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Abstract 
We compare and contrast asymmetry and nestedness, two concepts used in the characterisation of 
the specialist-generalist balance in bipartite ecological interaction networks. Our analysis is rele-
vant to mutualistic networks such as those consisting of flowering plants and pollinators, or fruit-
ing plants and frugivores, or antagonistic networks such as those consisting of plants and herbi-
vores, in an ecological community. We shall refer to the two sets of species in the bipartite net-
work as plants and animals, the usual but not the only ecological situation. By asymmetry we 
mean either connectivity asymmetry or dependence asymmetry, which are essentially equivalent. 
Asymmetry expresses two attributes: generalists interact preferentially with specialists, and spe-
cialists avoid interacting with each other. Nested patterns, in principle, should express these same 
two features and one more: the presence of a core of interactions among generalists. We compute 
the full set of perfectly nested patterns that are possible in an L × L matrix with N interactions, 
representing an ecological network of L plants and L animals, and point out that the number of 
nested arrangements grows exponentially with N. In addition, we analyse asymmetry for the full 
set of perfectly nested patterns, and identify extremes of asymmetry inside the universe of nested 
patterns. The minimal asymmetry is marked by a modular core of interactions between species 
that are neither specialists nor generalists. On the other hand, the case of maximal asymmetry is 
formed by a set of few generalists and many specialists with equal connectivity. The stereotypic 
case of nestedness with a core of interactions among generalists has intermediate asymmetry. 
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1. Introduction 
The contemporary way to look at an ecological community is through the lens of an interaction network; in this 
approach the pattern formed by the interactions is more important than the particular species that take part in the 
tangled interplay of the interactions. Despite the widespread acceptance for employing networks as good theo-
retical models to investigate ecological communities, their characterisation remains a delicate matter. Many 
tools from network theory and statistics have been used in this enterprise [1]-[4], but not all are based on a clear 
mathematical background, and this leads to possible ambiguity. 

A scientific theory should employ intelligible concepts to produce clear statements, otherwise any attempt at 
falsification will be ineffective or dubious. We state this methodological remark because the aim of this paper is 
to clarify concepts. We shall focus on two concepts that are used, and sometimes interchanged, to understand the 
specialist-generalist balance in bipartite interaction networks (BINs): asymmetry and nestedness. 

The ecological idea behind connectivity asymmetry is that generalist species are typically connected to spe-
cialists. Such a pattern may contribute to stability [5]-[7]. In an abstract way, we can formulate connectivity 
asymmetry as the following principle: species tend to interact with species with the maximum possible differ-
ence in their number of interactions. Specialists tend to interact with generalists, and neither generalists nor spe-
cialists tend to interact with each other. We shall see later that connectivity asymmetry is essentially equivalent 
to dependence asymmetry, where species prefer to interact with species with the maximum possible difference 
in their dependences on each other. Asymmetry indices may be defined for qualitative networks, where informa-
tion is only available on whether or not plant species i interacts with animal species j, or for quantitative net-
works, where in addition the strength of the interaction is quantified. In the literature, dependence asymmetry 
was explored initially for qualitative networks by Vásquez and Aizen [8], and then for quantitative networks by 
Bascompte and co-authors [9] and, using an entropy-based approach, by Blüthgen and co-authors [10]. 

Nestedness was first introduced to describe patterns of species composition on islands [11], then adapted to 
describe patterns that commonly occur in plant-pollinator BINs by [12], and had been used widely to describe 
many BINs. A nested BIN contains, at the same time, three different aspects [13]: 1) a core of generalists that 
interact with other generalists; 2) many generalists that interact with specialists; and 3) an absence of interac-
tions between specialists. Nestedness indices are normally only defined for qualitative networks. Although there 
is no consensus in the literature about the best way to define an index to quantify nestedness [11], most authors 
agree that a gap-free matrix is perfectly nested [14] [15]. It means that, once we place rows and columns in de-
creasing order of their sums, the final matrix representation of a perfectly nested BIN should contain no empty 
site with an occupied site to its right or below it. 

In this methodological manuscript we proceed by comparison, exploring similarities and contrasts between 
asymmetry and nestedness. Since nestedness indices for BINs are based on qualitative data, the comparison re-
quires us to use qualitative data for measures of asymmetry as well. We start by introducing connectivity asym-
metry for qualitative networks and stating its main properties, and show that it is equivalent to dependence 
asymmetry. After that we take a matrix of given size and occupancy, and give an asymptotic expression for the 
number of possible perfectly nested arrangements. We then calculate the connectivity asymmetry for all per-
fectly nested arrangements, focusing on the nested patterns of maximal and minimal asymmetry. In the conclu-
sion, we discuss the results in the context of the literature of BINs, and explore the possibility of employing 
connectivity asymmetry as a tool in the analysis of qualitative BINs. 

2. Theoretical Analysis 
Before we begin the theoretical study, let us fix the mathematical notation we shall use throughout the article. 
The central mathematical concept is the adjacency matrix ( )ijA a= , where ija  is defined by  
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1 if plant species and animal species interact,
0 if not.ij

i j
a 

= 


                      (1) 

This is the object that represents the qualitative information in the BIN. An illustrative example of the bipar-
tite networks is given in Figure 1. It has dimensions P AL L× , where PL  and AL  are the numbers of plant 
and animal species in the community. We can project the information in the matrix onto connectivity vectors of 
plants, ( )P P

ik k= , and animals, ( )A A
jk k= , by  

1 1
and .

A PL L
P A
i ij j ij

j i
k a k a

= =

= =∑ ∑                                 (2) 

The quantity P
ik  gives the number of animal species that interact with plant species i, and A

jk  the number 
of plant species that interact with animal species j. Finally we define N, the total number of interactions in the 
network or the total number of occupied sites in the matrix, by  

1 1 1 1
,

P A A PL L L L
P A
i j ij

i j j i
N k k a

= = = =

= = =∑ ∑ ∑∑                                 (3) 

and the density ρ  of occupied sites by ( )A PN L Lρ = . 

2.1. Connectivity Asymmetry for Qualitative BINs 
Let us define the P AL L×  connectivity asymmetry matrix ( )ijC c=  between plant i and animal j by  

( ) if plant species and animal species interact,

0 if not.

P A P A
i j i j

ij

k k k k i j
c

 − += 


            (4) 

(An alternative definition, ( )max ,P A P A
ij i j i jc k k k k= − , gives similar results but is less mathematically tractable. 

Others [16] have omitted the modulus signs in defining similar quantities, but we are only interested in the ab-
solute value of the difference between the connectivities of plant species i and animal species j.) Note that 
0 1ijc≤ < , and 0ijc =  in the symmetric case where the plant and the animal have equal connectivity, while 
maximal asymmetry is achieved when maximally specialist plants ( )1P

ik =  interact with maximally generalist  
 

 
Figure 1. An illustration of a typical adjacency matrix. The 
shaded boxes indicate interaction between plant and animal 
species. We highlighted row and columns of plant P2 and 
animal A6. The dependence of these species is 2 4Pk =  and 

6 2Ak = . The asymmetry between these particular plant and 

animal species is 2,6

4 2 1
4 2 3

c
−

= =
+

. 
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animals ( )A
j Pk L= , or maximally specialist animals ( )1A

jk =  interact with maximally generalist plants 
( )P

i Ak L= . In these cases ( ) ( )1 1ij P Pc L L= − +  or ( ) ( )1 1ij A Ac L L= − + , which tend to 1 as PL →∞  or 
AL →∞  respectively. 
The global connectivity asymmetry c  of a BIN is given by averaging ijc  over all the occupied sites of the 

matrix,  

, 1 1

1 1 .
A PL L

ij ij
i j j i

c c c
N N = =

= =∑ ∑∑                                 (5) 

Note that, despite a claim to the contrary for a similar index [16], this is not well approximated by  
( )P A P AL L L L− + . In particular, ( )P A P AL L L L− +  is zero if P AL L= , and we shall see later that c  does 

not share this property. 
It is interesting to note that, by definition, c  is a quantity that depends only on the total number of interac-

tions of species, P
ik  for plants i and A

jk  for animals j. The number of interactions, in its turn, is not affected 
by permutations of lines or columns in the matrix. In this way c  does not require any matrix-packing proce-
dure that is commonly used in the estimation of nestedness [11]. 

2.2. Dependence and Connectivity Asymmetry 
The dependence P

ij∆  of a plant species i on an animal species j is a measure of how much plant species i de-
pends on animal species j, and is defined for a qualitative network by  

1 if plant species and animal species interact,
0 if not.

P P
P i i
ij

k i jδ =∆ = 


                (6) 

The P AL L×  dependence matrix P∆  for plants is defined by ( )P P
ij∆ = ∆ . In this way, a maximally special-

ist plant species i that interacts with just one animal species j has a maximal dependence 1P P
ij iδ∆ = =  on that 

species, while a maximally generalist plant species i that interacts with all AL  animal species has minimal de-
pendence 1P P

ij i ALδ∆ = =  for every animal species j, with 0P
iδ →  as AL →∞ . Similarly, the dependence 

A
ij∆  of an animal species j on a plant species i is defined by  

1 if animal species and plant species interact,

0 if not.

A A
j jA

ij

k j iδ =∆ = 


                 (7) 

and the P AL L×  dependence matrix A∆  for animals is defined by ( )A A
ij∆ = ∆ . (Note that we retain the con-

vention of using the rows of a matrix for plants and the columns for animals, so that the second index in A
ij∆  

refers to the dependent species.) Just as for plants, a maximally specialist animal species has dependence 1 on 
the single plant species that it interacts with, while a maximally generalist animal species has dependence 1 PL  
on each and every plant species. 

The dependence asymmetry ijd  between animal species i and plant j is a quantity that express the difference 
between the two dependences, and is given by  

( ) if plant species and animal species interact,

0 if not.

P A P A
i j i j

ij

i j
d

δ δ δ δ − += 


             (8) 

The P AL L×  dependence asymmetry matrix is given by ( )ijD d= . (Just as for connectivity asymmetry, the 
alternative definition ( )max ,P A P A

ij i j i jd δ δ δ δ= −  gives similar results but is less mathematically tractable. 
This alternative definition is essentially that of [9], but adapted to a qualitative network.) Note that 0 1ijd≤ < . 
Moreover, C D= , since 0ij ijc d= =  if plant species i does not interact with animal species j, while if there is 
an interaction,  

1 1
.

1 1

P A P A A P
i j i j j i

ij ijP A P A A P
i j i j j i

k k
c d

k k

δ δ δ δ

δ δ δ δ

− − −
= = = =

+ + +
                        (9) 

Dependence and connectivity asymmetry for qualitative networks are essentially the same concept, as has 
been pointed out in [3]. 
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2.3. The Number of Nested Patterns 
The number of nested patterns can be estimated analytically or algorithmically. For sake of simplicity we restrict 
our analysis to the case of a square matrix of size L L× . In the first step of the construction of an artificial 
nested pattern we have to be sure that all species have at least one link. To fulfil this statement we set in the ma-
trix an outer shell of occupied elements; this procedure may be visualised in the set of Figure 2. In this set the 
empty sites are white and the occupied sets are grey—the clear grey sites are the outer shell. The number of 
elements in the outer shell, shellN , is given by 2 1L − . 

Recall that N is the total number of occupied sites in the matrix, and define intN  to be the number of ele-
ments of the matrix that do not belong to the external shell; in this way shell intN N N= + . In Figure 2 the inter-
nal elements are shown in a dark grey tone. To compute the total number of different perfectly nested patterns, 
χ , we start with the simplest case where int 1N L≤ − . To illustrate this case we show in Figure 2 five matrices 
with 5P AL L= =  and int 4N = ; the nested matrices of this set of figures correspond to all possible arrange-
ments of matrices with int 4N =  and no gaps in their arrangement. Indeed, the arrangement of inner elements 
follows a partition of a positive integer, in this case, the partition of 4. In number theory, a partition of a positive 
integer N counts the total number of ways that N may be written as a sum of positive integers. The number of 
partitions of N is given by the partition function ( )p N  [17]. 

In Figure 3 we show χ  versus the number of occupied sites N. The main function depicted in the graphic is 
the partition function ( )p N . In the case that int 1N L≤ −  the number of distinct nested patterns is equal to 
( )p N  itself. For int 1N L> − , the number of distinct nested patterns is smaller than ( )p N  because partitions 

of N that extend beyond the length of the square (vertically or horizontally) are not allowed. A generic expres-
sion of the χ  is given by ( )1, 1 intL Lp N− − , the number of partitions of Nint into a sum of no more than 1L −  in-
tegers with no term greater than 1L −  in the sum. The curve of χ  is symmetric relative to ( )2

max 1 2N L= − ;  
 

     
(a)                                    (b)                                     (c) 

   
(d)                                    (e) 

Figure 2. A set of all possible nested patterns for LP = LA = 5 and N = 13 occupied elements. We can split any of these fig-
ures into a outer shell structure of 2 × 5 − 1 = 9 elements and 4 internal occupied sites. For this example the complete set of 
five nested patterns forms a Ferrers diagram. 
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Figure 3. A curve of the total number of different perfectly nested pat-
terns, χ, for several cases. The partition function p (N) is the upper boun-
dary curve of χ. We illustrate the cases of L = 6, 8 and 12; for these cases 
the χ depart from the curve because a finite lattice cannot effect all the in-
teger partitions. 

 
indeed, for maxN N> , χ  becomes the same as another related quantity, the number of different anti-nested 
patterns, or nested patterns formed by empty sites instead of occupied ones. 

An asymptotic expression for ( )p N  in the limit as N →∞  is given [18] by  

( ) 1 exp π 2 3,
4 3

p N N
N

                                 (10) 

and the modified partition function ( )1, 1L Lp N− −  has similar asymptotic behaviour. In this equation the expo-
nential term dominates the expression for large N. The conclusion we take from this expression is that for a large 
number of interactions, N, the number of possible nested arrangements grows exponentially. Such a property 
seems not to encourage the use of nestedness to produce characteristic indices of BINs, and we discuss this point 
in the conclusion. 

2.4. Asymmetry Distribution among Nested Patterns 
To understand how connectivity or dependence asymmetry and nestedness are related we plot histograms of c  
for all the multiplicity of nested patterns. This procedure enables us to grasp the differences in c  that are in-
side the set of possible nested arrangements for a given L and N. Figure 4 shows, for L = 11, two distinct cases: 
in (a) the occupation is low, int 10N = , and in (b) it is high, int 30N = . As ( ) 2

shell intN N Lρ = +  we have 
0.26ρ =  in (a) and 0.42ρ =  in (b). Although the two pictures show similar distribution patterns, we high-

light two differences between them. The first is that values of asymmetry are larger for smaller ρ , because ge-
neralists in this case are connected largely to specialists, producing sites of high asymmetry. On the other hand, 
for high ρ  the matrix is densely occupied and specialists become scarce, decreasing the average asymmetry of 
the sites. The second point to which we call attention is that χ  is much larger for high ρ , a result that comes 
directly from Figure 3 or, in a similar way, from Equation (10). 

We now stress the cases of patterns of maximal and minimal c  among the set of all different nested patterns. 
The point here is to understand the configurations that produce the extremes of c  in the histograms of Figure 
4. This question is important because we can understand the appearance of matrices of high and low asymmetry. 
In Figure 5 we show, for a square matrix with 11L =  and int 16N = , the matrices of lowest c  in (a) and of 
highest c  in (c). The case (c) is not unique, since a reflected figure along the diagonal of the square has the 
same asymmetry. The case of minimal c  is easy to understand: all elements of the internal square have 

, 0i jc = , since P A
i jk k=  for all i and j, which produces an arrangement of very low c . On the other side, the 

maximum c  is formed by a combination of the maximum number of generalists that can coexist with the  
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(a)                                (b) 

Figure 4. Two histograms illustrating the distributions of asymmetry, 
where L = 11 and the number of occupied sites is (a) low, Nint = 10, and 
(b) high, Nint = 30. 

 

     
(a)                                    (b)                                     (c) 

Figure 5. The complete nested matrices illustrating to three cases of dependence asymmetry for a same ρ : in (a) the mi-
nimal c , in (b) the average c  and in (c) the maximal c . We use in this simulation 11L =  and int 16N = . The case of 
minimal c  is characterised by a solid modular structure while the maximal c  is formed by two additional generalists. 
The typical case of a nested pattern is depicted in (b), the average c  among the ensemble of nested patterns. 

 
maximum number of specialists; the consequence of this choice is the complete exclusion of species that are 
neither maximally generalists nor specialists. We plot also in Figure 5(b) the median of histogram. This pattern 
resembles a typical nested pattern, and we stress this point in the discussion. 

3. Discussion and Final Remarks 
In this work we compare two concepts that are used to investigate interaction networks: nestedness and connec-
tivity or dependence asymmetry. Our strategy to deal with this problem is to analyse the total set of perfectly 
nested matrices, for a given size and occupancy, and to compute c  for all of them. The result of this analysis is 
summarised in Figure 4 and Figure 5. We conclude that inside the ensemble of nested patterns there is a range 
of matrices of diverse c . At one extreme of the range we have symmetric patterns characterised by the pres-
ence of many sites of zero asymmetry that form a core of species with the same connectivity that interact 
amongst themselves as in a modular structure. In the opposite extreme, the case of maximal asymmetry corres-
ponds to a situation where we have only generalists and specialists with the same number of interacting partners. 
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It is interesting to note that the pictorial examples of nested patterns shown in scientific articles [12] [19] show 
an intermediate c  between these two extreme cases. 

We recall three aspects of a nested pattern that we have outlined in the introduction: a) a core of generalists 
that interact with another generalist; b) many generalists that interact with specialists; and c) an absence of inte-
ractions between specialists. A generalist connected to many specialists gives origin to sites of high asymmetry, 
and an interaction of a specialist with another specialist produces sites of zero asymmetry; the absence of this 
pattern in nested networks also increases the asymmetry. In this way, cases (b) and (c) are typical of networks 
with high asymmetry. On the one hand, a core of generalists interacting with generalists leads to sites of low 
asymmetry, which contribute to decreasing the asymmetry. This picture agrees with the last sentence of the pre-
vious paragraph: the stereotype of an optimal nested pattern is something “in between” two extremes of asym-
metry dependence. We remark that the ensemble of perfectly nested patterns does not necessarily fulfill condi-
tions (a) and (b). Indeed, inside the spectrum of perfectly nested patterns, the case of minimal c  does not fulfil 
condition (b) and the case of maximal c  does not follow condition (a). However, the nested patterns around 
the peak of distribution of c  follows conditions (a), (b) and (c), in agreement with the ecological concept of 
nestedness [12] [13] [19]. 

In this work we call attention to one aspect that has not been stressed in the literature [11] [19]. The nested 
patterns have an internal multiplicity of states; and furthermore, the number of perfectly nested patterns grows 
exponentially with the number of occupied sites, Equation (10). However, despite the fact that perfectly nested  
patterns are asympotically like ek N , the total number of patterns is asympotically like ekN . In this way the  
number of perfectly nested structures is a very small fraction of the total number of patterns. This justifies, in a 
statistical way, the use of nested patterns for the construction of indices. In addition, the use of a nestedness in-
dex usually occurs in comparison with an ensemble of random matrices that have the same distribution of P

ik  
and A

jk  [7] [11] [20]. Such a procedure, known as the R3 null model, restricts strongly the number of nested 
structures with a given N and enables a reasonable use of a nestedness index. For the case of perfectly nested 
pattern there is just one pattern for fixed P

ik  and A
jk , but for a generic case this point is unclear. We note that 

there is an analytic result in the literature that can be used to clarify this point. In the work [21] there is a proof 
that the nestedness index ν  depends only on P

ik  and A
jk  to be calculated; however, there is not yet a well 

established relation of ν  with other nestedness indices like the NODF [22] or the Temperature of Atmar [23]. 
Connectivity or dependence asymmetry seems to be a good candidate to characterise qualitative BINs, and we 

give at least two reasons for that. It is easy to compute because it is not necessary to perform a matrix-packing 
procedure, besides we compute c  by counting ,i jc  over matrix elements, which can be done in one line of a 
program in R. The second point is that asymmetry has a direct ecological interpretation: it computes the imbal-
ance of species connectivities in the network. On the other side, the difficulty of using c  as an index is that it 
should be properly normalised or exhaustively compared with null models [11] [24]. Without a comprehensive 
test of c  against matrix sizes and occupancy, it is not expected that c  could be used to compare matrices of 
different L and ρ . At this moment we are working on a well normalised asymmetry index that we intend to use 
to distinguish antagonist from mutualist networks. 
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