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Abstract 
In this article, the primal-dual interior-point methods are used to minimize costs and losses in a 
predispatch model for the generation and transmission of direct current (DC) power flow in a hy-
droelectric system with pre-programmed manipulations; i.e., in cases of preventive maintenance, 
within a period of twenty-four hours. From the computational standpoint, the effort required to 
solve a problem with and without manipulations is similar, and the reasons will be also discussed 
in this study. Computational results prove these findings. 
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1. Introduction 
In an electric power system, operating conditions are constantly evolving; accordingly, maintenance services 
must be performed to avoid short-circuits and overloads. Scheduled shutdowns are recommended when system 
maintenance is necessary. Therefore, the goal is to ensure the supply of electrical energy with few interruptions 
for the shortest time possible while maintaining the quality levels established in legislation governing the elec-
tricity sector. 

The occurrence of scheduled or emergency interruptions in a power transmission network requires the isola-
tion and restoration manipulations on the network. The operations that define a manipulation must comply with 
previously-established electrical requirements and criteria, regulated by government agencies or by the power 
distribution utility. 

Considering the complexity of electrical power grids, the increased demand for energy and the constant quest 
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for lower costs, the application of methods to minimize generation costs and losses in the predispatch transmis-
sion of the system has become necessary. 

In hydroelectric predispatch, power plants have a goal to accomplish on a given day, which is established by 
long-term planning. On the other hand, with the variation in demand due to the time period, the execution of 
programmed manipulations on the transmission lines or generation buses is necessary to keep the system stable, 
thus leading to changes in the configuration of the network throughout the day. 

In this study, the predispatch is modeled over a twenty-four-hour period, representing the dispatch in a single 
day, and the manipulations will be a data input, i.e., they will already be programmed; therefore the manipula-
tions considered herein will be preventive. It is important to highlight that there are other types of manipulations, 
such as generator shutdowns, tap changing and FACTS (Flexible Alternating Current Transmission System) ad-
justment; however, these will not be considered in this study. 

In this paper, the predispatch model for a system hydroelectric is initially approached where manipulations 
are not considered. A solution to this problem using primal-dual interior point method is presented. Then the 
problem with manipulations is inserted, explaining the differences between bar manipulation and line manipula-
tion, as well as incidence and reactance matrices changes according with the new network topology. A heuristic 
for the construction of a spanning tree is discussed, since it is necessary depending on the manipulation to be 
performed. This paper finalizes with computational results in test and real life systems and the conclusions. 

Furthermore, by using the speed and robustness of the interior-point methods [1]-[3], the goal is to obtain 
more efficient implementations for the predispatch through the exploitation of the matrix structure of the result-
ing system. 

2. The Predispatch Problem 
Predispatch is a short-term operational problem; in this case, short-term refers to one week, or even one day, The 
intention is to fulfill demands and satisfy the energy targets that have been defined in long-term planning. Flow 
restrictions can be divided into blocks that repeat themselves over a certain time interval, representing the power 
system in these intervals. We also have an independent formulation of the Kirchhoff laws, where power flows 
are represented by directly considering transmission limits as restrictions and transmission losses as performance 
criteria [4]. 

DC network power flow models are in widespread and even increasing use, particularly in congestion-con- 
strained market applications, since they have considerable analytical and computational appeal. When their 
power flows are reasonably correct, they can often offer compelling advantages [5]. 

A predispatch system with m  buses, n  lines and g  generators, where manipulations are not considered, 
can be modeled as follows [6]: 
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where: 
• 1nf R ×∈  represents the active power flow variables;  
• 1gp R ×∈  represents the active power generation variables;  
• g gQ R ×∈  represents the diagonal matrix of the generation loss quadratic term;  
• n nR R ×∈  represents the diagonal resistance matrix;  
• 1md R ×∈  represents the active load demand;  
• 1n m nX R − + ×∈  represents the network loop reactance matrix;  
• E  represents the matriz of dimension m g×  with each column containing a single nonzero entry equals to 

one for each generator;  
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• m nA R ×∈  represents the network incidence matrix;  
• 1gc R ×∈  represents the linear term of generation loss coefficient vector;  
• max min max, ,f f p  and min 1gp R ×∈  are bounds for the active power flow and generation variables;  
•   eα β  are weight constants;  
• 1gq R ×∈  represents the generating unit targets.  

In this model, the two objective function components are quadratic with separable variables. The first com-
ponent represents the value of the transmission losses. The second component characterizes the generation cost 
of power plants [7]. 

Problem (1.1) may be simplified by using changes in the variables [8] and adding slack variables, thus we 
have the primal problem in its standard form: 
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whose respective dual can be written as: 
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Matrix B , formed by the juxtaposed rows of the incidence and reactance matrix, is no longer constant 
throughout the time intervals k , which may be partitioned as: 

A
B
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In more detail: 

T N

T N
B

X X
 

=  
 

 

where, 

[ ]A T N=  

and, 

[ ] T NX X X= . 

with this partitioning, the columns of the incidence matrix A are divided so that T contains the edges of a span-
ning tree and N is formed by the remaining edges, which belong to the co-tree [9], and the reactance matrix X  
in a similar manner. Matrices B  and E  vary according to the time intervals ( kB  and kE ), reflecting the 
modifications to the networks and buses by the manipulations carried out throughout the study window. The 
reason why these matrices vary according to time intervals is that the network is no longer constant throughout 
these t intervals; every time there is a manipulation, the matrix B  formed by the juxtaposed rows of the inci-
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dence and reactance matrix and the matrix E  of order m g×  should vary in accordance with the changes 
imposed on the network. 

The primal-dual interior-point methods consist of the application of Newton’s method to the optimality condi-
tions; therefore, the following linear system is obtained: 
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when several variable substitutions are made, we get: 
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By eliminating the d k
fy


 from the first equation of the previous system and replacing it in the second equation, 
we get: 
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The direct solution of the linear system (1.6) requires a large computational effort because the blocks  

( ) 1k T k
fM B D B D

−
= +



 have the dimension of transmission lines and the dya dimension is given by the of  

number of generators. A more efficient solution, inspired by [6], will be developed for the model with topology 
network modification. 

3. Manipulations 
The manipulations may occur due to momentary unscheduled interruptions, or to meet the needs of network 
maintenance and transfers of loads, feeders and substations. In Brazil, the System Operation Center (COS) is 
responsible for executing, authorizing and overseeing the manipulations and scheduled or emergency services of 
the electricity transmission system. It monitors and effectively operates in restoring the electricity system in the 
event of simple and generalized contingencies. Such activities, carried out in real time, cover the knowledge of 
the situation and orientation on the execution of any manipulations that may be required, aimed at ensuring the 
integrity of people and facilities, system reliability and reliability and quality of supply. 

Over most time intervals, manipulations are not executed in the Brazilian electricity system, rarely causing the 
transmission network to change from one interval to another, with four to six manipulations typically being ex-
ecuted per day. The changes considered herein will be called preventive manipulations, i.e., those changes that 
occur on the network so that maintenance can be carried out, thus avoiding power interruption. 

The goal is to meet all the loads, without straining lines, feeders and power generation plants. 
Three types of manipulations will be considered in this study: 

• line manipulations; 
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• bus manipulations. 

3.1. Line Manipulations 
Line manipulations represent the shutdown or return to operation of certain transmission lines. When a line ma-
nipulation is executed, for instance, a branch is removed from the system, the network topology is modified. 
Algebraically, a column from the incidence matrix, concerning the branch manipulated, and a row from the 
reactance matrix are removed [10]. 

3.2. Predispatch Model with Line Manipulation 
The predispatch problem complies with a model involving repetitions in t time intervals, which characterize the 
study window. The predispatch problem with manipulations can be formulated in the standard form as: 
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This problem is similar to the case without manipulations (1.1). However, matrices B  and E  vary ac-
cording to time intervals ( kB  and kE ), reflecting the modifications to the networks and buses by the manipu-
lations executed throughout the study window. 

The following sections detail the aspects exploited, taking into account the different types of manipulations. 

3.3. Study of Matrix Structure for the Problem with Line Manipulations 
We presuppose that the preprogrammed manipulations i  occur along the time intervals t , where each time 
interval corresponds to a period of 1 or 1/2 hour. 

Matrix B , formed by the juxtaposed rows of the incidence and reactance matrix, is no longer constant 
throughout the time intervals t . Each time a manipulation is executed, a row and a column from matrix B  are 
removed (inserted). In case there is more than one manipulation in the same time interval, a larger number of 
rows and columns from matrix B are removed (inserted). 

When we consider a system with manipulations at different time intervals, we will use the following notation: 
k

k
k

A
B

X
 

=  
 

  

where, 
1, 2, ,k t=  . 

As the dimension of matrix B can be modified at every manipulation, the system must be adjusted to these al-
terations; that is, for the execution of the product and summation with B, the dimensions and structures of the 
other matrices involved in the system (arising from the characteristics of B) are modified. 

As we have already said, matrix B  can be decomposed as: 

T N

T N
B

X X
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where 

[ ]A T N=  
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and 

[ ] T NX X X=  

with this partitioning, the columns of the incidence matrix A  are divided so that T contains the edges of a 
spanning tree and N is formed by the remaining edges, which belong to the co-tree [9]. The reactance matrix X is 
partitioned in a similar manner. 

In Figure 1, we have the nodes and edges of an electric system, where the rows in bold represent a spanning 
tree and the other lines are its additional edges. 

Figure 2 is an electric system graph, where the dotted lines represent the branches of the system to be dis-
connected, whose incidence matrix is shown in Figure 3. 

3.4. Solving the Predispatch Problem with Line Manipulations 
Next we will study the consequences of the line manipulations in the matrix structure. We have observed that, in 
Equation (1.5), which does not consider manipulations, the matrix  

( ) 1ˆ ˆk k T
pD E D E

−
=



                                  (1.8) 

is square and has the dimension ( ) ( )1 1n n+ × + , where its first m  lines constitute the diagonal matrix k
pD


, 
while the remainder of its elements are null. 

We can observe that the matrices that are directly influenced by the change in dimension of B  are Ê , k
fD


 
and kD . Thus, when performing the manipulations in the system, Equation (1.8) will be the following: 

( ) ( )1ˆ ˆ Tk k k k
pD E D E

−
=



. 
 

 
Figure 1. Spanninh tree edges in bold and additional edges.           

 

 
Figure 2. Branches to be disconnected in the system.             

 

 
Figure 3. Columns to be disconnected from the incidence matrix.     
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The matrix M  is calculated according to Equation (1.9), 

( ) ( )1
,

Tk k k k k
fM B D B D

− = +  

                             (1.9) 

The direct resolution of system (1.9) requires great computational effort, because the matrix M  has the 
dimension of the number of rows, while yad  has the dimension of the number generators. An efficient solution 
can be obtained with the following step sequence [8]: 

Step 1) Consider a matrix kB , constituted by matrix kB  and canonical vector je , thus  k k
jB B e =  

  
(note that this matrix is square and non-singular). 

Step 2) To matrix ( ) 1k
fD

−



 a row and a column are added, to adjust its dimension to the multiplication among 

the matrices. 
Step 3) From matrix kD  the j-th line and j-th column are removed, with j ranging from 1,2, , m , where its 

intersections cannot be null. Accordingly, we are removing a generation bus from the matrix, its dimension is 
not changed, and there is only the replacement by zero of the j-th row with zero and column removed. 

With this these modifications, the matrices are readjusted, therefore, ( ) 1k
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This system is solved in two steps [11]: 
1) We will first solve the following linear systems 
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It is important to note that we are assuming that in the time intervals t  there are the planned manipulations i;  

i.e. the matrices kB  and ( )TkB  vary throughout the interval as a function of the number of manipulations.  

The vector ˆ̂dy  can be found with ease using, for example, the factorization LU of kB , which does not vary 
along the iterations. In the algebraic form, we write: 
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2) The Sherman-Morrison-Woodbury formula [12] is used for the calculation of the inverse of matrix kM : 

( ) ( )1 11 1 1 1 1T T TC USV C C U S V C U V C
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where U  and V  are matrices of dimension p q×  and S  has the dimension q q× . Adapting to our  

problem, we have ( )( )Tk k k
fC B D B=


    e T kUSV D=  . 

Observe that: 
• If a diagonal matrix of dimension g g× , whose elements are those that belong to the matrix kD ; 
• U  is formed by columns from the identity matrix; 
• T TV U= . 

Therefore, ( ) 1kM
−

  is written as:  
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( ) ( )( )
1

1 ˆ ˆT Tk k k k k
fZ S E B D B E

−
−  = +   

   . 

Note that Z  is a symmetric positive-definite matrix, with dimension equal to the number of generators. 
Therefore, the calculation of Z  is not costly, as the matrix allows the application of Cholesky decomposition 
and has relatively small dimension. 

Multiplying the Sherman-Morrison-Woodbury equation, already applied in this problem by kr , we have: 

( ) ( ) ( ) ( )1 11 1ˆ ˆ ˆˆ ˆ ˆd d d
T Tk k k k k k k

f fy y B f B E Z E y
− −− − = −   


 . 

Note that the matrices k k kB L U=  can be factored before starting the iterative process, in a similar way to 
what can be accomplished with matrix B , in the case of the problem without manipulations. 

3.5. Bus Manipulations 
A bus manipulation occurs when generators or loads are disconnected from the system. The loads have varia-
tions that are not always predictable over time, which is a factor that can hinder system modeling. 

Unlike line manipulations, in bus manipulations we cannot choose branches that belong, or not, to the span-
ning tree, because, obviously, when disconnecting a bus, lines from the spanning tree and the additional edges 
must be disconnected. To prevent damage to the system, we chose to execute manipulations only on buses with 
a degree of less than two (only one edge of the tree touching it). Again, it is easy to change the heuristic in [6] to 
get trees with these characteristics. 

We assume that n-edges touch on the bus to be operated, then n-rows and columns from B  and one more 
line from the incidence matrix [ ]A T N=  should be removed. 

3.6. Solving the Predispatch Problem with Bus Manipulations 
The manipulations involving generation buses and loads are similar to line manipulations. But in this case, the 
study of the matrix structure of the problem associated with these manipulations must also be executed in the 
spanning tree. When there are bus manipulations at different time intervals, there is a modified network topolo-
gy. Therefore: 

k
k

k

AB
B
 

=  
 

  

where  
1, 2, ,k t=  . 

In this study, we decided to consider only bus manipulations whose modes associated in the tree have a de-
gree of less than two; that is, the manipulations are carried out in the leaf of the tree. This prevents the system 
from being disconnected, which occurs mostly in small problems. Thus, in Figure 1, the only buses that can be 
disconnected are C  and E . Assuming that bus E  has been chosen, the changes in the incidence matrix are 
shown in Figure 4. The columns and row featured must be removed from the matrix. 

In the incidence matrix, the columns relating to branches that are connected to the bus will be disconnected. 
Note that by removing these columns, the incidence matrix is replaced by a null line; therefore, this line is also 
removed from the matrix. 

The changes in the reactance matrix are illustrated in Figure 5. 
Note that we simply have to search for the nonzero element in the column of the branches of the additional 

edges and remove the reactance element associated with it, similar to the case with line manipulations. 
This approach to the problem involves no loss of generality. In fact, if necessary, we can manipulate a bus that 

corresponds to a node of the tree of degree 2. 
The next step is to execute line and bus manipulations in the same time interval. 

4. Heuristic for the Construction of the Spanning Tree 
The purpose of this section is to show the heuristics used for the construction of the spanning trees used in the  
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Figure 4. Rows and columns to be removed.                        

 

 
Figure 5. Reactance matrix of the system.                         

 
experiments performed. In this study, we have opted for the construction of a spanning tree with additional 
edges. Thus, it is possible to have a reactance matrix whose structure can be effectively exploited. 

The reactance matrix is denoted by [ ]XT XN , where the sub-matrix XN  is diagonal and represents the 
edges of the co-tree. It is known that the sparseness of the reactance matrix depends on the circuits adopted in its 
construction. The purpose of the following heuristic is to build a sparse reactance matrix: 
• We choose the bus with the higher degree as the root, and all of its neighbors as children; 
• The remaining neighbor buses from the greater degree of leaves are then added to the tree; 
• The procedure is repeated until all buses are part of the tree. 

Thus, we have attempted to build a tree with a small depth. The circuit obtained adding a line that does not 
belong to the tree and form the reactance matrix. In a shallow tree, these ties tend to contain few buses, resulting 
in a sparse matrix. Note that each additional edge also belongs to a single circuit; that is, XN is diagonal. Finally, 
considering that XN is diagonal, the reactance matrix has linearly independent rows and, since there are 

1n m− +  matrix out of the tree, we obtained the number of equations needed to form X [13]. 

5. Numerical Experiments 
On the implementation of the interior-point methods for the solution of the predispatch problem with manipula-
tions, the matrix structure of the system is modified. In this study, the manipulations are a data input. Thus, the 
changes that have occurred in the matrices are known before and can be studied before the beginning of the iter-
ative process. Without loss of generality, it is possible to use a heuristic for the construction of the spanning tree, 
in order to ensure that the branches to be manipulated will always belong to the co-tree [14]. 

For both line and bus manipulations, the matrix kB  is stored for subsequent calculations of the resolution of 
linear systems of the interior-point method. On the question of functionality, only the branches that are active in 
the system are stored, i.e., the columns of the matrix N  which are connected in a specific period of time. 

5.1. Test Systems 
The networks in which the tests were executed include the IEEE30 and IEEE118 systems representing the 
American Midwest, and the Brazilian system composed of 1993 and 3511 buses.  

The Brazilian system with 3511 buses and 4237 branches corresponds to the operational programming of 
Brazilian system from 24/Jun/2006. 

In the computational experiments executed herein, we used the primal-dual interior-point method and carried 
out tests with the number of manipulations ranging from zero to six in one day, which is a common occurrence 
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in the Brazilian power system. 
The implementation was developed on a 2.5 GHz Intel Core i5 processor, 4 GB 1333 MHz DDR3 memory- 

Macintosh HD in Matlab 7.0 with accuracy of 310−  in order to consider the optimal conditions of the problem 
satisfied. 

The tests carried out used the starting point shown in Equation (1.11): 

( )
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0

0 0 0 0
1 2 3 4
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1 1

0 0
2 2
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ff

pp

y y y y

z w R I e

z w e

z w e
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=

= = = =

= = +

= =

= =

                              (1.11) 

5.2. Computational Results for Line Manipulations 
The number of iterations necessary for convergence may vary significantly depending on the branch that is be-
ing manipulated. If a branch with a high flow is disconnected, the method will have to find a new way to meet 
the demand, reflecting on the number of iterations and, consequently, on the computational time. However, oth-
er reasons may be responsible for this increase, because depending on the branch that is being manipulated and 
its resulting network, the adequacy of the system may not be efficient. 

For the case with line manipulations, we observe only a small increase in computational time, as shown in 
Tables 1-6, which is affected not only by the number of manipulations, but also by the branches manipulated. 

5.3. Computational Results for Bus Manipulations 
Bus manipulations do not cause major modifications in computational results because, when a bus is removed, 
the system is reduced to a simpler subsystem. The results of Table 7 and Table 8 show that these modifications 
 

Table 1. IEEE30 system.                                  

# of manipulations Time (seconds) Iterations 

0 0.154 3 

1 0.167 3 

2 0.182 3 

3 0.189 3 

4 0.191 3 

5 0.191 3 

6 0.192 3 
 

Table 2. IEEE118 system.                                  

# of manipulations Time (seconds) Iterations 

0 0.835 3 

1 0.898 3 

2 0.954 3 

3 1.018 3 

4 1.053 3 

5 1.101 3 

6 1.150 3 
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Table 3. SSECO system with 1654 buses.                      

# of manipulations Time (seconds) Iterations 

0 143 9 

1 144 9 

2 145 9 

3 145 9 

4 147 9 

5 148 9 

6 149 9 
 

Table 4. SSECO system with 1732 buses.                      

# of manipulations Time (seconds) Iterations 

0 150 9 

1 152 9 

2 152 9 

3 154 9 

4 155 9 

5 156 9 

6 158 9 
 

Table 5. BRAZIL system with 1993 buses.                  

# of manipulations Time (seconds) Iterations 

0 214 9 

1 215 9 

2 215 9 

3 216 9 

4 219 9 

5 225 9 

6 225 9 
 

Table 6. BRAZIL system with 3511 buses.                   

# of manipulations Time (seconds) Iterations 

0 278 5 

1 278 5 

2 279 5 

3 280 5 

4 280 5 

5 281 5 

6 282 5 
 
do not result in larger computational costs. In the next section, we will be address the case in which bus and line 
manipulations are executed simultaneously, then a more interesting analysis in relation to the behavior of the 
system will be possible. 

When compared to the problem that does not consider manipulations, the computational cost per iteration is 
essentially the same. In addition, there was a small increase in the number of iterations in the problem with ma-
nipulations compared to the same problem without considering them. 
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Table 7. IEEE30 system with bus manipulations.              

# of manipulations Time (seconds) Iterations 

0 0.156 3 

1 0.156 3 

2 0.157 3 

3 0.208 3 

4 0.201 3 

5 0.194 3 

6 0.195 3 
 

Table 8. IEEE118 system with bus manipulations.              

# of manipulations Time (seconds) Iterations 

0 1.962 3 

1 1.960 3 

2 1.962 3 

3 1.964 3 

4 1.962 3 

5 1.972 3 

6 1.952 3 
 

The efficiency of the methodology used in this study can be proven not only by convergence, but also by non- 
convergence in some tests carried out with infeasible systems. Accordingly, we could prove that the implemen-
tation actually optimizes the problems addressed. 

Accordingly, the model developed approaches the real problem much closer with an insignificant additional 
computational effort and without presenting any numerical stability problems. 

6. Conclusions 
In this work, interior-point methods are used to solve a predispatch problem in a hydroelectric system. The con-
tribution of this research is to solve these problems with line and bus manipulations executed simultaneously. 
When these manipulations occur, the network topology is modified. The characteristics of this problem and its 
importance for the Brazilian electricity system have motivated the development of this research. 

The methodology used in the development of this study is the primal-dual interior-point method, as it presents 
satisfactory results for problems of optimal power flows. 

In order to improve efficiency in the solution of the predispatch problem studied herein, we use a heuristic for 
the construction of a shallow spanning tree, so the reactance matrix used is sparser. 

From the computational point of view, the effort to solve a problem with or without such modifications on the 
network topology is similar. Even with the modifications in the matrices of the problem, the number of linear 
systems that need to be solved remains the same, compared to the problem without manipulations. Furthermore, 
the number of iterations required for convergence of the interior-point method depends on the importance that 
the manipulated branches and buses have on the system. 

The results obtained showed the adequacy of the methodology, both in the numeral aspects and in the times of 
convergence: the times required to attain the solution were kept below five minutes for the larger problems for 
implementation in Matlab. However, these times can be dramatically reduced to a few seconds in a high-per- 
formance language. 
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