficients are more disturbed by the 
viscoelasticity of the medium. We noted that when the upper layer has bigger attenuation than the lower layer 
( )1 2Q Q< , the curves display a discontinuity at the critical angle. 

The interpretation of the above observations is difficult to interpret and we do not know if it has a physical 
meaning or just a mathematical artefact. More understanding of the reflection/transmission mechanism in the 
viscoelastic media is necessary to interpret these results. 
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Appendix 
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⋅ = − −
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p X p X p X

p X

p X

p X

 

Expression of the reflection-transmission coefficients (P-SV) in isotropic, inhomogeneous and viscoelas-
tic medium 

( )
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( )

( )
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T P P X P Y D

T p P q P P Z D

R A B C D E F D

R p P

α α β

ρ α β β

ρ α β α

β

→ ∗ ∗ ∗ ∗ ∗ ∗ ∗−

→ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗−

→ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗−

→ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗−

→ ∗ ∗ ∗ ∗ ∗ ∗ ∗−

→ ∗ ∗ ∗

= + − − + −

= +

= +

= − −

= − + − + −

= −











( )
( )
( )

1
3 4 2 2

1
1 1 2 1 3 2 1

1
1 1 2 1 4 1 2

,

2 ,

2 .

SV SV
V

SV P
V

q P P Y X Z D

T P P Y P X D

T p P q P P Y Z D

α β

ρ β α α

ρ β α β

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗−

→ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗−

→ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗−

+

= +

= −







 

with: D A B C D E F∗ ∗ ∗ ∗ ∗ ∗ ∗= + + + + +  
2 2

1 2 3 4 1 2 1 2 1 4 1 2 1 2 2 3
2 2 2 2
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After doing the below substitution in the above expressions of reflection-transmission coefficients,  
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Now we compute D∗
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With D A B C D E F= + + + + +  
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Table A1. Component in the basis ( )1 2 3, ,X X X  of stress vector at I  due to incident, re-
flected, and transmitted waves (Reflection/Transmission P-SV).                           
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