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Abstract 
 
We present a scheme for calculating atomic single-particle wave functions and spectra with taking into ac-
count the nonspherical effect explicitly. The actual calculation is also performed for the neutral carbon atom 
within the Hartree-Fock-Slater approximation. As compared with the conventional atomic structure of the 
spherical approximation, the degenerate energy levels are split partially. The ground state values of the total 
orbital and spin angular momenta are estimated to be both about unity, which corresponds to the term 3P in 
the LS-multiplet theory. This means that the nonspherical effect may play an essential role in the description 
of the magnetization caused by the orbital polarization. 
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1. Introduction 

Let us start with revisiting the conventional atomic 
structures. We consider the isolated neutral atom with the 
atomic number Z . Neglecting the relativistic effects, 
the Schrödinger Equation for the stationary state is given 
by 

Ĥ E                  (1) 

with 
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where ir  and ir  stand for the position of the ith elec-
tron and its magnitude, respectively, and where the 
atomic unit is used. Equation (1) can be numerically 
solved only in small atomic systems, but in larger atomic 
systems we have to utilize the theories to reduce Equa-
tion (1) into the effective single-particle Equation such as 
the Hartree [1], Hartre-Fock [2] and Kohn-Sham [3,4] 
Equations, etc. The single-particle Equation is generally 
written by 

      2
i i i iV       r r r ,       (3) 

where   denotes the up-spin   or down-spin  . In 

order to solve Equation (3), we have usually used the 
spherical approximation, i.e., the central field approxi-
mation [5]. Under such the approximation, Equation (3) 
is separable into two Equations, one of which depends on 
the radial variable r  and the other on the angular vari-
ables, and  . If the effective potential is spherically 
symmetric and local [6], and if the solutions are given by  

     1
,nlm nl lmp r Y

r


  r ,         (4) 

then two Equations are 
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     2ˆ , 1 ,lm lmY l l Y    l ,        (6) 

where l̂  is the operator of the orbital angular momen-
tum, and  ,lmY    are the spherical harmonics [7]. 
Radial wave functions  nlp r  of Equation (5) are cal-
culated easily by means of the numerical methods such 
as the Herman-Skillman method [8,9]. Thus, the conven-
tional atomic structures, where the eigenstates are speci-
fied by the quantum numbers    , 1 ,n l n m l m l      
and  can be obtained. 

Here the question is raised of whether the spherical 
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approximation is always appropriate or not. The spheri-
cal approximation is reasonable for atoms having the 
outermost shell that is fully or half occupied since their 
electron densities are exactly spherical. However, in the 
other atoms the electron densities are not necessarily 
spherical, so that the conventional picture of the atomic 
structures is not rigorous but just an approximation. To 
what extent the effect of the nonspherical distribution of 
electrons (which is hereafter called the nonspherical ef-
fect) modifies the conventional picture of the atomic 
structures seems to be interesting and important. This is 
because the electronic structures of molecules and solids 
have been frequently considered on the basis of the or-
dinary atomic wave functions and spectra. The typical 
examples are the Slater integrals contained in the model 
Hamiltonians like the Hubbard model [10,11], and in the 
LDA + U method [12,13]. 

In addition to the above, there exists an obvious flaw 
in the spherical approximation. The total orbital angular 
momentum becomes necessarily zero in the conventional 
atomic structure, because the spherical approximation 
coincides with the filling approximation in which elec-
trons are uniformly distributed into each state in the out-
ermost shell [14]. This means that the orbital polarization 
never appears in the atomic structures of the spherical 
approximation. The orbital polarization is an origin of 
the magnetism of solids as well as the spin polarization 
[15-20], especially for the 5f-electron systems [15-17]. 
So far the orbital polarization has been discussed as a 
part of the correlation effects [17] or on the basis of the 
LS-multiplet theory [21]. In this paper, we shall discuss 
the nonspherical effect on the orbital polarization from 
the viewpoint of the single-particle picture. It will be 
shown in the following sections that the orbital polariza-
tion appears without the correlation effects. 

As a first attempt to take into account the nonspherical 
effect, Slater has proposed a scheme for expanding the 
eigenfunctions of Equation (3) with the spherical har-
monics [9]. However his method is difficult to be per-
formed because an infinite number of simultaneous 
equations have to be solved. After Slater’s proposal, 
there have been two kinds of approaches to this problem. 
One is the variational method where the single-particle 
wave function is expanded by using appropriately chosen 
basis functions [22,23]. Another is the density functional 
scheme containing the effect of the orbital current den-
sity explicitly.[24-31] In this paper, we adopt the former 
approach. As the basis functions, eigenfunctions for the 
spherical part of the single-particle potential are used and 
updated for each iteration of the self-consistent calcula-
tions. They are apparently different from those of the 
previous works [22,23]. 

The aim of this paper is to present the tractable 

scheme for calculating the atomic structures beyond the 
spherical approximation, and to discuss the nonspherical 
effect. Organization of this paper is as follows. In Sec-
tion 2, we present a scheme for dealing with the non-
spherical effect explicitly. In order to check the validity 
of the scheme, we apply it to the neutral carbon atom in 
Section 3. The calculation procedure is also explained. 
The results are shown in Section 4, with a focus on the 
differences between the present atomic structures and the 
conventional one. The ground state values of the total 
orbital and spin angular momenta are also estimated. 
Finally concluding remarks are given in Section 5. 

2. A Variational Method beyond the  
Spherical Approximation 

In this section, we present a variational method for cal-
culating atomic structures with taking into account the 
nonspherical effect. 

Let us consider solving the single-particle Equation (3). 
The Hartree-Fock-Slater approximation is utilized [32], 
i.e., the effective potential of Equation (3) is given in a 
local form  V r . First, we expand the effective poten-
tial with the spherical harmonics: 

          * *
, ,lm lm lm lm

lm

V v r Y v r Y 
     r ,  (7) 

where  lmv r  are the radial components and their ex-
plicit forms are given in Appendix. For the convenience 
of the subsequent discussion, the operator of the left- 
hand side (LHS) of Equation (5) is defined as 

 
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,           (8) 

where let  V r  be the spherically averaged potential 
for Equation (7), which is defined as 
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In the Expansion 7, the term    00lm  corresponds 
to the spherical part of the effective potential as shown in 
Equation (9), while the other terms correspond to the 
nonspherical parts. 

Next, in a similar way to Equation (7), we shall ex-
pand the solution of Equation (3) with the set of known 
functions. As the known functions, we here adopt ones 
given by Equation (4), the radial part of which is the ei-
genfunction for the Hamiltonian 8. Thus, the solution of 
Equation (3) is written as 

     ,

1
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nl l m

C p r Y
r

 
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Substituting Equations (7) and (10) into Equation (3), 
and writing distinctly the spherical and nonspherical 
parts of the effective potential, we get 
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where we use Equations (8) and (9), and abbreviate nl as 
“N” and lm as “L” for ease of seeing. It can be easily 
shown that Equation (11) is reduced to the spherical 
Equation including Equation (5), if the second term of 
the LHS is neglected. This means that the second term of 
the LHS represents the nonspherical effect that has been 
disregarded in the conventional spherical approximation. 

Here, for simplicity, we shall use the common value of 
l  for N  and L , and suppose that the eigenvalues for 
the Hamiltonian 8 is denoted as 0

N . Multiplying  
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1 1

* *1
,N Lp r Y

r
    on both sides of Equation (11) and 

integrating over the whole space, we have 
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where  
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Equation (12) is just the generalized eigenvalue prob-
lem. If the matrix elements, 

1N NO  and  
1N NV r , and 

the energy spectra of the spherical approximation, 0
N , 

are given, then we can obtain the eigenvalues, i , and 
eigenfunctions,  i

NLC  . It should be noted that the ei-
genvalues i  are guaranteed to be real since both ma-
trices of Equation (12) are hermitian. The angular inte-
grations in Equation (14) can be analytically calculated 
by using the Wigner 3j-symbols. According to the prop-
erties of the Wigner 3j-symbols, matrix elements of 
Equation (14) are zero unless 1 evenl l l   , 

1 1l l l l l     and 1m m m     [7]. These condi-
tions also determines the upper limit of the summation of 

Equation (7). 
The eigenfunctions thus obtained yield the new poten-

tials by means of the expressions given in Appendix. 
These potentials should coincide with the input ones. 
Namely, the self-consistency is required for the poten-
tials. The corresponding basis functions in Equation (10) 
are modified for each iteration since the function  nlp r  
is the radial part of solution for the Hamiltonian (8) with 
the Potential 9. The iteration is continued until self-con-
sistency for the potentials is achieved. 

Let us show the detailed procedure of the self-consis-
tent calculations. The flow chart of self-consistent calcu-
lations is shown in Figure 1. We first give a starting po-
tential in some way, for example via the LDA calculation 
within the spherical approximation (Step 1 in Figure 1). 
In order to prepare the radial basis functions  nlp r , the 
spherical parts of the potential are derived. Using these 
potentials, atomic structure calculations are performed 
(Step2). Then, using the basis functions and correspond-
ing spectra, the generalized eigenvalue problem is solved 
(Step3). The resultant eigenfunctions provide the new 
potentials (Step 4). Here we check whether the potentials 
are converged or not (Step 5). Of course, the checking 
should be performed on both convergences for the spheri-
cal and nonspherical parts of potentials. If the conver-
gence is not yet obtained, we return to Step 2 with the 
spherical potential calculated from the new potential. 
The calculations are repeated until the potentials are con- 
verged within some accuracy. 

3. Application to the Neutral Carbon Atom 

Compared to the previous ones [9,22,23], the present 
scheme seems to be more tractable, but as to the effec-
tiveness actual calculations have to be performed.  Here 
we apply it to the neutral carbon atom. 

In the Expansion 10, we choose the common value of 
l  in both summations for nl  and lm . That is to say, 
physically meaningful functions are prepared for basis 
functions of the expansion. In more detail, we use five 
functions having the following quantum numbers: 

           100 , 200 , 211 , 210 , 21 1nlm   . 

Correspondingly, the upper limit of the potential given 
by Equation (7) is determined from the properties of the 
Wigner 3j symbols, as already mentioned below Equa-
tion (15). This time, the expansion of the potential con-
sists of the following terms: 

         
       

( ) 00 , 11 , 10 , 1 1 , 22 ,

  21 , 20 , 2 1 , 2 2

lm  

 
. 

The generalized eigenvalue problem is reduced to   
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For ease of understanding the matrices of the eigen- value problem, their explicit forms are shown below: 

   

 

0

10

10,20

0 0
10,10 20 10

00,1 1 00,10 00,1 1

00,00

00,00

20,10

0 0
20,20 2010 20

00,00

2

2

10 21 10 21 10 21
10 10

10 20

20 10

i i

i

i
i i i i i i

ii

i

i

i

i i

i

i

i i i i i i i

i i

i i

i

i i

O

O

O

O

V V V
V

V

V

 




     








   









 
     

 
 



 

 







  
 

  


 
 
 


 

 0

21

0

00,1 1 00,10 00,1 1

00,00

21,21

1 1,00 1 1,00 1 1,10 1 1,1 1

1 1,1 1

10,00

20 21 20 21 20 21
20 20

21 10 21 20 21 21 21 21
21 21

21 10 2

i i

i i i i i

i

i
i

i i i i

i

i

i

i i i i i i

i i

i i i i i i i i

i i

i i i

O

V V V
V

V V V V
V

V

 

   




   





 


     

 

       
 

  

 

    

 



 



 

 

0

21

0

21

21,21

10,00 10,1 1 10,1 1

10,10

21,21

1 1,00 1 1,00 1 1,1 1 1 1,10

1 1,1 1

1 20 21 21 21 21
21 21

21 10 21 20 21 21 21 21
21 21

i i

i i

i
i

i i i

i

i
i

i i i i

i

i i i i i

i i

i i i i i i i i

i i

O

O

V V
V

V V V V
V

V
 

 


  




   



 

 

    
 

       
 

 

    

 





















100

200

21 1

210

21 1

0.

i

i

i

i

i

i

i

i

i

i

C

C

C

C

C























                  

 
 
 
 
 
 
 
 


(16) 

 

Figure 1. Flow chart of the self-consistent calculations. The detailed procedure is shown in the text. 

Solving the above Equations in a self-consistent way, 
we can obtain the atomic structure for the neutral carbon 

atom. The concrete steps of the calculations are shown in 
the flow chart of Figure 1. Here note that there is a pos-
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sibility to exist the multiple self-consistent solutions.  In 
order to cover such solutions, various kinds of input po-
tentials should be arranged. This time, we prepare the 
orbitals of the spherical approximations, i.e. 1s, 2s and 
2p orbitals, and take the linear combination of them so as 
to construct the input potentials. The 1s and 2s orbitals 
are used as they stand, while 2p orbitals are transformed 
into the following orbitals: 

1

2

3

211
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21 1

cos sin 0

sin cos 0

0 0 1

cos 0 sin

 0 1 0

sin 0 cos




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

   

   
       

     
  
  
  

    





,      (17) 

where 211 210 21 1,   and        are 2p orbitals of the spheri-
cal approximation. The input potentials are constructed 
from the 1s, 2s and two orbitals chosen among three ones 
given by Equation (17). The angles  and    are 
changed by 15°, respectively. A total of 864 kinds of 
different potentials are taken as the starting potentials 
(     3 2360 15 180 15 864C   ). As shown in a subsequent 
section, six kinds of self-consistent solutions can be ob-
tained correspondingly to the starting potentials. 

4. Results and Discussions 

In this section, we will give the results of the atomic 

structure of the neutral carbon atom. Figure 2 shows the 
energy spectra of the present scheme, together with those 
of the conventional spherical approximation. It should be 
noted that the conventional atomic spectra can be speci-
fied by the quantum numbers nlm , but in the present 
scheme they are specified only by the ordinal numbers 
because of lack of the spherical symmetry. For instance, 
1s states of the spherical approximation correspond to 
the 1st and 2nd states of the present scheme. 

The conventional 2p states are split into doubly de-
generate levels and single one due to the nonspherical 
effect. There exist two types of splitting. In other words, 
two types of the converged self-consistent solutions 
(SCS) can be found from the viewpoint of the splitting of 
energy levels. One is that the doubly degenerate levels 
are higher than the single one, and another is the opposite. 
They are denoted as “SCS-A” and “SCS-B”, respectively, 
in Figure 2. On the other hand, conventional 1s and 2s 
states are little influenced by the nonspherical effect. 
This is because the 2p states (5th and 6th states) are di-
rectly influenced by their nonspherical densities of elec-
trons, while the wave functions for 1s and 2s states (from 
1st to 4th states) are well localized near the nuclear 
where the spherical potential mainly caused by the nu-
clear is dominant. 

In order to discuss the ground-state properties in more 
detail, we shall investigate the components of the eigen- 
functions, i.e. the expansion coefficients of Equation (10). 
The SCS-A and SCS-B are classified into two and four 
types, respectively, according to the components of the 

 

 

Figure 2. Energy spectra for the neutral carbon atom. The first column shows the results for the conventional spherical ap-
proximation. The second and third columns are the self-consistent solutions for the present scheme, which are denoted as 
“SCS-A” and “SCS-B”, respectively. The up- and down-arrows denote the occupied states, and open circle the unoccupied 
states. All values are given in Rydberg Unit.  
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wave function. They are denoted as A-1, A-2 and B-1, 
B-2, B-3, B-4 respectively. The expansion coefficients 
for the 1st, 2nd, 3rd and 4th states are shown in Table 1. 
For all of the coverged SCSs, the components are same 
as those of the spherical approximation within the accu-
racy of 310 . These results are consistent with the fact 
that the states from 1st to 4th for the present scheme are 
in a good agreement with the conventional 1s and 2s 
states, respectively (Figure 1). Concerning the 5th and 
6th states, there is a large difference between the present 
and conventional schemes, which is shown in Table 2. In 

the conventional spherical approximation, electrons are 
distributed into each shell in an equal weight, so that the 
corresponding coefficients are all 2 3 . Meanwhile, 
components of each the converged SCS are partial to 
some of them. This partiality causes the polarization of 
the orbital angular momenta, which is so-called orbital 
polarization. In order to verify it, we calculate the ground 
state values of the total orbital and spin angular momenta. 
The ground state of the Hartree-Fock-Slater approxima-
tion is given by a single Slater determinant that is writ-
ten as 

 

               

       
           
           

1 1 1 4 1 1 1 1 1 2 1 1

1 4 4 4 4 41 6

1 5 5 1 5 5 2 5 5

1 6 6 1 6 6 2 6 6

1
, ,

6!
x x

   

 

  

  

           

     
        
        




    

  
 
 

r r r r

r r

r r r

r r r

          (18) 

where ix  denote the coordinates for ith electron in-
cluding spatial coordinate ir  and spin coordinate i , 
and where ( )i r  is the solution of Equation (16), and 
where ( ) and ( )     are wave functions for up- and 
down-spins, respectively. Using Equation (18), the total 
orbital angular momentum and its z-component, L  and 

zL , are respectively calculated by 

   2
1 6 1 6

ˆ( , ) , 1x x x x L L    L ,    (19) 

   1 6 1 6
ˆ, ,z zx x L x x L    ,         (20) 

where 
6

1

ˆˆ
i

i

 L l , and îl  is the operator of the orbital  

angular momentum for the ith electron. Similarly, the 
total spin angular momentum and its z-component, S and  

zS , are respectively given by 

     2
1 6 1 6

ˆ, , 1x x x x S S    S ,    (21) 

   1 6 1 6
ˆ, ,z zx x S x x S    ,         (22) 

where 
6

1

ˆ
î

i

 S s , and îs  is the operator of the spin an- 

gular momentum for the ith electron. The results are 
shown in Table 3. In a nonrelativistic many-electron 
system, , ,  and z zL L S S  are the conserved quantities. All 
of the coverged SCSs yield 1 and 1L S   within the ac- 
curacy of 310 . This means that the ground states of the 
present scheme correspond to the term 3P that is known 
to be the ground state of the LS-multiplet theory. Fur-
thermore, it is noticed that the present scheme obviously 

 

Table 1. The expansion coefficients of Equation (10) for the 1st, 2nd, 3rd and 4th states. Both SCS-A and SCS-B give the 
same results, so we don’t lable SCS-A and SCS-B distinctly. 

  (nlm) 

 Energy [Ryd.] (100) (200) (21+1) (210) (21-1) 

–21.354 1.000 … … … … 

–21.206 1.000 … … … … 

–1.421 … 1.000 … … … 
Spheical approximation 

–1.032 … 1.000 … … … 

–21.353 1.000 0.000 0.000 0.000 0.000 

–21.206 1.000 0.000 0.000 0.000 0.000 

–1.421 0.000 1.000 0.000 0.000 0.000 
Present results for SCS-A and SCS-B 

–1.031 0.000 1.000 0.000 0.000 0.000 
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Table 2. The expansion coefficients of Equation (10) for the 
5th and 6th states. 

  (nlm) 

 
Energy 
[Ryd.] 

(100) (200) (21+1) (210) (21-1) 

Spheical 
approximation 

–0.782 … … 2 3  2 3 2 3

–0.799 0.000 0.000 0.000 1.000 0.000 
SCS A-1 

–0.773 0.000 0.000 1.000 0.000 0.000 

–0.799 0.000 0.000 0.000 1.000 0.000 
SCS A-2 

–0.733 0.000 0.000 0.000 0.000 1.000 

–0.799 0.000 0.000 1 2  0.000 1 2
SCS B-1 

–0.799 0.000 0.000 1 2  0.000 1 2

–0.799 0.000 0.000 1.000 0.000 0.000 
SCS B-2 

–0.799 0.000 0.000 0.000 0.000 1.000 

–0.799 0.000 0.000 0.000 1.000 0.000 
SCS C-1 

–0.799 0.000 0.000 1 2  0.000 1 2

–0.799 0.000 0.000 0.000 1.000 0.000 
SCS C-2 

–0.799 0.000 0.000 1 2  0.000 1 2
  
 
Table 3. The ground state values of the tptal orbital angular 
momentum and itd z-component, L and LZ, are showm in 
the 1st and 2nd cplumns. Also, the ground state values of 
the total spin angular momentum and its z-component, S 
and SZ, are shown in the 3rd and 4th columns. 

State L LZ S SZ 

SCS A-1 1.000 1.000 1.000 1.000 

SCS A-2 1.000 –1.000 1.000 1.000 

SCS B-1 1.000 0.000 1.000 1.000 

SCS B-2 1.000 0.000 1.000 1.000 

SCS B-3 1.000 0.000 1.000 1.000 

SCS B-4 1.000 0.000 1.000 1.000 

 
causes the orbital polarization. Since the spherical ap-
proximation never brings it, we may say that the non-
spherical effect is one of the keys to the appearance of 
the orbital polarization. 

Here note that the SCSs are classified into three kinds 
of states, which yield 1,0 and 1zL   , respectively. 
This is not surprising because the term 3P are triply de-
generate with respect to the orbital angular momentum. 
These three states, by their nature, should be completely 
degenerate and their total energies should be same as 
each other. Actually, the total energies of these states 

which are also evaluated by taking the expectation values 
of the Hamiltonian with respect to Equation (18) coin-
cide with each other. 

5. Concluding Remarks 

In this paper, we present a scheme for calculating the 
atomic structures beyond the spherical approximation 
and investigate to what extent the single-particle picture 
of atomic systems needs to be modified. It is confirmed 
that the orbital polarization can appear only by consider-
ing the nonspherical effect explicitly. Compared to the 
conventional atomic structures, we find that the atomic 
levels are partially split. The magnitude of splitting for 
2p states is about 5%, which is never neglected because 
the splitting itself causes the orbital polarization. Also, 
such a debacle of the conventional atomic structures 
seems to be conceptually important. 

Although the present scheme shows the necessity of 
modifying the single-particle picture of atomic systems, 
we have to consider the following effects that are ne-
glected in the present calculations: 

1) enhancement of the expansion basis functions in 
Equation (10); 

2) treatment of the exchange energy beyond the Har-
tree-Fock-Slater approximation; 

3) correlation effects. 
Concerning the first effect, we here adopt only 1s, 2s 

and 2p orbitals in the expansion of the eigenfunctions.  
However we had better take more functions as the basis 
functions. Especially for the neutral carbon atom, 3d 
orbitals should be added to the expansion basis functions 
since the nondiagonal elements between the 2p and 3d 
states would not be negligibly small in Equation (12) or 
(15). Similarly, the second and third effects seem to be 
indispensable for describing the nonspherical effect in 
more detail. But anyway, we can say within the knowl-
edge obtained in this paper that the orbital polarization 
certainly emerges by taking into account the nonspheri-
cal effect even if the correlation effects are not explicitly 
considered. Furthermore, the effect of the nonspherical 
distribution of electrons cannot be neglected not only 
conceptually but also quantitatively in the study on the 
single-particle picture of atomic systems. 
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Appendix 

Expressions for the Potentials 

In this appendix, we present the expressions for the 
spherical and nonspherical parts of the effective potential. 
The effective potential consists of three terms, i.e., the 
nuclear, Hartree and exchange potentials, which are given 
by 

     
1

13
3

2 3
2 d 6 ,

4π

Z
V

r 




         
r

r r r
r r

  (A1) 

where the exchange potential is simplified with the aid of 
the Slater approximation [32], and where   r  and 

  r  denote the electron density and electron density 
with  -spin, respectively. Using Equation 10, they are 
written as 
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 (A3) 

where the sum of Equation A3 is over only the occupied 
states with  -spin. What we need are 

1) spherical part of Equation A1, i.e.,  V r    

    *

00 00

1

4π
v r v r  , that appears in Equation 8, 

and 
2) nonspherical components of Equation A1, i.e., 

 kqv r , that appear in Equation 12 or 14. 

The above 1) is indispensable for deriving the basis 

functions  nlp r  and corresponding spectra 0
nl
 , 

which are also used in Equation 12 or 14. 
Now let us show the explicit forms of 1) and 2) by 

considering each term of Equation A1. As for the first 
term, we have no problem because it is exactly spherical. 
Also, the second term can be easily separated into the 
spherical and nonspherical parts by means of the multi-
pole expansion of the Coulomb potential. Concerning the 
third term, we have to use an approximation so as to de- 
rive one third power of   r . Using the composition 

relation for the spherical harmonics,   r  is formally 

separated into spherical and nonspherical parts as fol- 
lows: 

     S NSr     r r ,          (A4) 
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Since  NS
 r  is constructed from electrons of the 

unfilled outermost shell alone, it is quite smaller than the 
spherical part of the electron density. That is to say,  

   S NSr   r . Using this fact, we can get an ap-  

proximate form of the one third power of   r  as 
follows 

       
1 1 2

3 3 3
1

3S S NSr r  
    r r ,     (A7) 

The first and second terms turn to the spherical and 
nonspherical parts of the exchange potential, respectively. 

Using these relations, the resultant forms of 1) and 2) 
are, respectively, given by    
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 is the Wigner 3j symbol [7],  
and  S r  is given by Equation A5. 

 


