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Abstract 
In this paper, we propose and analyze some schemes of the integral collocation formulation based 
on Legendre polynomials. We implement these formulae to solve numerically Riccati, Logistic and 
delay differential equations with variable coefficients. The properties of the Legendre polynomials 
are used to reduce the proposed problems to the solution of non-linear system of algebraic equa- 
tions using Newton iteration method. We give numerical results to satisfy the accuracy and the 
applicability of the proposed schemes. 
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1. Introduction 
It is well known that the ordinary differential equations (ODEs) have been the focus of many studies due to their 
frequent appearance in various applications, such as in fluid mechanics, viscoelasticity, biology, physics and 
engineering applications, for more details, for example [1]-[5]. Consequently, considerable attention has been 
given to the efficient numerical solutions of ODEs of physical interest, because it is difficult to find exact 
solutions. Different numerical methods have been proposed in the literature for solving ODEs [6]-[13]. 

The Riccati differential equation (RDE) is named after the Italian Nobleman Count Jacopo Francesco Riccati 
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(1676-1754). The book of Reid [14] contains the fundamental theories of Riccati equation, with applications to 
random processes, optimal control, and diffusion problems. Besides important engineering science applications 
that today are considered classical, such as stochastic realization theory, optimal control, robust stabilization, 
and network synthesis, the newer applications include such areas as financial mathematics [15]. The solution of 
this equation can be reached using classical numerical methods such as, the forward Euler method and Runge- 
Kutta method. Bahnasawi et al. [16] presented the usage of Adomian decomposition method to solve the non- 
linear RDE in an analytic form. Tan and Abbasbandy [17] employed the analytic technique called homotopy 
analysis method to solve the quadratic RDE. 

The Logistic model can be obtained by applying the derivative operator on the Logistic equation. The model 
is initially published by Pierre Verhulst in 1838 [18]. The continuous Logistic model is described by first order 
ODE. The discrete Logistic model is simple iterative equation that reveals the chaotic property in certain regions 
[19]. There are many variations of the population modeling [20]. The Verhulst model is the classic example to 
illustrate the periodic doubling and chaotic behavior in dynamical system [19]. The model describs the 
population growth may be limited by certain factors like population density [20]. 

2. Applications of Logistic Equation 
A typical application of the Logistic equation is a common model of population growth. Let ( )u t  represents 
the population size and t  represents the time where the constant 0ρ >  defines the growth rate. 

Another application of Logistic curve is in medicine, where the Logistic differential equation is used to model 
the growth of tumors. This application can be considered an extension of the above mentioned use in the frame- 
work of ecology. 

The solution of Logistic equation is explained the constant population growth rate which not includes the 
limitation on food supply or spread of diseases [21]. The solution curve of the model is increase exponentially 
from the multiplication factor up to saturation limit which is maximum carrying capacity [21], 
d 1
d
N NN
t K

ρ  = − 
 

 where N  is the population with respect to time, ρ  is the rate of maximum population  

growth and K  is the carrying capacity. The solution of continuous Logistic equation is in the form of constant 
growth rate as in formula ( ) 0e tN t N ρ=  where 0N  is the initial population [22]. 

A delay differential equation (DDE) is a differential equation in which the derivative of the function at any 
time depends on the solution at previous time. Introduction of delay in the model enriches its dynamics and 
allows a precise description of the real life phenomena. DDEs are proved useful in control systems [23], lasers, 
traffic models [24], metal cutting, epidemiology, neuroscience, population dynamics [25], chemical kinetics [26], 
etc. In DDE, one has to provide history of the system over the delay interval ,0][ τ−  as the initial condition. 
Due to this reason delay systems are infinite dimensional in nature. Because of in infinite dimensionality the 
DDEs are difficult to analyze analytically and hence the numerical solutions play an important role. 

In [27], Mai-Duy, et al. derived an integral collocation approach based on Chebyshev polynomials and used it 
for solving numerically the bi-harmonic equations. In [28], Bhrawy and Alofi introduced a new shifted Che- 
byshev operational matrix of fractional integration of arbitrary order and applied together with spectral tau 
method for solving linear fractional differential equations. Khader et al. [29] introduced a new approximate 
formula of the fractional derivative using Legendre series expansion and used it to solve numerically the frac- 
tional diffusion equation. 

In this article, we extend the previous work and derive some schemes of the integral collocation formulation 
based on Legendre polynomials. We implement these formulae to solve numerically Riccati, Logistic and delay 
differential equations. 

Our paper is organized as follows: In Section 2, we derive some integration collocation formulations using 
Legendre series expansion. In Section 3, we give the integral collocation approach for solving Riccati, Logistic 
and delay differential equations. In Section 4, the paper ends with a brief conclusion and some remarks. 

3. Integration Collocation Formulations 
The well known Legendre polynomials are defined on the interval [ ]1,1−  and can be determined with the aid 
of the following recurrence formula [30]  
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( ) ( ) ( )1 1
2 1 , 1,2, ,

1 1k k k
k kL z zL z L z k

k k+ −
+

= − =
+ +


 

where ( )0 1L z =  and ( )1L z z= . In order to use these polynomials on the interval [ ]0,1 , we define the so 
called shifted Legendre polynomials by introducing the change of variable 2 1z x= − . Let the shifted Legendre 
polynomials ( )2 1kL x −  be denoted by ( )kL x∗ . Then ( )kL x∗  can be obtained as follows  

( ) ( )( )
( ) ( ) ( )1 1

2 1 2 1
,

1 1k k k

k x kL x L x L x
k k

∗ ∗ ∗
+ −

+ −
= −

+ +
 

where ( )0 1L x∗ =  and ( )1 2 1L x x∗ = − . The analytic form of the shifted Legendre polynomials ( )kL x∗  of de- 
gree k  is given by  

( ) ( ) ( )
( ) ( )2

0

!
1 , 2,3, .

! !

k k i i
k

i

k i
L x x k

k i i
+∗

=

+
= − =

−
∑                             (1) 

Note that ( ) ( )0 1 k
kL∗ = −  and ( )1 1kL∗ = . The orthogonality condition is 

( ) ( )1

0

1 ,         for    ,
d 2 1

0,                for   .
i j

i j
L x L x x i

i j

∗ ∗
 == +
 ≠

∫  

In this work, to consider the differential equation of n -th order, we build the integration collocation method 
using the truncated Legendre series of degree m  to represent the n -th derivative of the unknown function 
( )u x  in the following manner  

( ) ( ) ( ) ( )
0 0

d
.

d

n m m
n

k k k kn
k k

u x
a L x a I x

x
∗

= =

≅ =∑ ∑                          (2) 

Using the integration we can obtain the lower-order derivatives and the function itself as follows 

( ) ( ) ( )
1

1
11

0

d
,

d

n m
n

k kn
k

u x
a I x c

x

−
−

−
=

≅ +∑                               (3) 

( ) ( ) ( )
2

2
1 22

0

d
,

d

n m
n

k kn
k

u x
a I x c x c

x

−
−

−
=

≅ + +∑ 
                           (4) 

( ) ( ) ( ) ( ) ( )
2 3

1
1 2 2 1

0

d
,

d 2 ! 3 !

n nm

k k n n
k

u x x xa I x c c c x c
x n n

− −

− −
=

= + + + + +
− −∑                      (5) 

( ) ( ) ( ) ( ) ( )
1 2

0
1 2 1

0
,

1 ! 2 !

n nm

k k n n
k

x xu x a I x c c c x c
n n

− −

−
=

= + + + + +
− −∑                      (6) 

from (1) and (2) we have  

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )( )
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                       (7) 
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We now collocate Equatuions (2)-(6) at ( )1m +  points px , 0,1, ,p m=   as 

( ) ( ) ( ) ( )

( ) ( ) ( )

1
1

1

1 0

d dˆ ˆ, , ,
d d

d ( ) ˆ ˆ,   ,
d

n n
p pn n

n n

p
p

u x u x
S S

x x
u x

S u x S
x

−
−

−= Ω = Ω

= Ω = Ω



                       (8) 

where [ ]T0 1 1 2
ˆ , , , , , , ,m nS a a a c c c=   , and ( ) ( ) ( )1 0, , ,n n−Ω Ω Ω  are integrated matrices. 

4. Integral Collocation Approach for Solving Riccati, Logistic and Delay 
Differential Equations 

In this section, we introduce the integral collocation approach using Legendre expansion for solving the Riccati, 
Logistic and delay differential equations. 

4.1. Model 1: Riccati Differential Equation 

( ) ( )2d
1 0, 0,

d
u x

u x x
x

+ − = >                        (9) 

we also assume an initial condition  

( ) 00 .u u=                                          (10) 

The exact solution to this problem at 0 0u =  is  

( )
2

2

e 1.
e 1

x

xu x −
=

+
 

The procedure of the implementation is given by the following steps:  
1) Approximate the function ( )u x  using Formula (6) and its relevant derivatives with 5m = , as follows 

( ) ( ) ( )

( ) ( ) ( )

5
1

0
5

0
1

0

d
,

d

,

k k
k

k k
k

u x
a I x

x

u x a I x c

=

=

≅

≅ +

∑

∑
                       (11) 

where ( ) ( )0
kI x  is defined in (7) as  

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

0 1
2
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0
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! ! 1
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1 .

! !
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i
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Then the Riccati differential Equation (9) is transformed to the following approximated form  

( ) ( ) ( )
25 5

0
1

0 0
1.k k k k

k k
a L x a I x c∗

= =

 + + = 
 

∑ ∑                        (12) 

We now collocate Equation (12) at ( )1 6m + =  points px , 0,1, 2,3, 4,5p =  as  

( ) ( ) ( )
25 5

0
1

0 0
1.k k p k k p

k k
a L x a I x c∗

= =

 + + = 
 

∑ ∑                        (13) 

For suitable collocation points we use the roots of shifted Legendre polynomial ( )6L x∗ .  
2) Also, by substituting from the initial condition (10) in (11) we can obtain ( )1n =  an equation which gives 

the value of the constant 1c  as follows  
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0
1 0.c u= =                                        (14) 

Equations (13) and (14) represent a system of non-linear algebraic equations which contains seven equations 
for the unknowns , 0,1, 2,3, 4,5ka k =  and 1c .  

3) Solve the resulting system using the Newton iteration method to obtain the unknowns , 0,1, 2,3, 4,5ka k =  
as follows  

0 1 2

3 4 5

0.76160,   0.31790,   0.0506,
0.02896,   0.00111,   0.00112.

a a a
a a a

= = − = −

= = − = −
 

Therefore, from Formula (12) we can obtain the approximate solution in the form  

( ) ( ) ( )
5

0
1

0
2 3 4 5 60.990 0.002 0.346 0.027 0.125 0.047 .

k k
k

u x a I x c

s x x x x x x
=

≅ +

= + − + + −

∑  

The numerical results of the proposed problem (9) are given in Figure 1 with different values of ( )5,7m m =  
in the interval [ ]0,1  at 0 0u = . From this figure, since the obtained numerical solutions are in excellent 
agreement with the exact solution, so, we can conclude that the proposed technique is well for solving such class 
of ODEs.  

4.2. Model 2: Logistic Differential Equation 

( ) ( ) ( )( )d
1 ,    0,  0.

d
u x

u x u x x
x

ρ ρ= − > >                             (15) 

We also assume an initial condition  

( ) 0 00 , 0.u u u= >                                   (16) 

The exact solution to this problem is given by  

( )
( )

0

0 0

.
1 e x

u
u x

u uρ−=
− +

 

 

 
Figure 1. A comparison between the exact solution and the approximate 
solution at 5m =  and 7m = .                                       
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The existence and the uniqueness of the proposed problem (15) are introduced in details in [31]. 
The procedure of the implementation is given by the following steps: 
1) Approximate the function ( )u x  and its relevant derivatives with 5m = , using Formula (11). Then the 

Logistic differential Equation (15) is transformed to the following approximated form  

( ) ( ) ( )

( ) ( )

5 5
0

1
0 0

5
0

1
0

1 0.

k k k k
k k

k k
k

a L x a I x c

a I x c

ρ∗

= =

=

 − + 
 

  − + =  
  

∑ ∑

∑
                       (17) 

We now collocate Equation (17) at ( )1 6m + =  points px , 0,1, 2,3, 4,5p =  as  

( ) ( ) ( ) ( ) ( )
5 5 5

0 0
1 1

0 0 0
1 0.k k p k k p k k p

k k k
a L x a I x c a I x cρ∗

= = =

    − + − + =    
    

∑ ∑ ∑                        (18) 

For suitable collocation points we use roots of shifted Legendre polynomial ( )6L x∗  which are  

0 1

2 3

4 5

0.96623, 0.03377,
0.38069, 0.61930,
0.16931, 0.83060.

x x
x x
x x

= =

= =

= =

                          (19) 

2) Also, by substituting from the initial condition (16) in (11) with 0 0.85u =  we can obtain 1)=(n  an equa- 
tion which gives the value of the constant 1 0.85c = . 

Equation (18) represents a system of non-linear algebraic equations which contains six equations for the 
unknowns , 0,1, 2,3, 4,5ka k = . 

3) Solve the resulting system using the Newton iteration method to obtain the unknowns , 0,1, 2,3, 4,5ka k =  
as follows  

0 1

2 3
6 8

4 5

0.0533, 0.0101,
0.0004, 0.00002,

1.642 10 , 5.398 10 .

a a
a a

a a− −

= = −

= =

= − × = ×

                            (20) 

Therefore, from Formula (11) we can obtain the approximate solution in the form  

( ) ( ) ( )
5

0
1

0
2 3 4 5 6 7 81 0.5 0.1667 0.0417 0.0083 0.0014 0.0002 0.00004 .

k k
k

u x a I x c

x x x x x x x x
=

= +

= + + + + + + + +

∑  

The numerical results of the proposed problem (15) are given in Figure 2 with different values of ( )3,5m m =  in 
the interval [0,1] . From this figure, since the obtained numerical solutions are in excellent agreement with the 
exact solution, so, we can conclude that the proposed technique is well for solving such class of ODEs.  

4.3. Model 3: Delay Differential Equation 
Consider the linear delay differential equation of third-order  

( ) ( ) ( )
3

0.3
3

d
0.3 e ,0 1,

d
xu x

u x u x x
x

− += − − − + ≤ ≤                        (21) 

with the initial conditions  

( ) ( ) ( ) ( )
2

2

d 0 d 0
0 1, 1, 1, e .

d d
xu u

u u x
x x

−= = − = =                        (22) 

The exact solution of this model is ( ) e xu x −= . 
The procedure of the implementation is given by the following steps:  
1) Approximate the function ( )u x  using Formula (6) and its relevant derivatives with 5m = , as follows 
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Figure 2. A comparison between the exact solution and the approximate so- 
lution at m = 3 and m = 5.                                             
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where ( ) ( )0
kI x , ( ) ( )1

kI x  and ( ) ( )x
kI x  are defined in (7) as follows  

( ) ( ) ( ) ( )
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,
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.
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k i i i i i

k i
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k i
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k i i i

+
+

=

+
+

=

+
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− +
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− +
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∑

∑

∑

 

Then the delay differential Equation (21) is transformed to the following approximated form  

( ) ( ) ( )

( ) ( ) ( ) ( )

25 5
0

1 2 3
0 0

25
0 0.3

1 2 3
0

2! 1!

0.3 0.3
0.3 e .

2! 1!

k k k k
k k

x
k k

k

x xa L x a I x c c c

x x
a I x c c c

∗

= =

− +

=

 
+ + + + 
 

 − −
 + − + + + =
 
 

∑ ∑

∑
                       (24) 

We now collocate Equation (24) at ( )1 6m + =  points px , 0,1, 2,3, 4,5p =  as  
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( ) ( ) ( ) ( ) ( )( ) ( )

( )

225 5 5
0 0

1 2 3 1
0 0 0

0.3
2 3

0.3
0.3

2! 1! 2!

0.3
  e .

1!
p

pp p
k k p k k p k k p p

k k k

p x

xx x
a L x a I x c c c a I x x c

x
c c

∗

= = =

− +

 −  + + + + + − +     
−
+ + =



∑ ∑ ∑
        (25) 

For suitable collocation points we use the roots of shifted Legendre polynomial ( )6L x∗ .  
2) Also, by substituting from the initial conditions (22) in (23) we can obtain ( )3n =  equations which give 

the values of the constants  

1 2 31, 1, 1.c c c= = − =                                       (26) 

Equations (25) and (26) represent a system of linear algebraic equations which contains nine equations for the 
unknowns , 0,1, 2,3, 4,5ka k =  and 1 2 3, ,c c c .  

3) Solve the resulting system using the conjugate gradient method to obtain the unknowns , 0,1, 2,3, 4,5ka k =  
as follows  

0 1 2

3 4 5

0.6321, 0.3109, 0.0515,
0.0051, 0.0004, 0.00002.

a a a
a a a

= − = = −

= = =
                       (27) 

Therefore, from Formula (23) we can obtain the approximate solution in the form  

( ) ( ) ( )
25

0
1 2 3

0
2 3 4 5 6 7 8

2! 1!
        1 0.5 0.1667 0.0417 0.0084 0.0014 0.0002 0.00002 .

k k
k

x xu x a I x c c c

x x x x x x x x
=

≅ + + +

= − + − + − + − +

∑  

The numerical results of the proposed problem (21) are given in Figure 3 with different values of 
( )5,7m m =  in the interval [0,1] . From this figure, since the obtained numerical solutions are in excellent 

agreement with the exact solution, so, we can conclude that the proposed technique is well for solving such 
class of ODEs.  

5. Conclusion and Remarks 
In this article, an integral collocation approach based on Legendre polynomials is introduced for solving  
 

 
Figure 3. A comparison between the exact solution and the approximate so-
lution at m = 5 and m = 7.                                           
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numerically the Riccati, Logistic and delay differential equations. The properties of the Legendre polynomials 
are used to reduce the proposed problems to system of algebraic equations which are solved by a suitable 
numerical method. From the obtained numerical results, we can conclude that this method gives results with an 
excellent agreement with the exact solution. All numerical results are obtained using Matlab program 8. 
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